ON σ-FINITE INTEGRALS ON C*-ALGEBRAS**

LIN HUAXIN (林华新)*

Abstract

This paper considers positive linear functionals f defined on a dense * -subalgebra which is an analogue of the continuous functions with compact supports, of a C_* -algebra L^1 -spaces associated with f are studied. Also introduced is an analogue of the bounde Borel functions vanishing at infinity.

§ 0. Introduction

Let $G_0(X)$ be the G^* -algebra of continuous functions vanishing at infinity, X is a locally compact Hausdorff space. To study Borel measures on X, one study the positive linear functionals on $G_{00}(X)$, the space of continuous func with compact supports. In non-commutative cases, G. K. Pedersen^[3] introduct non-commutative analogue of $G_{00}(X)$ for non-unital G^* -algebra A, nare the minimal dense ideal I generated by $\{a \in A^+ \mid b \in A^+, [a] \leq b\}$. A speculation of $G_{00}(X)$ is a called G^* -integral, defined on $G_{00}(X)$ has studied $G^{[3]}$. In this paper, we consider a dense $G_{00}(X)$ defined on $G_{00}(X)$ are considered. It is shown in section 1 that every "unitarily bounded" polinear functional defined on $G_{00}(A)$ can be extended to a G^* -integral. $G_{00}(X)$ space $G_{00}(X)$ in section 2. In section 3, we introduce an ana of the bounded Borel functions vanishing at infinity.

§ 1. σ-Finite Integrals and Radon-Nikodym Theorems

Let A be a σ -unital C^* -algebra. Then A has a strictly positive element a f_n be continuous functions such that $f_n(t) = 1$ if t > 1/n and $f_n(t) = 0$ if $0 < t < n = 1, 2, \cdots$, Let $e_n = f_n(a)$, e_n are (open) projections in A^{**} . Let $A_n = e_n A^{**}e_n \cap A$ define $C_{00}(A) = \bigcup_{n=1}^{\infty} A_n$. Notice that $C_{00}(A)$ depends on a.

Proposition 1.1. $C_{00}(A)$ is a norm dense, hereditary *-subalgebra of A. We define a σ -finite integral on a σ -unital C*-algebra A to be a positive 1

Manuscript received December 9, 1986. Revised November 10, 1988.

^{*} Department of Mathematics, East China Nopmal University, Shanghai, China.

^{**} This work was done when the author was in University of California, Santa Barbara.

---ctional f defined on $C_{00}(A)$ for some strictly positive element and f has form

$$f_i = \sum_{i=1}^{\infty} f_i,$$

ere each f_i is a bounded linear functional on A.

Let f be a positive linear functional defined on $C_{00}(A)$. If f can be extended to ormal weight on A^{**} , then $f = \sum f_i^{(1)}$ where each f_i is a bounded linear functional A. For every n, since $f(e_n) < \infty$, there are only countably many i's such that $e_n \neq 0$. Hence $f = \sum_{i=1}^{\infty} f_i$ on $C_{00}(A)$.

Lemma 1.2 ^[3, Theorem 3.1]. Let f be a positive linear functional defined on $C_{00}(A)$, $\rho(x) = \inf \{ f(s) + t | s \in C_{00}(A_+), t \in \mathbb{R}^+, s + t \geqslant x \}$

 $x \in A_+$. Then f is a σ -finite integral if and only if $\rho(x) = 0$ implies f(x) = 0 for $C_{00}(A)_+$.

A positive linear functional f on $C_{00}(A)$ is called unitarily bounded if for every A_n , $n=1, 2, \cdots$,

Sup $\{|f(u^*xu)| | u \text{ unitary in } A_m + \mathbb{C}e_m, m \ge n\} < \infty.$

The idea used in the proof of the following theorem is taken from [3, Theorem: 1].

Theorem 1.3. Every unitarily bounded positive linear functional f defined on A is a σ -finite integral.

We omit the proof.

Let $f = \sum_{i=1}^{\infty} f_n$ be a σ -finite integral on A, then f can be normally extended to

*. We will use the same notation f for the normal extension.

Lemma 1.4. Let f be a unitarity bounded positive linear functional defined on $_0(A)$. Suppose $x \in C_{\infty}(A)$, then

$$\sup \, \{ |f(y^*xz)| \, | \, y, \, z \! \in \! A^{**}, \, \, \|y\| \! \leqslant \! 1 \, \, and \, \, \|z\| \! \leqslant \! 1 \} \! < \! \infty.$$

Corollary 1.5. Every unitarity bounded positive linear functional defined on o(A) can be extended uniquely to a O^* -integral.

Proof By Lemma 1.4 f (the normal extension) is finite on $AC_{00}(A)A$. Clearly $\mathcal{I}_{00}(A)A$ is a norm dense ideal of A. Since $C_{00}(A) \subset I$, the Pedersen's ideal, by [7, 6.1.], $I = AC_{00}(A)A$. It follows from [3, Theorem 3.7] that $f|_{I}$ is a C^* -integral. 10 uniqueness follows immediately.

The following example shows that not all σ -finite integrals are unitarily unded.

Example. Let H be a separable Hilbert space with orthonormal basis $\{\xi_i\}$. Let A be the C^* -algebra of all compact operators on H. Let

$$e_n = \sum_{i=1}^n (\xi_i \otimes \xi_i).$$

Corresponding to the approximate identity $\{e_n\}$, we have

$$C_{00}(A) = \bigcup_{n=1}^{\infty} e_n A e_n.$$

Define $f_i(x) = \langle x\xi_i | \xi_i \rangle$ for $x \in A$ and

$$f = \sum_{i=1}^{\infty} i f_i.$$

Then f is a σ -finite integral defined on $C_{00}(A)$, but not unitarily bounded. So the normal extension of f cannot be finite on I_{+} .

A version of the following Radon-Nikodym theorem was found by Sakai [8] the case that f is bounded. A similar version for faithful normal weight on v Neumann algebra was proved in [11].

Theorem 1.6. Let A be a σ -unital C*-algebra, f a unitarily bounded (but n not be bounded) positive linear functional defined on $C_{00}(A)$ for some strictly positive element of A.Let g be a self-adjoint linear functional defined on $C_{00}(A)$. If

$$|g(x)| \leq f(|x|)$$
 for all $x \in C_{00}(A)_{s.a.}$

then there is $h \in A_{s.a.}^{**}$ with $||h|| \le 1$ such that

$$g(x) = f(hx+xh)/2$$
 for all $x \in C_{00}(A)$.

Proof Let $f'_n = f|_{A_n}$, $g_n = g_n|_{A_n}$. We can extend f_n and g_n to $e_n A^{**}e_n$ normally. use the same notation for the normal extensions. Thus

$$|g_n(x)| \le |g_n(|x|)| \le f'_n(|x|)$$
 for all $x \in (e_n A^{**}e_n)_{s.a.}$

A slight modification of the proof of [7, 5.3.2] shows that there exists $h_n \in (e_n A^{**}e$ such that $||h_n|| \le 1$ and

$$g_n(x) = f_n(h_n x + x h_n)/2 = f(h_n x + x h_n)/2$$
 for all $x \in (e_n A^{**}e_n)_{s.a.}$.

We may assume that $h_n \to h$ weakly, with $h \in A_{s.s.}^{**}$ and $||h_n - h|| \le 1$. Fix m. Let $L = \sup \{ f(ye_m y) | y \in A_{s.s.}^{**}, ||y|| \le 1 \}$.

By Lemma 1.4, $L<\infty$. Let

$$f = \sum_{i=1}^{\infty} f_i$$

where f_i is a bounded positive linear functional on A (by Theorem 1.3.). For $\epsilon > 0$, there is an integer N such that

$$\sum_{i=N+1}^{\infty} f_i(\theta_m) < (s/(L+1))^2/4.$$

For every $x \in (A_m)_{s.a.}$ and $||x|| \le 1$, there is m_0 such that

$$\left|\sum_{i=1}^{N} f((h_n - h)x + x(h_n - h))\right| < \varepsilon$$

whenever $n \ge m_0$, thus

$$\begin{split} &\left|f((h_{n}-h)x+x(h_{n}-h))\right| \\ &< \varepsilon + \left|\sum_{i=N+1}^{\infty} f_{i}((h_{n}-h)x)\right| + \sum_{i=N+1}^{\infty} \overline{f_{i}((h_{n}-h)x)} \right| \\ &< \varepsilon + 2\left[\sum_{i=N+1}^{\infty} f_{i}((h_{n}-h)e_{m}(h_{n}-h))\right]^{1/2} \left[\sum_{i=N+1}^{\infty} f_{i}(x^{*}x)\right]^{1/2} \end{split}$$

$$< s + 2f ((h_n - h) e_m (h_n - h))^{1/2} \left[\sum_{i=N+1}^{p} f_i(e_m) \right]^{1/2}$$

 $<2\varepsilon$, if $n \ge m_0$.

nce $f(h_n x + xh_n) = f(h_m x + xh_m)$ for every $x \ A_m$ and $n \ge m$, we conclude that

$$f(hx+xh)/2 = f(h_nx+xh_n)/2$$
 for $x \in A_m$

id $n \ge m$. Thus g(x) = f(hx + xh)/2 for all $x \in C_{00}(A)$.

Let f be a σ -finite integral defined on $C_{00}(A)$ for some strictly positive elements of A. We extend f to A^{**} normally as before. Let π_f be the representation given f. Then we have

Proposition 1.7. ker $f \supset \ker \pi_f$.

Since $\ker f \supset \ker \pi_f$, f deduces a σ -finite integral \overline{f} on $\pi_f(A)$ by $f(x) = \overline{f}(\pi_f(x))$. In thermore, we have $\xi_n \in H_f$ such that

$$f(x) = \overline{f}(\pi_f(x)) = \sum_{n=1}^{\infty} \langle \pi_f(x) \xi_n | \xi_n \rangle.$$

we can extend \bar{f} to $B(H_f)$ by

$$\bar{f}(y) = \sum_{n=1}^{\infty} \langle y \xi_n | \xi_n \rangle \text{ for } y \in B(H_f).$$

Now we conclude the section with the following Radon-Nikodym theorem, the oof of it is essentially the same as f is bounded.

Proposition 1.8. Let f be a σ -finite integral defined on $C_{00}(A)$. If ϕ is a self-joint linear functional defind on $C_{00}(A)$ such that

$$|\phi(x)| \leq f(|x|)$$
 for all $x \in C_{00}(Ae)_{s,s,r}$

in there exists $h \in \pi_f(A)_{s,a}$, $||h|| \le 1$ such that $\phi(x) = \overline{f}(h\pi_f(x))$ for all $x \in C_{00}(A)$.

§ 2. L¹ Spaces and Their Duals

Let A be a σ -unital C^* -algebra, $C_{00}(A)$ be α norm dense, hereditary ubalgebra defined by a strictly positive element α of A as in section 1. Let f be a finite integral defined on $C_{00}(A)$. For every

$$x \in \left(\bigcup_{n=1}^{\infty} e_n A^{**} e_n\right)_{s.a.}$$

define

 $\|_{1} = \sup \Big\{ |\phi(x)| \mid |\phi(y)| \leqslant f(|y|) \text{ for all } y \in C_{00}(A)_{\text{s.a.}} \text{ and are real linear functionals}$ fined on $\Big(\bigcup_{n=1}^{\infty} e_{n}A^{**}e_{n}\Big)_{\text{s.a.}}\Big\}$. Let

$$N_{1} = \left\{ x \in \left(\bigcup_{n=1}^{\infty} e_{n} A^{**} e_{n} \right)_{s.a.} \mid ||x||_{1} = 0 \right\},$$

$$L_{0}^{1} = \left(\bigcup_{n=1}^{\infty} e_{n} A^{**} e_{n} \right)_{s.a.} / N_{1}$$

and $(L^1)_{s.a.}$ be the completion of L^1_0 in the norm $\|\bar{x}\|$, where \bar{x} is the image of x under the quotient mapping. Clearly, $C_{00}(A)_{s.a.}/N_1$ is dense in $(L^1)_{s.a.}$. We will denote L^1 , the complexification of $(L^1)_{s.a.}$.

Proposition 2.1. If f is unitarily bounded, then

$$N_{s.a.} = \{h \in A_{s.a.}^{**} | f(hx + xh) = 0 \text{ for all } x \in C_{00}(A) \}$$

is weakly closed.

We now define $(I_{\infty})_{s.a.} = A_{s.a.}^{**}/N_{s.a.}$. The complexification of $(L_{\infty})_{s.a.}$ will be denoted by L_{∞} . Let $x \in A_{s.a.}^{**}$, \bar{x} be the image of the quotient mapping, we define $\|\cdot\|$ as the norm of \bar{x} in L_{∞} .

Theorem 2.2. Suppose that f is unitarily bounded. Then there is a one to linear contractive mapping from $(L^1)^*$ into L_{∞} .

Proof Let $\phi \in ((L^1)_{s,a})^*$, $\|\phi\| \le 1$. By the definition of $\|\cdot\|_1$, $|\phi(x)| \le \|x\|$ f(|x|) for all $x \in \mathcal{O}_{00}(A)_{s,a}$. By Theorem 1.6, there is $h \in A_{s,a}^{**}$, $\|h\| \le 1$ such that $\phi(x) = f(hx + xh)/2$ for all $x \in \mathcal{O}_{00}(A)_{s,a}$.

We define $\Phi_1(\phi) = \overline{h}$, where "-" is the quotient map from $A_{s,a}^{**}$ onto L_{∞} . It is eas see that Φ_1 is well defined, one to one and linear. By the proof of Theorem 1.6, may assume that there are $h_k \in (e_k A^{**}e_k)_{s,a}$, $||h_k|| \le 1$ such that

$$h_k \rightarrow h$$
 weakly and

$$f(h_k x + x h_k)/2 = \phi(x)$$
 for $x \in (\theta_k A^{**}\theta_k)$,

furthermore, we may assume that $||h_k|| \leq ||h_k||_{\infty} + 1/k$.

Let $\lambda_k = \inf\{\|h_k\chi_\sigma(h_k)\| | f(1-\chi_\sigma(h_k)) = 0\}$, where χ_σ is the characteristic func of the set $\{t\colon |t|>\sigma\}$. Clearly, $1-\chi_\sigma(h_k)\in N_{s.s.}$, if $f(1-\chi_\sigma(h_k))=0$. Thus $\lambda_k\geqslant \|h$ For every s>0, there exists a projection $p_k\in e_k$ $A^{**}e_k$ such that $p_kh_k=h_k$ p_k , $f(p_k)$ and $h_kp_k=p_kh_kp_k\geqslant (\lambda_k-\varepsilon)f(p_k)\geqslant (\lambda_k-\varepsilon)\|p_k\|_1$. Hence $\|\phi\|\geqslant \lambda_k-\varepsilon$, for every s So we have $\|\phi\|\geqslant \lambda_k\geqslant \|h_k\|_\infty$. Since $h_k\to h$ weakly, $\|h\|\le \lim \|h_k\|$.

Since $||h_k|| \le ||h_k||_{\infty} + 1/k$, we conclude that $||h|| \le \lim ||h_k||_{\infty} \le ||\phi||_{o}$ Thus $||\Phi_1(\phi)|| = ||h||_{\infty} \le ||\phi||$.

This completes the proof.

Theorem 2.3. There is an isometric isomorphism between $\pi_f(A)$, the commu of $\pi_f(A)$ and $(L^1)^*$; consequently, L^1 is isometric isomorphic to $\pi_f(A)'_*$, the preduct $\pi_f(A)$.

Proof It is sufficient to show that $\pi_f(A)_{s,a}$, is isometric isomorphic to $(L^1 \text{Let } h \in \pi_f(A)_{s,a}$, we define $\Phi_2(h)(x) = f(h\pi_f(x))$ for all $x \in C_{00}(A)_{s,a}$. By an computation, we have

$$|\Phi_2(h)(x)| \leq ||h||\overline{f}(\pi_f(|x|)) \text{ for } x \in (A_n)_{s.a.}$$

and all n. Thus $|\Phi_2(h)(x)/\|h\| | \leq f(|x|)$ for all $x \in C_{00}(A)_{s,a}$. Since $\Phi_2(h)$ is a linear functional, by the definition of $\|\cdot\|_1$,

$$\|\Phi_2(h)(x)\|/\|h\| \le \|x\|_1$$
 for all $x \in C_{\infty}(A)_{s,a}$.

mu us $\|\Phi_2(h)\| \leq \|h\|$.

Let ξ be the densely defined map from A to H_f . For fixed $h \in \pi_f(A)_{s.a.}$, let $x \in C_{00}(A) + \text{with } ||x^2||_1 = 1$, i. e. $f(x^2) = 1$.

have

$$\langle \xi_x | \xi_x \rangle = f(x^2) = 1.$$

$$\begin{array}{l} \text{ an } \left| \varPhi_2(h)\left(x^2\right) \right| = \left| \left< h_{zx}^{\xi} \right| \xi_x \right> \right|. \text{ Hence} \\ \left\| \varPhi_2(h) \right\| \geqslant \sup \{ \left| h \xi_x \right| \xi_x \right> \left| \left| \left\| \xi_x \right\| = 1, \ x \in C_{00}(A)_+ \right\}. \end{array}$$

$$\begin{aligned} & |y \in C_{00}(A)_{s.a.} \text{ with } \|\xi_y\| = 1 \text{ and } y = y_+ - y_-. \text{ We have } y_+ y_- = y_- y_+ = 0. \text{ Thus} \\ & \langle h_{sy}^c | \xi_y \rangle = \langle h(\xi_{s+} - \xi_{y-}) | (\xi_{y+} - \xi_{y-}) \rangle \\ & = \langle h\xi_{s+} | \xi_{y+} \rangle + \langle h\xi_{y-} | \xi_{y-} \rangle \\ & - \overline{f} \left(\pi_f(y_+) h \pi_f(y_-) \right) - \overline{f} \left(\pi_f(y_- h \pi_f(y_+)) \right) \\ & = \langle h_{sy+}^c | \xi_{y+} \rangle + \langle h\xi_{y-} | \xi_{y-} \rangle \\ & = (\|\xi_{y+}\|^2 + \|\xi_{y-}\|^2) \text{ sup } \{ |\langle h\xi_x | \xi_x \rangle | \| \|\xi_x \| = 1, \ x \in C_{00}(A)_+ \} \end{aligned}$$

 $=\sup\{|\langle h\xi_x|\xi_x\rangle|\,\|\xi_x\|=1,\,x\in C_{00}(A)_+\}\leqslant \Phi_2(h).$

nce $||h|| = ||\Phi_2(h)||$.

Let $\phi \in ((L^1)_{\varepsilon,n})^*$, $\|\phi\| \le 1$. By the definition of $\|\cdot\|_1$,

$$|\phi(x)| \leq f(|x|)$$
 for all $x \in C_{00}(A)_{s.a.}$

Proposition 1.8, there is $h \in \pi_f(A)_{s.a.}$ such that $||h|| \le 1$ and

$$\phi(x) = \overline{f}(h\pi_f(x))$$
 for all $x \in C_{00}(A)$.

nce Φ_2 is also onto.

Let L be the set of those elements $\bar{h} \in L_{\infty}$ such that $f(hx+xh)/2 \leq Hf(|x|)$ for $x \in C_{00}(A)_{s,a}$, where H does not depend on x. Clearly L is the image of Φ_1 , hence a linear space.

Corollary 2.4. If f is unitarily bounded, then there is a one to one linear tractive mapping from $\pi_f(A)$ onto L.

We now again assume that f is unitarily bounded. Let $h \in A_{s.a.}^{**}$, an argument d in section 1 shows that f(hx+xh) is defined on every

$$x \in \left(\bigcup_{n=1}^{\infty} e_n A^{**} e_n\right)_{s,s}$$
.

: every

$$x \in \left(\bigcup_{n=1}^{\infty} e_n A^{**} e_n\right)_{s,\cdot a}$$

define $||x||^1 = \sup\{f(hx+xh)/2 | h \in A_{s.a.}^{**}, ||h|| \le 1\}$. Clearly, $||\cdot||^1$ is a semi-norm.

$$N^{1} = \left\{ x \in \left(\bigcup_{n=1}^{\infty} e_{n} A^{**} e_{n} \right)_{s,a,} \|x\|^{1} = 0 \right\}.$$

$$\overline{L}^{1} = \left(\bigcup_{n=1}^{\infty} e_{n} A^{**} e_{n} \right)_{s,a,} / N^{1}$$

and $(\overline{L}^1)_{s,a}$, be the completion of \overline{L}^1 . We will use the notation \underline{L}^1 for the complexication of $(\overline{L}^1)_{s,a}$.

Proposition 2.5. Let

$$x \in \left(\bigcup_{n=1}^{\infty} e_n A^{**} e_n\right)_{s.a.}$$

then there are $x_n \in C_{00}(A)_{s,a}$ such that

$$||x_n-x||^1 \rightarrow 0.$$

Theorem 2.6. If f is unitarily bounded, then there is an isomorphism Φ_3 from L_{∞} onto $(\overline{L}^1)^*$. Moreover, $\|\Phi_3\| \leq 1$ and $\|\Phi_3^{-1}\| < \infty$.

Proof Let $h \in A_{s.s.}^{**}$, $||h|| \le 1$. We define $\Phi_3(h)(x) = f(hx + xf)/2$ for $x \in C_{00}(A \cap \Phi_3(h))$ uniquely determines a (norm less than one) real linear functional on $(L^1)_s$. Thus Φ_3 is a linear map from $A_{s.s.}^{**}$ to $[(L^1)_{s.s.}]^*$ such that $||\Phi_3|| \le 1$.

Suppose that $\phi \in [(L^1)_{s,a}]^*$ such that $\|\phi\| \le 1$. Then $|\phi(x)| = \sup\{|f(hx+xh)/h \in A_{s,a}^{**}\|h\| \le 1\}$ for all $x \in C_{00}(a)_{s,a}$.

Fixed n, the set $S = \{f(h \cdot + \cdot h)/2 | h \in A_{s.a.}^{**}, \|h\| \leq 1\}$ is a convex compact sub of $[(e_n A^{**}e_n)_*]_{s.a.}$

If $x \in (e_n A^{**}e_n)$ and $||x|| \le 1$, we have

$$|f(hx)| \le f(he_nh)^{1/2}f(x^*x)^{1/2} \le L^{1/2}f(e_n)^{1/2},$$

where L is the same as in Proposition 2.5. Thus

$$|f(hx+xh)/2| \leq L^{1/2}f(e_n)^{1/2}$$

for all $x \in (e_n A^{**}e_n)$ and $||x|| \le 1$. Hence f(hx+xh)/2 is a bounded linear function on $(e_n A^{**}e_n)$. Since it is also normal, we conclude that $S \subset [(e_n A^{**}e_n)_*]_{s.a.}$. Suppose that $h_n \in A^{**}_{s.a.}$, $h_n \to h$ weakly, we may also assume that $||h_n - h|| \le 1$. Then for every $e_n A^{**}e_n$, as in the proof of Theorem 1.6,

$$f((h_n-h)x+x(h_n-h))\rightarrow 0.$$

Since the unit ball of $A_{a.s.}^{**}$ is convex and weakly compact, we conclude that \mathcal{E} convex and compact.

Let $\phi|_{n} = \phi|_{e_{n}A^{*n}e_{n}}$. We have

$$|\phi_n(x)| \le L^{1/2} f(e_n)^{1/2} \text{ for all } x \in (e_n A^{**}e_n)$$

and $||x|| \le 1$. So ϕ_n is a bounded linear functional on $e_n A^{**} e_n$. Suppose that

$$x_{\alpha}, x \in (e_n A^{**}e_n)_{s.a.}$$

such that $x_{\alpha} \nearrow x$. We may also assume that $||x_{\alpha} - x|| \le 1$. For every $h \in A_{s,a}^{**}$, ||h|| since $x - x_{\alpha} \ge 0$,

$$\begin{aligned} & |f(h(x-x_{\alpha}))| \\ & \leq f(h(x-x_{\alpha})h)^{1/2}f((x-x_{\alpha}))^{1/2} \\ & = f(h(x-x_{\alpha})^{1/2}e_{n}(x-x_{\alpha})^{1/2}h)f((x-x_{\alpha}))^{1/2} \\ & \leq L^{1/2}f((x-x_{\alpha}))^{1/2}. \end{aligned}$$

Hence

$$|\phi_n((x-x_a))| \leq L^{1/2} f((x-x_a))^{1/2} \to 0,$$

since f is normal. We conclude that

$$\phi_n \in [(e_n A^{**}e_n)_*]_{s.a.}$$

Now, if $\phi_n \notin S$, then by the Hahn-Banach theorem there is an element x in $(e_n A^{**}e_n)_*]_{s.a.}^*$ (= $(e_n A^{**}e_n)_{s.a.}$) and a real number t such that $\phi_n(x) > t \gg S(a)$. Since = -S, we conclude that

$$\phi_n(x) > \sup \{ |f(hx+xh)|/2 | h \in_{s.a.}^* ||h|| \le 1 \},$$

contradiction. Thus there is $h_n \in A_{s.a.}^{**}$, and $||h_n|| \le 1$ such that

$$\phi(x) = \phi_n(x) = f(h_n x + x h_n)/2$$

r all

$$x \in (e_n A^{**}e_n)$$
.

y the proof of Theorem 1.6, there is $h \in A_{n,n}^{**}$ and $||h|| \le 1$ such that.

$$\phi(x) = f(hx + xh)/2$$

r all $x \in C_{00}(A)$.

Hence Φ_3 is onto.

By the definition of N^1 , we have ker $\Phi_3 = N^1$. If we use the same notation Φ_3 for a composition of Φ_3 and the quotient map from $A_{s.s.}^{**}$ onto $(L_{\infty})_{s.s.}$, we have that Φ_3 one to one and onto. By open mapping theorem, $\|\Phi_3^{-1}\| < \infty$. We complete our proof. The following corollary is a stronger version of Theorem 1.6.

Corollary 2.7. Let f be a unitary bounded (may not be bounded) positive linear notional defined on $C_{00}(A)$, g a selfadjoint linear functional defined on $C_{00}(A)$. If $|\langle x \rangle| \leq \sup \{|f(hx+xh)|/2| h \in A_{s,a}^{**}, \|h\| \leq 1\}$ for all $x \in C_{00}(A)_{s,a}$, then there is $h \in A_{s,a}^{**}$ such that $\|h\| \leq 1$ and

$$g(x) = f(hx+xh)/2 \text{ for all } x \in C_{00}(A).$$

he proof is the key part of the proof of Theorem 2.6.

Remark. If f is a trace, then $L^1 = \overline{L}^1$. Moreover $\Phi_1^{-1} = \Phi_3$ will be an isometric emorphism.

We notice that both the definitions of L^1 and \overline{L}^1 depend on $C_{00}(A)$. If f is nitarily bounded, we can extend $\|\cdot\|_1$ and $\|\cdot\|_1$ to the minimal dense ideal I as llowing. If $x \in I_{s,s}$,

$$||x||_1 = \sup\{|f(hx+xh)|/2|\bar{h} \in \mathcal{D}_1((L^1)^*_{s.a.}), ||h|| \le 1\}, \\ ||x||^1 = \sup\{|f(hx+xh)1/2|h \in A^{**}_{s.a.}, ||h|| \le 1\}.$$

ne following theorem shows that both L^1 and \overline{L}^1 contain I no matter how different $\mathfrak{v}(A)$ may be.

Theorem 2.8. For every element $x \in I$, there are $x_n \in C_{00}(A)$ such that $\|x_n - x\|_1 \to 0$ and $\|x_n - x\|^1 \to 0$.

Remark. L^1 spaces for von Neumann algebras associated with a faithful armal weight have been studied (e.g. [2], and [10]). The faithfulness of the normal weights plays an important rule in [2] and [10]. Since abelian von Neumann algebras are special cases of C(X), it is probably more natural to consider integrals

initially defined on C^* -algebras. Notice also that even if a σ -finite integral f is faithful on $C_{00}(A)_+$, it may not be faithful on $\pi_f(A)^{\overline{w}}$.

§ 3. The C^* -Algebras $M_0(A)$, $B_0(A)$ and Other Non-Commutative Measure Theorems

Definition 3.1. Let M be a von Neumann algebra, f a weight on M. Suppose x_n , $x \in M$. We say $\{x_n\}$ f-converges to x, if for every $\varepsilon > 0$, $\sigma > 0$ and a projection $p \in I$ there are projections $q_n \in M$, $q_n \le p$ and an integer N such that

$$\|(x_n-x)q_n\|<\sigma \text{ and } f(p-q_n)<\varepsilon$$

for all $n \ge N$.

Let $\chi_{\sigma}(t)$ be the characteristic function of the set $\{t: |t| \geqslant \sigma\}$.

Proposition 3.2. Suppose that f is bounded. If $x_n f$ -converges to x, then for every $\sigma > 0$,

$$f(\chi_{\sigma}(|x_n-x|)) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Proposition 3.3. Suppose that x_n f-converges to x and f is normal. Then the exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ and projections $p_i \in M$ such that $p_i \leq p_{i+1}$, $f(1-p_i)$ -and $\|(x_n-x)p_i\| \to 0$ as $k \to \infty$ for each i.

Proof By the definition of f-convergence, we have a subsequence $\{x_k^{(1)}\}\subset\{a_k^{(1)}\}\subset$

We also have a subsequence $\{x_k^{(2)}\}\subset \{x_k^{(1)}\}$, a projection $q^{(2)}\in M$ such that $f(1-q^{(1)}-q^{(2)})<1/2$, $q^{(2)}\leqslant 1-q^{(1)}$ and $\|x_k^{(2)}-xq^{(2)}\|\to 0$. By induction, there a projections

$$q^{(n)} \in M, \ q^{(n)} \leq 1 - \sum_{i=1}^{n-1} q^{(i)},$$

$$f\left(1-\sum_{i=1}^{n}q^{(i)}\right)<1/2^{n} \text{ and } \{x_{k}^{(n)}\}\subset\{x_{k}^{(n-1)}\}$$

such that $\|(x_{\kappa}^{(n)}-x)q^{(n)}\|\rightarrow 0$. Take

$$x_{\rm m} = x_1^{(1)}, \ x_{\rm ma} = x_2^{(2)}, \ \cdots, \ p_i = \sum_{\rm n=1}^i \ q^{(\rm n)}.$$

We have $f(1-p_i) \rightarrow 0$ and $||(x_{n_k}-x)p_i|| \rightarrow 0$ for every i.

Corollary 3.4. Suppose that f is normal, x_n f-converges to x and $\{x_n\}$ is bound Then there is a subsequence $\{x_{n_k}\} \subset \{x_n\}$ and a projection $p \in M$ such that $x_{n_k} p \to strongly$ and f(1-p)=0.

Corollary 3.5. Let M be a von Neumann algebra, f a faithful normal weight M. Suppose x_n , $x \in M$ and $||x_n||$ is bounded such that x_n f-converges to x. Then x_n converges to x strongly.

The following is a non-commutative version of Lebesque's Dominant avergence Theorem

Theorem 3.6. Let M be a von Noumann algebra, f a normal weight on M. ppose that x_n , $x \in M$, $y \in M_+$ such that $f(y) < +\infty$ and $|x_n - x| \le y$ for all n. Then

$$f(|x_n-x|)\to 0$$
 as $n\to\infty$,

one of the following holds

- (1) x_n converges to x strongly,
- (2) $|x_n-x| \to 0$ weakly,
- (3) $x_n f$ -converges to x,
- (4) x_n converges to x in the sence of Proposition 3.2.

Remark. If a weight has the convergence property stated in Theorem 3.5, then $x \in M_+$, $x_n \nearrow x$ and $f(x) < \infty$ imply $f(x_n) \nearrow f(x)$.

Let X be a locally compact Hausdorff space. We say a function f defined on X vanishing at infinity if, for every s>0, there is a compact subset C of X such it |f(t)| < s if $t \notin C$. Let A be a σ -unital C^* -algebra (without unit), $\{e_n\}$ be the ments defined by a strictly positive element a as in the section 1. Let $M_0(A)$ be norm closure of $\bigcup_{n=1}^{\infty} e_n A^{**}e_n$, $B_0(A)$ be the norm closure of $\bigcup_{n=1}^{\infty} e_n Be_n$, where B is enveloping Borel *-algebra of A. Notice that since A is σ -unital, $1 \in B$. viously, $B_0(A)$ is an analogue of the bounded Borel functions vanishing at inity. Corollary 3.9 and Theorem 3.11 will convince us of that. Unlike L^1 which pend on $C_{00}(A)$, $M_0(A)$ and $B_0(A)$ do not depend on the choices of $C_{00}(A)$.

Theorem 3.7. $M_0(A)$ (respectively $B_0(A)$) is the smallest hereditary C^* -valgebra of A^{**} (respectively B) containing A.

Proof Let $x \in B_+$, $y \in B_0(A)$ such that $x \le y$. We may assume that $||y|| \le 1$ and are is an element $z \in B$ such that $z^*z = x$. By [7, 1. 4. 5], there is $u \in B$, $||u|| \le 1$ and $(\alpha < 1/2)$ such that $z = uy^{\alpha}$. Therefore $x = y^{\alpha}u^*uy^{\alpha}$. There are $y_n \in \bigcup_{n=1}^{\infty} e_nBe_n$ such that $y_n = y_n \in \mathbb{R}$ such that $y_n = y_n \in \mathbb{R}$. Hence $y_n \in \mathbb{R}$ is in $y_n = y_n \in \mathbb{R}$.

Corollary 3.8. $M_0(A)$ and $B_0(A)$ do not depend on $\{e_n\}$.

Corollary 3.9. Let f be a bounded Borel function on R such that $\lim_{t\to 0} f(t) = 0$.

on $f(x) \in B_0(A)$ (respectively $M_0(A)$) for all $x \in B_0(A)_{s.a.}$ (respectively $M_0(A)_{s.a.}$).

Theorem 3.10. Let A be a σ -unital C^* -algebra, $x \in M_0(A)$. For every σ -finite egral f defined on some $C_{00}(A)$, every s>0, $\sigma>0$ and a projection

$$p \in \mathbf{C}1 + \bigcup_{n=1}^{\infty} e_n A^{**} e_n$$

$$p_0 \in \mathbf{C}1 + \bigcup_{n=1}^{\infty} e_n A^{**}e_n$$

 $p_0 \leqslant p$ and $y \in C_{00}(A)$ such that

$$\|(x-y)p_0\|<\sigma$$
, $\|y\|\leqslant \|xp\|$ and $f(p-p_0)<\varepsilon$.

Moreover, there exist a projection $q_0 \le p$ in A^{**} and a sequence $y_n \in C_{00}(A)$ such that $\|(y_n - x)q_0\| \to 0$ as $n \to \infty$, $f(p - q_0) < \varepsilon$.

Proof For every $\sigma > 0$, there is

$$y \in \bigcup_{n=1}^{\infty} e_n A^{**}e_n$$

such that ||y|| < ||xp|| and

$$\|(x-y)p\|<\sigma/2.$$

Suppose $y \in e_m A^{**}e_m$. Since

$$p \in \mathbf{C}1 + \bigcup_{n=1}^{\infty} e_n A^{**} e_n$$

 $p=1-p_1$, where

$$p_1 \in \bigcup_{n=1}^{\infty} e_n A^{**}e_n$$
.

We may assume that $p_1 \in e_m A^{**}e_m$. Let $p_2 = e_m - p_1$. So $f(p_2) < \infty$. Since $O_{00}(A)$ norm dense in A, by [9, Corollary 4.14], there exist $p \in e_m A^{**}e_m$. $p \leq p_2$ and $z \in O_{00}$ such that

$$||(y-z)p'|| < \sigma/2, ||z|| \le ||yp_2|| \text{ and } f(p_2-p') < s.$$

Let $p_0 = (1 - e_m) + p$, then $f(p - p_0) = f(p_2 - p') < \varepsilon$. We have

$$\|(x-z)p_0\| \le \|(x-y)p_0\| + \|(y-z)p_0\| < \sigma/2 + \|(y-z)p\| < \sigma,$$

so we complete the first part of our proof.

By the first part and induction, we can find a decreasing sequence $\{q_n\}$ projections in

$$\mathbf{C}1+\bigcup_{n=1}^{\infty}e_{n}A^{**}e_{n}$$

and a sequence $\{y_n\}$ in $C_{00}(A)$ with the properties

$$||(x-y_n)q_n|| < 1/n \text{ and } f(q_n-p_n) < (1/2)^n s$$
,

 $n=1, 2, \cdots$

Let $q_0 = s - \lim q_n$. Then we get

$$||(x-y_n)q_n|| < 1/n \text{ and } f(p-q_0) < s.$$

We complete our proof.

Theorem 3.11. (Generalized Lusin's Theorem) Let A be σ -unital C^* -algebraic Take an arbitary σ -finite integral f defined on some $C_{00}(A)$, projection

$$p \in \mathbf{C}1 + \bigcup_{n=1}^{\infty} e_n A^{**} e_n$$

s>0 and $\sigma>0$. Then for every $x\in M_0(A)$, there exist a projection $p_0\leqslant p$ in A^{**} and $y\in A$ such that

$$x p_0 = y p_0$$
, $f(p-p_0) < \varepsilon$ and $||y|| \le (1+\sigma) ||x p_0||$.

Proof Notice that for every

$$z \in \mathbf{C}1 + \bigcup_{n=1}^{\infty} e_n A^{**} e_n,$$

, $xz \in M_0(A)$. Now we can use Theorem 3.10 to prove Theorem 3.11 as in [9, heorem 4.10].

References

- .] Haageru, U., Normal weights on w*-algebras, J. Functional Anal., 19(1975).
- Fig. 1 Inoue, A., L¹-space sociated with a weight, mem. Fac. Sci., Kyushu Univ. Ser. A, 27:2(1973), 291-308.
- Pedersen, G. K., Measure theory, for C*-algebras, Math. Scand., 19(1966), 131-145.
- Pedersen, G. K. Messure theory for C*-algebras II, Math. Scand., 22(1968), 63-74.
- Pedersen, G. K. Measure theory for C*-rigebras III, Math. Scand., 25(1969), 71-93.
- Pedersen, G. K., Measure theory for C^k-algebras JV., Math. Scand., 25(1969), 121—127.
-] Pedersen, G. K., C*-algebras and their automor hism groups, Academic Press (London), 1979.
- Sakai, S., C*-algebiss and W*-algebras Ergebnisse der Mathematik 60, Springer-verlag, Berlin, Heidelberg, New York. 1971.
- Takesaki, M., Theory of operator algebras I, Springer-Verlag, New york (1979).
- 7] Truner, N. V. & Sherstnev, A. N., On the general theory of integration with respect to a weight in (hoperator algebra I, Soviet Math. (12. Vuz), 22: 7(1978), 65—72.
- Van Daele, A., A Radon-Nikodym theorem for weights on von Neumann algebras. Pacific J. Math., 61(1975), 527-542.