Chin. dnn. of Math.
10B (4) 1989

SYMMETRIES AND THE CALCULATIONS
|  OF DEGREE™
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Abstract

This paper considers the calculations of Leray-Schauder degree of equivariant compact
-operators under any compact Lie group actions. The main results include two parts. One is

@ local Lera.y—Schauder index formula on regular zero orbits. The other is a generalized
Borsuk theerem.

§0. Introduction

In this paper we congider the caloulations of Leray—Schauder degree of
)quivariant compact operators under any compact Lse group actions. The main
esults include two parts. One ig a local Leray-Schauder index formula on regular
ero orbits. The other ig a genoralized Borsuk theorem.

The zero points of equivariant operabors, which appear as orbits here, are
-enerally not igsolated. Hence, some ugeful and efficient results about the local index
f degree cannob be used again. Naburally the locally caloulating problem of the
ndex for zero orbits should be invesﬁgated. We sbudy this problem in § 1, and give

formula of the local index for regular zero orbifs, which ig related to bthe topology
Euler characteristic) of the orbits.

On the other hand, it i3 well known that the olagsical Borsuk-Ulam theorem
ag played an imporbant role for dealing with symmetric nonlinear problems. Based
o this theorem Lusternik—Schnirelman cabegory theory and the related notion of
enus were founded, which have been used to treat even functionals and to obtain
1any stabionary points for the variational problems. In finite dimensional case the
orguk-Ulam theorem stabeg that if 2 is a symmetric bounded open neighbourhood
f the origin in R", ard f is an odd continuous map of 82 into R¥, k<n, then f musb
anish somewhere. Thig ig an immediate corollary of the following Borsuk’s theorem:
*Q is ag above and f is a continuous odd map of 22 into B"\{#}, then deg (f, 2, ¢)
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ig odd. This shows that the appearance of symmetry can provide some quantitative
information for the calculation of degree.

In recent years, much work was devofed o the genera,lizé;bious of the above
theorems. In [1] and [8] Benci, Fadell and Rabinowitz, bo develop an S* index
theory, gave an S*-version of the Borsuk—Ulam theorem. The initial proof of it given
in [1] employed some theory in algebraic lopology, such as Chern clags. Afterwards,
in [3] Nirenberg gave an elementary analytic proof for a slightly generalized form
by means of transversality lemma. In addition, there is a lot of work concerned wi -
the generalization of the Borsuk theorem. For instance, in [11] for finite groups
torus groups, in [15] for Z, groups (p prime integer); and when Fixg+ {6}, in[13
[9] for S* group, in [7] for finite groups or torus groups. Other work is referred
the references of the above papers. However, observing all these rosearches on
global generalizations of the Borsuk theorem we find that the transformation grou
are regtrioted to the finite groups, S* or torus groups which all are commutati
groups except finite groups, and that there is no result for other group actions su
as 8O(n), O(n), 8% which should be more complicated and appear more natural
in applications than finite groups, 8* or I™.

In § 2, we consider the global caloulation of Leray-Schauder degree under +
action of a compact Lie group, and we obtain a generalization of the Borsuk theor
which we call a generalized Borsuk theorem (c¢f. § 2 Theorem 2 .1). This rest
dividesthe degree caloulation into two parts. One part is the degree of the m
restricted to the fixed point space of the group action, and tho other part is a line
combination of Euler characteristics of the orbits. Obviously, the former correspor
to the part on which there is no influence of the group action, and the latter sho
clearly how the symmetries influence the global degree. We algo discuss some versic
of the generalized Borsuk theorem for certain concrete groups. Moreover, we point ¢
that our theorems imply all previous resulis about Z, 8% T and finite groups.

This work was motivated by the studies of equivariant Morge theory for isola
eritical orbits in [19] by means] of which some slightly further results about -
degree calculation of equivariant pobential operators were obtained in [20].

Throughout this note, the following notations are used. @ always denot
compaot Lie group. A G-Hilbert space means that there is an isometric lin
representation of G on X. For fixed s, G(2) = {gs|g € G} is called a G-orbit, whic
a compact submanifold of X. The normal bundle of G(s) in X is denoted
»G(z). The closed subgroup of G definod by G,={g EG'|gz=s} is called the isotr
group of z. If H is a closed subgroup of &, G/H denotes the loft cogob space of H
G. Fixg={s € X |gs=5, Vg €G]} is called fixed point space. The concepts of tube usu
slice are often used. We refer these cancepts and other terminology on the compact
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ie trangformation groups o [2].
This paper ig part of my Ph. D. thesis [21]. I wish to thapk Prof. K. C. Ohang
r his advice and encouragement in preparation of this work. I am also grateful for
any helpful discussions with him. I algo thank Prof. BE. N. Dancer; W. Y. Dmg,
. H. Wang for their suggestions about improving the results.

§1. Local Result-An Index Formula of
Regular Zero Orbits

Let X be a Banach space and let f=TI4-K: X-—>X be continuous, where K is a
mpact operator. Assume that z, ig an isolated zero point of f, then the index of f
ith respect 0 zg, ind (f, xo), is well defined. And from the Leray-Schauder index
rmula (cf. [4]), if (—1) &0 (DK (z)), then
ind(f, @) = (—1)~PxE, @.1
aere p(DK (w)) equals to the sum of the algebraio multiplicities of all eigenvalues
DK (zo) which are legg than —1.
The zero points of a G—equivariant operator are generally not isolated. Therefore
> should congider the index of isolated zero orbits.
Let X be a Hilbert space® and 7' (@) be a smooth isometrie linear representation
a compaot Lie group G. When X" is also a G-space on which the representation
G is T'(@), fEOC(X, X') ig calleds G~equivariant if
f(Tw) =T,f (), V9€G, v€X. t.2)
Set ‘
04X, X) ={f€0’°(X, X)|f is G-equivariant},
Fo(X, X)={f€0%(X, X)|f-I is a compact operator},
Ry(X, X)={fEFs(X, X)|the zero orbits of f all are regular}. (1.3)
Now, assume f€04(X, X) and that N is an igolated zero orbit of f. Assume
at f-I is compact. Suppose that O is an isoated neighbourhood of N, i. e. O does
% conbtain other zero points of f except N. Ths index of f with respect to N is
fined ag follows:
ind (f, N)=deg(f, O, 8). (1.4).
It ig easy $o see (1.4) ig independent of the choise of O.
Definition 1.1.  Suppose that f €CL(X, X) and N=G(wo) is a zero orbit of I
45 called a regular zero orbit of f of ,
Df(zo): X /T, N —Ran D f(w,) A d1.5)
s an Gsomorphism. ‘

*) Cur results are also true for Banach space X, the proof is referrd eto [22].
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Oné can easily prove that the regular zero orbits are molated. Below, we shall
calculate the index of a regular zero orbit. Let N hs g regular zero orbit of f with
orbit type (H). 3y orbit type (H) we mean (H)={K|K is a subgroup of @, K
and-H are conjugate}. And we say N has orbit type (H) if for 2EN, (x,)=(H),
(ef. [2]). Moreover, if we denote the left coset space of H in G by @/H, then there
is a diffeomorphism between N and G/H. Our main eonclusion is as follows.

 Theorem 1.1. Let fE€ Fe(X, X). Supposs that N is g regular zero orbit of f
with orbit iype (H), then thers is a nonnegative integer po such that
ind(f, N) =(=Drx(N) = (~1)my(F/H), (1.6
where y(N) is the Buler characteristic of N.

By means of G--equivariant tubular neighbourhood $heorem (of. [2]), denotir
the tangent bundle of N by TN and the normal bundle by »N, then there is a
orthogonal decomposition at each z € N:

X=T.N®v,N, @.
w:»vN — N is G-equivariant projection. Moreover, there is a diffeomorphism ¢:
i vN (&) —->0,.(N),
¢ (&, V) =2+9, €N, vEwi(a),
where :

WV (e) = {(a, )| o] <s),

0,(N) ={z|dist(z, N)<e}.

For any 2, €N, 8.,=ve. N (8) = {(z0. v) | |0} <8} is a dlice ab z, and

vN (e) =G(8,,)

ig a G-invariant tubular neighbourhood.
In the following we shall consider the problem on $hig neighbourhood.

We always write T'yz= gz for the simplicity if there is no obsourity.

Lemma 1.1. For any €@, sEN we always have

Dy (gz) = gDf () g-1. .

Moreover, g: Ker Df(az)—>Ker Df(gz) and g: RanD f(s) —>RanD f(gz) a
isomorphisms.

Proof  Differentiate the equality f(gz) =g f (z), the result follows immediabel

Now, if N ig a regular zero orbit, we fix a point @y € N. Without loss of general;
assume G, = H and write Df (z,) = A€ #(X, X)), where A=I+XK and K isa line
cownpacht operator. Therefore, there ig an orthogonal decomposition of X:

X ~Ker A®Z:~Z:@® Ran 4, a.
where Zi=v,,N, dim Z;=dim Ker A=dim N << 4 co .

From (1.8) and hzy=g, VR E H, we have Df (@e)h=D f (hwo)h=hD f (wo). A

than we have '

Lemma 1.2, T(H) and 4 are commutative. Thersfore, Kerd, Rand, Z; ond
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s tn (1.9) all are T (H)-tnvariant subspaces of X.
Proposition 1.1. Assume that A is given as above. Then for any £>0 there is a
mear compact operator @€ ¥ (X, X) satis fying the following conditions:
(1) 18]aa<s;
(ii) T(H) and O are commuiative; .
(iii) [Ker(I+0)4] N [Ran(I+O)4]={6}. . 1.10)
Its proef is rather technical and we give it in § 3. However, we now uge this
roposition to complete the proof of Theorem 1.1.
12 On vN (&), : :
T =S )+ DY (o)) (o) (o) I as
: ~Ne—m(2)|—0..
lince N is a.regular zero orbit and N is compaoct, there i is >0 independent of s € N
-t for s €¥N (¢), | Df (@ (@) (o —x(2)) | =8 |o~m (). Let F(z)=Df(w(2))(v»—
(a;)) then for >0 gmall enough'we have ~
deg(f, vN (¢), 8)= dog(fv vN (e), 6). .- ; (1'11)
27 Leb zo€ N be the point fixed asd above. By Lemma 1.1,
Df (w(gc)) = Df (gm(2)) = gDff (w(2)) g7
.e. for €y, N(s), Df(w(gz)) =gAg. Dofine a map F: N=G/H —-»>¥(X, X) by
GHF(GH)=9(I+0)g™, - d1.12)
vhere O is given in Proposition :1..1. From the property (ii) of & one ocan easily
‘heck that ¥ ig-well defined on . Let @ G—G/H be the projectio n of Lie group
¥ onto its homogeneous space G/ H, it is easy 1o see that Fox'(9)=¢g(I+6)g™" is a
mooth map from @ into ¥ (X, X), so F: G/H — ¥ (X, X) is algo smooth. Now leb
E(w) =F (w(2)) f () =F (w(2)) o Df (w(2)) (2 ~w(2)). 1.3)
Yobe thab S ' : ‘
JSup B () ~F @)
<, Sup IIF(W(w)) I} Df (@ (2)) (a- -5 (@) |

<___sup hyr@g‘lllIDf(,cﬁo)lng(m W(w)h<8||@"HAﬂ

ZEG,BE N {E)
30 if }] @] is small enough, it suffices to consider deg (&, vN(s), 8). In addilion, we
leclare that for any « Cv N (&),

Ker[F(w(z))oDf (®(2))] NRan[F (w(z)) o Df (w(x))] = {6}. (1.14)
In faot, by the definition of F for # €v,, N,

F(m(gz))oDf (n(gz)) = g(I+6) 4g™, Vg EG.
Nevertheless .
L Keor{¢(I+6)A4g ] =gKer[(I-+6)4]
and Ranfg(I+©)Ag*]=gRan[(I+6)A4].
And the (1.14) follows from
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gKer[(I +O) 4] ﬂgRa,n[(I—r @)A]
—g{Ker[(I+0) A1 NRan[(I+O)A]}
= {6} (by Proposition. 1.1 (111))
3% From (1.14) one can ses that
P(w(2)) F (w(2)) Df (w)2)) P (@)2))
is a linear isomorphism of v, onto ilself, where P(w(z)) is the orthogonal
projection onto the normal space vue,N at #(x). Define a homotopy map
 J: [0, 1Jav N(¢)—> X by
Ji(@) = 1= E(@) +t(P@(@) B@@) +V (n(z))),
where V is a smooth vector field on N, i. e. a smooth cection of TN. By Sé,rd’s lemma,
we may assume that the zero points of ¥ are nondegenerate, that is, if ¥ (2)=0,
DV (z) is a linear isomorphism (ef. [12]). So ¥ has only finite zero points, say {zy,
wes, By}, m<+ 00, _
We verify J, () -0 for any (¢, %) € [0, 1]1 XN (e)), t=0 it is true. If
(¢, @) €(0, 1]xa(»N(e)), J (¢, o) =6, ,
then P(w(2))E(s) =8 and tP'(x(2)) A (z)+ 1~V (w(2)) = 0 where P! ig thei
projection onfo the tangent space Tx,N at w(2). Bub from the above observatuon,'
P(w(2)) E(z) =0 implies o= (o) € N, this is a contradiction.
Now, J1(2) =P (w(2)) B (z)+V (w(2)), the two terms are orthogonal sum, and
the zero get of J; is precisely {w4, ---, @,}. Thus

dog (B, vN (&), ) =deg(Jy, »N(s), 8) =§1 ind (73, a,). (1.15)
4% Take Z € X, it is easily verified that
DJ1(2;) (Z) = D (PFDY) (w(2;)) o D (@) (Z) (w3~ () ) + DV oDx (25) (Z)
+ P (o (2;)) F (w(2;)) Df (w(25)) (Z — D (0;) Z)
— P (2) ) F (w(23)) Df (w(@)) P (w () (%)

+ DV (e (@) ) P+ (w (1)) (Z),
where D denotes the differentiation along the tangent space of N. And we have used
wy—w(2;) =0 and Dw(z;) = P*(w(z;)). By (1.14) and the assumption on ¥, we gee
that {w1, -*-, os} are nondegenerate zero pomts of J4. By (1.1) and (1.15),

ind (f, N)= 2.( (DT (25))- (1.16}
By the expression of DJ;(z;) we have '
p(DJ 1(2)) =p(D(PE () +p(D(V o) (-'v;))

Lot ;= gm,, then , -

D(PE (z;) = P(@y) F (w)) Df (2;) P (2;) )
= ¢;P(w0) (I +0) AP (o) g7,

Th R
® o(D(PE) () = p(P(ac) (I +6) AP (=),
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Set O =P(zo) (I+O)AP(mo): v,V —>v,,N, then O ig an isomorphism and O-I is
compact operator (by Proposition 1.1(1)). Lebt o(0) = pe(v. N as a closed subspace
f X), then

il\.d (f, N) — Em] ( — 1) P(b(PE)(’j)) . ( — 1) p(D(Vox) (&)}
i=1-

= (~D)% S (DTN = (~ 1) (V).

Che last equality is due to the Poinearé-Hopf theorem (of, [12]).

Remark 1.1. For a given group we may use the index formula to give much
nore information. For example, if G=T"=8"z.--w8* (ntimes) and N is a nontrivial
regular zero orbib of f, then ind (f, N)=0.

Remark 1.2. Somse resulis related to our work can be found in[14], [18], in
vhich the index for general zero manifolds was discussed. For potential operators we
yblained some glightly batter results in [20]. '

Remark 1.8, 'The result (1.6) might be true for a continuous action T(G).
[n [6] Dancer obbained a regult which implieg tho zero orbit of a smooth map should
be smooth even if the action is not smooth.

§ 2. Global Result—Generalized Borsuk Theorem

We begin to congider the global caloulation of degree for equivariant operatoas,

and our main result ig the fo llowing one which we call generalized Borguk theorem.

Theorem 2.1 Let X be a Hilbert space® and T(@) be a smoothly isometric

representation of compact Lie group G on X. QC X is a G—invariant bounded open sot.

Denote the orbit types of T(@) im Q by (@), =1, 2, -, k, where Gy=G@. Assume that

f: Q=X is a conténuous G-equivarient map and that f~1d is compact. If 8 f(0Q), we

have
deg(f, @, 8)=deg(f|rixen FixeNQ, 7)

+ 3 (@G, @.1)

where {a}., is @ group of integers depending on f. ‘

Remark 2.1. It was proved that the orbit types of 7' (@) are finite when X is

a finitely dimentional Euclidean gpace (of. [2]). When X ig infinitely dimensional,

while there may be an infinite number of isotropy groups G;(i. e. an infinite number

of orbit types) it can be shown that x(G/G) can only take a finite number of values
(of. [3]).

Before proving it we point out that Theorem 2.1 implies the olagsical Borsuk

* We have proved this theorem in [22] for X being a Banach space and T(&) being 2 eontinuous
isomelric representation. ' : '
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theorem (ef. § 0) and a series of previous generalizations o %, T* and finite groups.
For the simplicity, we introduce a nonnegative integer vy, ().

Definition 2.1. Let T(@) be an isomeiric representation of G on X. QX is
an imvariant set. If for any o€ Q\Fixe, 2(G(2)) =0, define vy, (Q) =0. Otherusise,
define vg,(Q2) =the greatest common divisor of {|y(Q(z)) ||z € Q\Fixg}. v, ts shori
Sor Vz'(a)(X)-

Corollary 2.1. Let the assumptions in Theorem 2.1 hold, then

deg(f, @, 6) =deg(flrxeno Fix,nQ, 0) + @ vy (Q). (2.2
In particular, if Fixe={0} and 0 €Q, then
deg (f, @5 0) =14 aepy (Q), (2.3

where a is an integer depending on f.

Remark 2.2. In faot, » i8 a kind of measure for the uniformity of the topolog
of orbits. Below we can see (2.2) and (2.3) include all previous work in this ficld
Take G-=Z, and then vze,—2. (2.8) 19 just the famous Borsuk theorem (of. § 0)
Take G=8! and note that all nontrivial orbitt of §* action are homeomorphic fo S
then vpg,=0. And (2.3) is jugt tho S'-Borsuk theorem (cf.[1], [8], etec.). Take G=1
and similarly ype,=0 (cf. [11]). Take G'=Z,, then yyq,—p provided p is prime. Tak
@ a finite group and denote the order of @ by |@|, then wyg=the G. C. D. of al
divisors of |G| which are less than |G| (ef. [15], [11], eto.). When Fixs+6
corresponding to the above various group actions, (2.2) was discussed in [7], [9]
[18]. Further reforences can be found in thege papers.

Corollary 2.2. Let the assumptions in Theorem 2.1 hold. In addition, assum
that there are only two orbit tyyes Go=G, Gi={e}. Then

deg(f, @, 8) =deg(flrse FixgnQ, 6) +a-z(Q). 2.4
In particular, ¢f dim G=>1, then
deg(f, @, ) =deg(f|ms, Fizen 0, 6). (2.5

Ezample 2.1. Let X bea Hilbert G-space and dim G<3. Assume that th
number of connected components of G is 2™ for g, certain m € N. Assume that Qc X
is an invariant set, and j;hat all orbits of the G-action in © are orientable. ThLer
Yo, (Q2) is even.

In fact, since dim @< 3 for every nontrivial orbit N dimN<3. If dimN=1 o
3 by virtue of Poincard’s duality theorewn (of. [10]) x(N)=0. If AimN =23, i
follows from Corollary (26.11) in [10] $hat 4(N) is even. If dimN=0, by th
agsumption N containg 2! points for & certain 1<<t<m, so x(NV) is even.

Corollary 2.8. Iet the assumptions in Theorem 2.1 hold. In addstion, assum
that @ and Q satisfy the conditions in the above ezample. If f| e, =id, then deg(F, Q, 6)
s odd.

Remark 2.3, The orientable condition in Example 2.1 is essential. For
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ample, G=_50(3) and H=0(2), then G/H =P* ig nonorientable and y(P?) =1,

Now, a generalized form of the classical Borsuk—Ulam theorem (of, § 0) can be
ven ag follows.

Theorem 2.2. Lot T(Q) be a linear represeniation of compact Lie group G on
*. Assume that R*C R is o T(G)-tmwariant subspace K< n and that QR isa T'(G)-
wartant bounded open set § € Q with vie,(Q2) #1. If f: Q2 — R¥ is a T (Q) -equinariant
mitémious map satizfying f|piz, =44, then f must vanish somewhere.

-Proof Firstly, we extend f to f: Q—> R*CR" with fl.o=f, F being 7(Q)-
juivariant. Since f|mxne=1d deg (Flexy FixeNQ, 0)=1. If §& F(2Q) =F(0Q)
y Corollary 2.1, deg (¥, @, #) 0. On the other hand, from k<m, we may choose
€R"\R* and |y| small s. t. deg (F, @, 8) =deg(f, 2, y) =0, a contradiction.

Remark 2.4, Further discussions can be made for {o}¥.; in Theorem 2.1. To
horten the paper we do nob congider them here.

In order to prove Theorem 2.1 wo firstly give a dengity theorem which shows a
:ind of weak equivariant trangversary property and is a generalizaltion of Sard’s
emma. (or Sard-Smale’s lcmma) in the category of equivariant maps. It mry ba
wweful in some obher situabions. Let X be a complete G-Hilbert space with an
sometrio representation T(G). Let BC X be a G-invariant set, define

Ry(X, X; B)y={f€ Fs(X, X)| the zoro orbits of f in B are regular}.
Theorem 2.8, Rg(X, X) 48 dense in Fe(X, X), where Rg(X, X)=Rs(X,
X; X). :

Before proving Theorem 2.8, we use it to give the proof of Theorem 2.1.

Lemma 2.1, Lot fEFe(X, X) and Q be a bounded G—invariant open set and
hat QN Fixg=c. If O f(2Q2), then

deg(f, @ 0) =31 (@/G0, @.6)

where {B.} 4s a group of integers.

Proof By the homotopy invariance of degree and Theorem 2. 3 Wwe may agsume
f&Re(X, X). Then it is casy o see f has only finite zero orbits which all are
regular. Since 2[) Fixg=0, every zero orbit must be of form G/@;, 1<i<k. By
virtue of Theorem 1.1 the result follows.

Lemma 2.2, Lot fCFe(X, X). Assume xoC Fixg 48 an isolated zero poinis af
f, then

ind(, @) =ind(, 50) =3} B2 (/G e

where {B.}.1 45 a group of infegers.
Proof Leb P be the projection onto Fixg and @ =1 —P. For 81>0 33>O seb

Aer, 82) ={o € X ||Qa| <8y, |Pr—wmo] <ea}.
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Since f(Px) € Fixg, 2, is also an isolated zero pom’o of f lm:a and (2.7) makes
sense. Let h(z) =Qz+f(Pz) and define a
F(@) = @ =n(1Q21)A() +n(IQa|® f (=), (2.8)
where 7 is a nondecreasing smooth funotion such that 5 () =0 if 0<<¢<<dy, n(¢) =1 if
31<t<ey; 0<d;3<8;< s, are determined in the sequel. Obviously, 7 is equivariant
and f(z) =f(a) if |Qz|>3s. On the other hond, if 8, is small enough,
17 (@) ~F (@) | = A -nQz[") |h(a) = f ()|
= Qo+ | Df (P2) | - | Q2| +0(|Qa])
=¢(1) as §;—>0.
So, if 8; is small enough, deg(f, 4, 8)= deg (7, 4, 6). In A3, 82) f(w) h(a
and on 8(A(84, 85)), h#6. In fact if o€ (A5, e2)), h(z) =Qu+f(Px) =0, the
Qz==0, f(Pz) =40 i. . 5= Pz=> z=u,, acontradiction. So -
deg (F, 4(sy, ,2), 6) :
=deg(F, A(8y, &2), ) +deg(F, A(ey, e2)\ A5y, so) 9). 2.¢
Obviously, A(ey, e2)\ A3y, 1) is G-invariant and
[4(es e2)\ A3y €2)T NFixg=4.
Then it follows from Lemma 2.1 that '

deg(f, A(sb e\ APy &2), )= “B;x(G/G‘) 2.1

-Sinoce h(z) = Q:v+ S (Pz), we can apply bhe produot formula of deglee (ef. [4]
bo obtain

- deg(h; A(Sy, 1), 6) v ‘
=deg (h| pis, FiXGﬂA_i ) +deg (M(Exx}) i:FiXé’_n 4, )
=deg (f|rixp FixeN 4, ) =ind(f| s, o).
Therefore, the result follows immediately.

Proof .of Theorem 2.1 ~ We firstly use a smooth mayp to approximate f, and the
use the invariant Haar measure on Lic group G' to average the approximated me
and obtain a map f€Fe(X, X). Again using Theorem 2.3 we can assume F.
Rg(X, X). And it has only finite zero orbits which all are regular. Denote ti
nontrivial zero orbits by Ny, ---, N, and the isolated zero points in Fixg by =z, -

;. Therefore, by the homotopy invariance of degree and Theorem 1.1 and Lemn
2.2,

deg(f, 9, 6)
~deg (7, 2, 0) =2 ind(F, ¥) + F md(F, =)
= §< —1)%x (Ny) +j‘:21 (i0d(F | pix,m3) + é} Bix(6/G:)

. 5 . %
= degf lFng) Q n }.“izg, 6) +§ oGx (G/G‘)
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~dog(f1meg QN Fixo, 6) +2an(@/G):

Now we prove Theorem 2.3. We need the following lemmas.

Lemma 2.8. Fo(X, X) is a closed subspace of O*(X, X). And then FG('X, X)
s a second category complete metric space.

Lemma 2.4, Let A=I+ K, K being a compact operator, then there is an >0
uch that for any B=I-+K' satisfying K' a linear compact opeo‘atoa‘ and | B — A} qn<<s

dim Ker B<dimKer 4. (2.11)

Lemma 2.5. Assume 2€ X and N=GQ(z) is a G-orbit. Assume that 8, is a shics
it @ and that GS.=B is a tubs of N. Then for any y € B,

dim G (y) >dim N. (2.12)

Lemma 2.8, Assume that BT X s a bounded closed G—invariant subsst and f€
Re(X, X; B). Then f has at most finite zero orbits én B.

The proofs of the abovo lemmas are usual arguments. We do not give them here
0 shorten the paper and the reader can refer to [21].

Lemma 2.7. Assume that BC X 4 a G-invariant bcmnded closed set, then Re (X,
X; B) is an open subset of Fe(X, X).

- Proof Let f€Rg (X, X; B). It suffices to prove that there is an s>>0 such that
for any F € Fo(X, X), if |F—fl5,<e, then FE R (X, X; B).

By Lemma 2.6, f has finite zero orbits in B, say Ny, «--, Ny. Take 5, E Ny, Let 8,
be an open slice at =, the radius of which is small enough such that for any y€S,,
dim Ker Df (y) <dimXer Df (¢;) =dim N,(by Lemma 2.4). Thus, if |F—f|<s& ig
small, |DF (y)—Df(z)|<s8’4|Df(y) —Df(z,)| is also small. So by Lemma 2.4
again, for any y€S,,, if F(y).=0,

dim Ker DF (y) <dim Ker Df (z,) =dim N,
<dim G(y) <dim Ker DF (y) (by Lemma 2.5). (2.13)
This shows that G'(y) is a regular zero orbit,

Now, we can take s>>0 small enough such that (2.13) holds and that # has no

zaro orbits in

B {_L_Jl G(8.,).

That is to.say F € Re(X, X; B).

Now, we need a Pal.is’s theorem (cf. [16]).

Lemma 2.8 (Palais). Let P be a statement valued function defined for all
compact Lie groups. If whenever @ is a compact Lie group the truth of P(H) for all
H<@G dmplies the truth of P(@), then P(G) s true for all compact Lie groups. Hence
' im a proof that P(G) is valid for all compact Lie groups G- it suffices to prove P(Q) for
an arbitrary compact Lie group G undsr the assumption that P(H) 4s valid whenever
H< . Hore H<G means H ts a oclosed subgroup G- and H+G.
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Lemma 2.9. Let € \Fixq, then there is q closed slice S, at © and the

oorresponding tubular neighbourhood B, =G (8e) such that Re(X, X, B,) is dense in
(X, X).

Proof Let @,=H. From o€ X\Fixe, H<@. For any given f€Fq(X, X),
JE€Fg(X, X). By Lemma 2.8, we assume that R, (X, X; B;) is dense in Fy(X,
X). Then for any &'>0 (determined below) there is an. f,€ Ry(X, X; B,), {fi—
SFl<¢'. Using a similar constructson as partition of unity without loss of generality
“we may assume fi=f on X\B.. Let fi=fi|s, then fi€F,(S, X) for S, is

invariant. From f1€ Bx(X, X; B;) we have fi €R,(S,, X). Define a map F: X-
X by

2o\ [ 9f1(W) iH2€B,, =gy, ye8,,
f@‘{f(z) if2€ X\B,,

We shall prove that 7 is well defined and satigfieg FERL(X, X; B,) and |\H
fls,<¢" provided &’ is small enough. Firstly, in B, if gy, =gy, then 992y =1
Thus 3hE€H ga=gih. Then f(gawa) =9:F1(ys) = guh £ (ys) = g £ Chys) =91 £ ()
F(g:y1), and on 88, fi=f. So F is well defined and ' G-equivariant. For t]
snioothness, it suffices to verify the smoothness of 7 along the tangent gpace of orbi
This is guaranteed by the definition of f and the smoothness of G-action. The
JEF«(X, X).

Note that all orbits in B, intersect S,. Assume y €8, and F(y) =0. Then X
T,G(y)@»,G(y). One can easily verify that »,G(y) ig the same as vH(y)in T,

(Where TySg = T,,H (’y) @V”H (y)) . Since fi c RH (Sm _X) , f €R, (X, X; B,) follow
Now, it ig evident that
IF ~Flo= 59D [9£@) ~af W< | fimflovc s’

Again by Lemma 1.1, Df(gy) = ¢gDf (¥)g™*. So it suffices to see the points «
S,. In this situation, the differentiation is divided into two parts: one part ig parall

to the tangent space of S, at y and the other part is vertical o the tangent space

8S,. The former acts on fi which is an approximation of f- The later part can bews

ag follows. Without logs of generality, assume y =g, Locally,
F(92) =F ([g]) f (@),

where F([g]): G/H —> £(X, X) is defined by F( [9])&=g=. Then,

J can be written ag

Dr o f (a;)Y =Dy g F ( [e] Yr. f (a;), YY €71,G (w) .
Similarly, _
DT_,G(z)f (@)Y =Dr o F ([])Y fi(z), VY €T,@ ().

Without loss of generality, assume there ig an >0, | Dryaeny F | <M for y€S,
(if not, we can reduce the radius of S,). Now, we have
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SuSP | Dr,oenf () — -DT,,G(mf (¥ “ =)
‘wsp sap | Dr,en P (1Y (5 (9) fl(y)) |
, < suplf (4) ~Si W) I <M A_.uf—finga.‘ |
herefore,
lIDf Dfl!oo<Ml|f fillc-+llf f:l.“c:<M81

1 'a gimildr way, one can prove |D*f—D3f|.<<Mss’, where My is a certam
mstant Then, if we chooge &’ small enoogh, we have '
o N7 - f"rgu’,r)<37

e. RG(X X; B,) is dense in Fe(X, X).

Remark 2.5. When G= {e}, bisa. _eongequence of Sard-Smale theorem (of
{7]1) that Rg(X, X) is dense in FG(X X)

..Lemma 2.10, Let v € Fixg, then thefre s a closed ball neighbourhood B, of z in
ixg 'sudfthat Ro(X, X'B,) s dense én Fo(X, X). _
' Prroof 'Since f is eqmvananh f1 = f lms FIXG—)FLXG By Sa,rd—Smale 8 lemma,

e may take a. pomt o EFixg Wlth }la]l small enough such tha.t if y€Fixg, fi(y) +a

0, then Dfi(y) leG—>F1xG is an 1somorph19m
» Moreover, ftais alwo eqmvarlant Thus, without loss of generaliby assume f
3ssecges this property Then the zero pomts on Fixg are isolated with respeot to
ixg. Assume 3 is such a point. For smpholty, aggume z = 9 Take -

: B, B(9 9) ﬂlea

1ch that f has no zelo pomt exoept 8, B(8, &)= {m €EX | lof <8},

Since f=I+ K and K is compaot, we have

Df(6) (sz )‘ (I;,A’ If0>(§>'

hore (X, ¥') €EFixs@® (Fixg) !, and T+ A: Fixe — Fixg i9 an isomorphism. Df (8) i9
ymmutative with G, and go do A and C. In addition, A and O ar ecompact. Let 7 &
*(R,., R,) be a nonmoreaSmg function such thab n(t) 1 if 0<<¢<<d and n(t) 0
1¢>>28. Define ' :
D f(fv) =f (@) + Sn('leliﬂ)OQJv

rhere Q 2& -—>(I‘1xc)l is the orthogonal pr OJeomon

It is easy to check thab f CFs(X, X) and Fl Fix; = f l ¥ix, - Furthermore we
eclave thab @ is a regular zero point of f In facs, D f(H) . Df (9) -l—sC’Q Beoause
-1 is igolated in o-(O') we may’ choose =>>0 small enough 8o that

éo-(a)) 4

Loe 7+(1+38)0: (leg) 1oy (lea)l is an igomorphism., Thuq, f ER(X, X; R).
Proof of Theorem 2.3 For each & € X \Fixg, choose a tube B, such that Lemm;\
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2.9 holds. And for each = € Fixg choose a ball BJ in Fixs such that Lemma 2.10
holds. Obviougly, we may choose countable B, B so that they cover X. Rewrite
them as By, B,, ---. By virtue of Lemmasg 2.7, 2.9, 2.10, R.(X, X; B;) is an open
dense subset of Fo(X, X) for 4=1, 2, --. Since Fa(X, X) i3 cecond ocabegary, by

applying Baire’s theorem (cf. [24]) we see that ﬁ Rs(X, X; B;) isdensein Fq(X,
’ $=1
X ). Moreover, it is evident thab

( Ra(X, X; B) - Bo( X, X; ) B, )=Ro(X, X).
The proof is completed.

In a similar way, we can give another approximation theorem.

Theorem 2.4. Suppose that X and G are gq}wn as above. In addition, assut
dim G=>1. Let w€ X be a point withF,={e}, i. 6. N= G (w) is a free G-orbit. Assuz
fE€F(X, X), and that N is aregular zero orbit of . Then there are shice S, at @ &
tube B,=G(S,) of N so that for any given >0 there ewists an FEF(Bs 2

satisfying (i) |F—flu.<e and (i) F(@)#0, VyEB,.
Remark 2.6. This theorem shows that the zero orblt of an eqmvarunt m

. can be romoved by perturbations.

§3. The ijobf of Propoéifioh 1.1

In order fo complete the proof, we shall consfruct the oparatm 6 gtep by step
thig section. And we continue to employ the notations in § 1.
Firstly, in (1. 9) we decomposite the space X further. In the followmg, 1f X
a subspace of X, Py’ denotes the orthogonal projetion onto X', Let
V,=Ker ANRan 4, M;= ZinRanA,(
M ,=the orthogonal complement of Y ;@M in Ran 4,
PrwaM =Y, Py M,=M,.
We have the following mthogrnl splithing:
£ Y DY O DUOM.OU @3.
: - Kerd® Z1,
whero Yo, M, ave the orthogonal complements of Y :®Y; in Ker A and M,®M,
-Zy respectively.
Lmma 3.1, dimY,=dimMy=dim M,< +co. .
“Proof Ify€M,and Pgeay=0, then yE€Z:NRan 4, i, . yE€M;. Then by |
definition of M, y=0. Therefore, Pxera: M,—Y, is an isomorphism, It follows t}
dim M,=dim ¥ ,<dim Ker A<~+co. The other equality is similar.
Lemma 3. 2. Lei Y24 be a T(H)-invariant subspace, -then’ AY is also: a
T (H)-invariant subspace. Moreover, if we denote A =PirAPy, ky =PshPy and hyy=
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axhPay for h € H, then the following formula holds:
Ahy=hiyd, VREH. ‘ (3.2)

Proof This can be derived from the fact that 4 is commutative with 7'(H) (ef.
ymma 1.2). We omit it here. | :

Since Z,=Y (DM DM+ (where M} is the orthoganal complement of M, in
a@®M,) comparing this with(3.1)we have dim ¥;=dim M,. Assume dim Y ;=n. If
=0, one may verify that @=0 satisfies the requirements. In n>0, denote L—=
Y ,cZ1(A? id well defined on Ran 4) and then dim Li=n and dimMy=n. Let

MoNL=Xo MoNL*=Xy
X a=the orthogonal complement of X(® X in M,,
. PX,=X, P.X,=X,

In a similar way with the proof of Lemma 3.1 we have dim X,=dim X;—

m X, And we have

Zi=?(4®X1@Xl®XO®X0@§E _ (3.3
A @ b7 :
Obviously, every space in (3.3) is T'(H)-invariant. Let @=P; AP; q,.: Xo®
o> J Y3, where J = A(X@®X,). From Lemma 3.2,

Qhzo0,=hs Q@ VYRET(H). (3.4
ob S=PgAP;: ';:o—)EC:J Y4, where E=_A§o. Similarly,
Shg,=heS, VRET(H). (3.6)

loreover, Qg,=S.

Note that X, is an m-subgpace of the 2m-space X.:®X, (wheredim X,=m).
ince P,23 and Pza, are isomorphic to X, there is a nongingular linear
-angformation. B: X,— X, such that if (w, z2) EX1®DX, then (w, 2) € X,6>2=Bw,
y the T'( H)—-invariance of X, we can find

hs,B=Bhs, VAET(H). (3.6)

Now, we give a part of definition of @ as follows:

P; 00,01 Pz =6Q n, zCJ,
Ox=! Pz O, Pw=eB*'S*s, oCHE,
0, other cages.

By (8.3) ©, i3 well defined. Since ©; is defined on a finitely dimensional space,
y is a compach operator. In addition, by the definition @, is commutative with
'(H). Unfortunately, at this time we can not guarantee @, satisfies the third

roperty in Propesition 1.1, i. e, (1.10). Neveriheless, caloulating direotly we

btain
Pu8:4: 2e@m0—> 5Dz M.
Hence, the orth@gona;l complement of (I+64).4Z, in Z, is exactly Xy. Then
Ker(A+6,4) \Ran(A+ 6, 4) = (A+6; 4) Xy= AX V. ‘
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Up to now, if we take (I+®,) A as the original A and continue on with the
construction of ®, we may agsume that in (3.8) X, -=X,=Xo={6}, i. e. L=X,
Mo,=X,. Moreover, we have dim L=dim My=dim ¥, =ny, where Y ~AL. If n,=0,
we have arrived at the end. If ny>0, we take 4+@; A ag the original one to go on
to work, From A MyNKer A={0}, Pz; AMy,=F, ig also an n; dimensional space. Let

Fo=E.NL, Fy=E,NL" '
Fy3=1the orthogonal conplement of (F,@Fq) in Hy,
Fo=P,F, F,=P.F,.

We have
7 _Z,0F®OF OMOF®F®L 3.1
1 b_____ii—__d @ — L_ )

1f dim F@Fo>0, by the same method as above we can sonstruct a map®,¢
#(X, X) compact commutative with T'(H) such that 8, 4: Fi@F,— F.DF,c1
And then the orthogonal complement of P, ((I4-0,)A)Z; in Z;, whose dimension :
the same ag the dimension of Fj is exactly the orthogonal complement «
AN (Fs@DF,) in My, If dim F,®F,>0, we can reduce tho dimension of ¥4 to ny
dim FDF,. If ny—dim F D F>0, we an repeat the above proceduro to congider K-
AFy. If dim P H;>0, we can construch a map &; so that the dimengion of ¥y
reduced t0 ny—dim F,@ F,—dim P H;. We declare that by the above procedure the:
is an integer jo>>0 8.1, if we take
(I+6;)(I+6;1)-(I+61)A

.as the previous one then we have dim My=0. In other words dim ¥;=0. Therefor
when we write I+8=(I+6,)---(I+86;), the above facts show precisely that
-gatisfies all properties of Proposition 1.1,

If the above declaration does not hold, we deduce a contradiction as follows. .
firgh, there is a series of spaces H;, §=0, 1, -+, such that B; 1= AFE;and P AE;={6

where Bo=M,, Ei=F;. Let E=é0 EB;, then L' ig a subspace of Zyand 4: K
j=

E. We have Z1=E@FE®L where F is the corresponding orthogonal complemer
Now 4 = PiorAPsor: BEOL—>E®L is a surjection and Ker 4 =L. However, 4
-also a Fredholm operator with index 0 and this contradiots dim L=dim M¢>>0. TI
.shows that the above procedure oan be completed with finite speps. So far, the pr
s finighed.

References

{L11 Benei, V., A geometrical index for the group S' and the study of ordinary different/al equatic
Comm. Fure. Appl. Math., 831 (1981), 381—432.

[2] Brecon, G., Introduction to compact transformation group, Academic Press, New York (1972).

.[3] Chang; K. C., Critical points theorey and its applications (in Chinese), 1986.

.[4] Obeng, W, Y., Nonlinear functional analysis (in Chinese), 1982,



536 = - . CHIN. ANN. OF MATH. - -Vol. 10 Ser. B

Dancer, E. N., Symmetries, degree, homotopy indicss and asymioicllay homogeneous problems,
Nonlinear Analysis, TMA, 6: 7 (1982), 667—686.

Danpcer, E. N., The G-invariant implicit function theorem in infinite dlmenswns 1X, Proc. of the Royal
Soc. of Edinburgh, 102A (1986), 211—220.

Ding, W. Y., Genperalizations of the Borsuk theorem, J. Math. 4nal. appl., 116(1985), 553—567.
Fadell, B, R. & Rabinowitz, P. H., Generalized cohomological index theory for Lie group actions with
an application to bifurcation questions for Hamiltonian systems, Inven. Math., 45 (1978), 139—174.
Fadell, E. R., Husseini, S. & Rabinowitz, P. H., On §? versions of the Borsuk-Ulam theorem, Trans.
Amer. Math. Soc., 274 (1982), 345-—360.

Greenberg, J. M., Lectures on algebraic topology, W. A. Benjamin, INC. New York (1967).
Marzantowicz, W., On the nonlinear elliptic equatlons with symmetry, J. Math. Anal. Appl., 81(1981),.
156—181.

Milnor, J., Topology from the differentiable viewpoint, (1965).

.Nirenberg, L., Comments on nonlinear problems, 1981 (Preprint).
‘Nirenberg, L., Variational and topological methods in nonlinear problems, Bull. AMS (New Series), 4r

3(1981).

Nussbaum, R., Some generalizations of the BorsukrUlé.m theorem, Proc. Lond. Math. Soc., 35 (1977) 5.
136-—158. ' ‘

Palais, R., The classification of G-spaces, Mem. Am. Math. Soc., 36 (1960).

Smale, S, An infinite dimensional version of Sard’s theorem, Amer. J. Math., 87 (1965), 861—866.
Sylvester, J. Ph. D Thesis. Courant Inst. Math. Soc. New York Uuniv., 1980.

Wang, Z. Q., Equivariant Morse theory for isolated eritical orbits and its applications to nonlinear i
problems, Symp. DD7 (July 1986) ; Tianjin, China (in press).

Wang, Z. Q Degree of equivariant gradient mappings via Morse theory, (to appear)

Wang, Z. Q., Symmetries and some methods and problems in nonlinear analysis, Ph. D, thesis, Inst. of:

- Math. Academia Sinica, Sept. 1986.

Wang, Z. Q., Infinitely many solutions of second order elliptic systems with symmetries, (to éppear) .
W asserman, (., Rquivariant differential topology, T'opology, 8 (1969), 127—150.
Yoshida, K., Functional Analysis, 2nd Ed., Springer-Verlag, New York. 1968.



