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ON o-FINITE INTEGRALS ON C-ALGEBRAS™

Lix HuaxiN (3k % #7) "

Abstract

This paper considers positive linear functionals f defined on a demse * —subalgebrs
which is an analogue of the continuous functions with compact supports, of a ¢, -algebrs
Li-spaces associated with f are studied. Also introduced is an analogue of the bounde
Borel functions vanishing at infinity. ’ '

§ 0. Introduction

Leb 0y(X ) be the C*-algebra of continuous functiong vanishing at infinity, v
X is a locally compact Haunsdorff space. To study Borel measures on X, one
study the positive linear functionals on Tgy(X), the space of continuous func
with compact supports, In non-commutative cases, G. K. Pedersen™ introduc
non-commutative analogue of Ue(X) for non-unital O®-algebra 4, nar
the minimal dense ideal I generated by {a€A*|pc4* [d]<d}. A sp
(unbounded) positive linear funobional, called O*-integral, defined on I has
sbudied™ ®. In this paper, we consider a dense *-gubalgebra Cp(4)of a o-v
O*-algebra A4, another analogue of Uy (X ). “o-finite integrals” defined on O
are considered. It is shown in section 1 that every ‘“unitarily bounded” po
linear functional defined on Co(4) can be extended to a O*-integral. L' space
o-finite integrals will be studied in section 2. In section 3, we introduce an ana
of the bounded Borel functions vanishing at infinity. ‘

§ 1. o-Finite Integrals and Radon—Nikodym Theorem:

Let A be a o-unital O"-algebra. Then 4 has a strictly positive element o
J be continuous functions such that f,(#) =1 if ¢>1/n and f,(¢) =0 if 0<is=
n=1, 2, ---, Let e,=f.(a), e, are (open) projections in A**. Let A4,=~6,4*e, N4

define Coo(4) = |} A,. Notice that Cge(A4) depends on 4. -

n=1
Proposition 1.1. Oy (4) 45 a norm denss, hereditary *~subalgebra of A.
We define a o-finite integral on a c-unital O ~algebra A to be a positive ]
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*-~ghional f defined on Og(A4) for some strictly positive element and f has form
f= z; Jo
are each f, iv a bounded linear functional on 4.
Lot f ba a positive linear functional defined on Ug(4). If f can be extended to

ormal weight on A**, then f=23 f*? where each f, is a bounded linear funotional
A. For every n, since f(e,)<<oo, there are only countably many ¢’ such thab
2.) 0. Henee f= 2 fion Ogo(4).
Lemma 1.2 & TerendD, - Tet f be a positive linsar functfwml defined on Co(4),
p(@) =inf {f(s) +1|s €0 (4,), tER", s+i=>a}

‘o€ A,. Then f is a o—finéte imtegral 4f and enly 4f p(z) =0 implies f(z) =0 for
Ooo(4) 4.

A positive linear functional f on Og(4) is called unitarily bounded if for evory
A, n=1 2 -

Sup {|f(v*zu) | |» unitary in 4,,+ Cen m=>n} <oo.

The idea uged in the proof of the following theorem iy taken from {8, Theorem:
(. , ’

Theorem 1.3. Every unétariy bounded positéve limear functi;onal f defined onm.
y(A) és a o~finite integral. ‘

‘We omib the proof.

Let f =i f» bo a ofinite integral on 4, then f can be normally extended to,
$=1

*. We will uge the same notalion f for the normal extengion,

Lemma 14. Let f be o unitarily bounded positive linear functional defined on

o(4). Suppose v € 0po(4), then 7
sup {|f(y'z2) | |y, €A™, |y}<1 and |z| <1} <oo..

Corollary 1.5, Ewery unitarily bounded positive limear funotrl,onal defined on.
o(4) can be extended uniquely to a O"—integral.

Proof By Lemma 1.4 f (the normal extension) is finite on AC(A4) 4. Clearly-
Joo(A) A is a norm dense ideal of 4. Since Ug(A) =1, the Pedersen’s ideal, by [7,
6.1.], T=A40x(4)A. It follows from [3, Theorem 3.7] that f|; is a O*~integral..
10 uniqueness follows immediately. :

The following example shows that not all o-finite integrals are wunitarily
randed. :

Ezample. Let H be a separable Hilbert space with orthonormal basis {£;}.
Lol A be the O*-algebra, of all compact operators on H. Leb

6= R
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Corresponding to tho approximate identity {e.}, we have

Ogo(4) = [:Jl 6, 4s,.

Define f(#) =<a&;| &> for s€ A and
f =z_{ % fa-
Then f is a o—finite integral defined on Ug(4), but not unitarily bounded. So the
normal extengion of f cannot be finite on 1,.-
A version of the following Radoﬁ—Nikodym theorem was found by Sakai [8]
the cage that fis bounded. A similar version for faithful normal weight on v
Neumann algebra was proved in [11].

' Theorem 1.6. Let A be a o—unital O*-algebra, f a unitarily bounded (but m
not be bounded) positive limear funciéonal defined on (go(A) for some strictly posh
edlement of A.Let g be a self-adjcint linear functéonal defined on Ue(4). If

19@) | <F(|a]) for all 5 € Coy(A)sa,
then there 4s h € Ay, with |h| <1 such that
9(2) = (ha-+-ah) /2 for all & € Ooo(4)-
Proof Let fo=f|a. ¢a=gn|4n We can exbend f, and g, to e,4""s, normally.
uge the same notation for the normal extensions. Thug

|9.(@) | <|gu(|2]) | <fr(lz]|) for all 5 € (6.4 ¢n)s.0.
A glight modification of the proof of [7, 5. 3. 2]shows that thereexists h, € (6,4
such that ||A,] <1 and

gn(m) =fn(hnm+mhn)/2=f(h»a7+‘rhn) /2 for all a;E (GnA“Gn)s.n.-
We may assume thatb k,—h weakly, with A€ A7, and |jk,— Al <1. Fix m. Leb

L=sup {f(yeay) |y € 43%, Jy|<1}.
By Lemma 1.4, L<<oco. Let

f Efi’

where f; is a bounded positive linear functional on A (by Theorem 1.3.). For e
£>>0, there is an integer N such that

3 filom < (8/(L+1))2/4.
For every o € (Ap)s.a. and |z]| <1, there is mo such that
|27 (Gt atiu—ny) | <o

whenever n>>m,, thug

| (ha— B+ a(ha—B) |
<et| 3 )|+ B WT—T)?)‘\

<s"+2[2 Fi( 1) 6 (i _h))} [

i=N+1
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p 1/3

<8+25 ((—h) e (B h))l/”[ 3 few]

<28, if n=ms,. o '
nece f(ko+2h,) =f (Ans+2hy) for every o A, and n>m, we conclude that

f(ha+ah) [2=f (ha+oh,) (2 for 2 € An
d nz>m. Thus g(z) =f (ho-+ah) /2 for all &€ Ooo(4).
Let f be a o-finitie integral defined on Ogo(A4) for some strictly positive eloment
of 4. We extend f to A™ norma.lly as before. Let m; be the representation given
' f. Then we have

Proposition 1.7. ker fDker a;.
Since ker f Dkerm; f deduces a a—ﬁmte mtegra.l Fonw(A) by fl@)=F (ar,(a;)
irthermore, we have ¢, € H; such that
@ =T = 5 e,
we can extend f to B(H;) by

Fly)= E <yéal§a> for y € B(Hy).
Now we conelude the seutlon with the followmg Radon—leodym theorem, the
oof of it is essentially ths same as f is bounded.

Proposition 1.8. Let f be a o—finite integral deﬁned on O’oo(A) Ifpisa self
7oq,mt linear functiond defind on Ow(4) such that

@) | < f(|=h) fo’r all wEOoo(Ae)s, )
m there e;@sts hgw, (A)sans 1] <1 such that ¢ (@) = f (hay(2)) for all ©E€ Op(4).

§ 2. L Spaces and Their Duals

Let A be a o-unital C*-algebra, CUge(A4) bs a norm dense, hereditary
subalgebra defined by a sirictly positive elemen’n @ of A ag in section 1. Letb f be a
finite in1 tegral defined on Co(4). For every '

@ E< ’Ql e,.A**en>s.a.,
y define .

li=sup {[ gb(a;)vl o) | <f(ly|)for all ¥ €Co(4)s.q. and are Teal linear functionals

fined on CJ e,,A**e,.)s'a‘}. Let

n=1

, DI1={m§< Ql en;d*;en);.a.l ﬂw||1=0},

=( : I )s.a./Nl

=1
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and (I')s... be the completion of L in the norm ||, where 7z is the image of » under
the quotient mapping. Clearly, Co(A4)s../Ny is dense in (IY),, a.- We will denote L,
the complexification of (I*)c.a..

Proposition 2.1. Iffds um}taa'lz}ly bounded, then

Noa.={h € AGL | f(hp+-ah) =0 for all € Coo(4)}

4s weakly closed. ' L Co

We now define (7i.)sa.=A:L/Nsa. The complexification of (L.)s. will be
denoted by L... Let s € A%, « be the i una,ge of the quotient mapping, we define [ *
ag the norm of z in L... g

Theorem 2.2. Suppose that f &s unitarily boumled Then there %s a ons fo
linear contractive mapping from (L*)* imto L. 4

Proof Lt € ((I)ss)", I$1<1. By the definition of |-, |(z)|<lal
f(|=]) for all €0 (4)s.a.. By Theorem 1.6, there is A€ AL;, |h|<1 such thab

¢ (@) =f (hws+mh) /2 for all £ € Ope(A)s...
We define ®;(¢) =h, where “~-” ig the quotient map from A} onto L... It iseas
geo that @, is well defined, one o one and linear. By the proof of Theorem 1.6,
may assume thab there are hy € (6:4™61)s.., |54 <1 such that
Fix—>h weakly and -
f (hw+ohy) /2= (z) for o € (exA™er),
furthermore, we may assume that |Ax| <|Az].+1/k. :

Lot & = inf{| Aexs (P) | | f (1 — 26 Chi) ) =0}, where g, is the charascteristic funo
of the set {¢: |t| >o}. Olearly, 1=y, (a) €Ny, if f(1—2c(hx)) =0. Thus ;,>|2
For every g>>0, there exists a projection p, Ce, A* e, such thab pyhy= "Iy py, f( D)
and hypr= pupe= (=€) f () = (s — &) || pulls. Hence || >, —s, for every &
S0 we have [¢]|=>M>>[u].. Since kx—>h weakly, |h]<lim|h,|.

Since |/ < ||Axlo+1/k, we conclude that |A] <lim|h|.<|¢|, Thus

@) = l!hl|»< Il
This completes the proof.

- Theorem 2.3. There is an q,someto'rbc wsomorphrosm between m;(A), the commu
of @w;(A) and (L')*; consequently, L' 4s ésometric tsomorphic to ws(A)s, the predu
wy(4).

Pfroof Tt is sufficient to show that ws(A)ga. 18 isometric 1°omozphlo to (I
Lot A€ awi(A)ca., Wo deﬁne @g(h) (w) f(harf(a;)) for all 2€0g(4)s.0..-By an
computation, we have ;

|Ba(h) (@) | < IR S (s (|])) for o€ (4,)sa.
and all n. Thus [@a(k) @)/ k]| <f(|o|) for a1l &€ Op(A):a. Smoe Dy(h) i3 a
linear functional, by the:definition.of |+, .

EAGICIVITIRS llwlli_for all £€Coo(4)s..
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T us [@u(B) [ <|A].

Let & be the densely defined map from A4 to H;. For fixed h € w,(4),,., lob

2 €06 (4) +with [2*|1=1, i. e. f(a?) =1,
s have ' '
el € =f (@ =1,
o | Ba(h) (o%) | = |<hs| £5]. Honoo
[B() | >sup{ A&, €] [1€:] =1, € 00(4) ).
-yEO’oo(A)s a. with €, =1 and y=y,—y-. We have y+y_—y 9,=0. Thus
ylfﬂ) <h<£3+ fy—) l (fw"‘fv )>
= <h51.+ | fv.+>+ <hSy— I'fy—-
— F (owp(y ) by (y ) — F (ovr(y-hoaes (,.))
= <}">:v+ I §y+> + <h511— l fﬂ—)
= (16, 1P+ 16,-1%) sup {|<BE|E> | 161 =1, wEC'oo(A)+}
=sup/ [<he|Ea> | 1€al =1, 2€000(4),} <Pa(h).
nce |2]={Pa’h)|.
Lot ¢ € ((I*)cs.)%, ¢ <1. By the definition of ||,
' |p(x) | <f(|=]) for all 3EC4(A4)s.a.
Proposition 1.8, thare is A €wy(A4),, such that 4| <1 and
¢ (@) = f (haws(2)) for all € 0pe(4).
nce @, ig also onto.

Let L b> the st of those elements A€ L., such that f(hw-+oh)/2<Hf(|=|)for
%€ Opo(A) 5.0, where H does not depand on . Clearly L is the image of @y, hence
g a linear space. '

Corollary 2.4. If f is unitarily bounded, then there 4s a ons to one linear
bractive mapping from w;(A) onto L.

‘We now again agsume that f is unitarily bounded. Let 2 € Al;, an argument
d in section 1 shows that f(kz+ah) is defined on every

2€( L) 6ud*"en .
: every

mé( D e,.A**e,.>s,.a.
define |o|*=sup{ f(hz+2zh)/2|h € A5, |h] <1}. Clearly, |+|*is a semi-norm.

N1—~.—{a7 E( ’I;Jl anA**e,.)s,,_ ||a;|[1=0}.
f1=( l:Jl €nd" 0y )sa./N*

and (T'),.. be the completion of I*. We will use the notation I for bho
complexication of (I),a.. '
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Proposition 2.5. Let
2€( ) oud™en)uas

n=]
then there ave ©,C Ooo(A)s... such that
| lon—a|* —0.

Theorem 2.6. If f is unitarily bounded, then there is an ésomorphism @ from
L.. onto (I})*. Moreover, |®s] <1 and | D3| < oo.

Proof Let h€ AL, |h|<1. We define @y(h) (2) =f(ho+af)/2 for o€ Opp(AD
®3(h) uniquely determines a (norm less than one) real linear functional on (I*),
Thug &@; is a linear map from A:% to [(L')s..]* cuch that |Ds) <1.

Suppose that ¢ € [(I*)s,.]* such thab |¢| <1. Then |¢(z) | =sup{|f(hz+zh),
hE A || <1} for all &€ Uoo(a)sn..

Fixed n, the set S={f(h-++h)/2|h € AL:, || <1} is a convex compaot sub
of [(6.4"¢n)u]s.0.

If z € (6,4""¢,) and |z| <1, we have

|f (ha) | <f (heh)*/*f (a*0) A< LM7f (e.) /%,

where L is the same as in Proposition 2.5. Thus

|f (ho+ah) /2| <L'°f (e,)*/*
for all # € (6,4"%6,) and |z| <1. Hence f(hz+ah)/2 i3 a bounded linear functio
on (e,4**e,). Since it is also normal, we conclude that Sc[(e,4**¢,),]sa.. Supp
that h, € A5%, h—>h woakly, we may also assume that ||k,—h|<<1. Then for every:
6,4"¢,, ag in the proof of Theorem 1.6,

F((ha—h)z+2(h,—h))—>0.
Since the unit ball of 4;% is convex and weakly compaoct, we conoclude thatl
convex and compact.

Let &|n=0|0 a0, We have

| pa(@) | <LH3f (6,) Y2 for all o € (6,4¢,)
and |z} <1. So ¢, is a bounded linear functional on e,4**¢,. Suppose that

Tay € (6.4""€n)s.0.
such that z.,'z. We may also assume that [z,—2|<1. For every h€ 4;%, [A]
9ince @ — =0,
1 (b —02)) |

<SS (@ —2)B) Y f ((2—24) )7

=f (h(@—2a)0,(z — 2a)*/*h) f ((& —5) )}/*

<LVf((—wa))V2.
‘Hence

[ fu((@~2a)) | <Lf ((2—2a) )2 =0,

wince f is normal. We conclude that
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¢n € [(enA "6n) s]s.a. _

Now, if ¢.&S, then by the Hahn-Banach theorem there is an element @ in
(6.4%¢,) ] 5a. (= (624"6,);...) and a real number t such that ¢,(=) >t>S(a) Smee
= —8, we conclude bhat

bu(@) >sup {|f (ho+ah) | /2|h €S || <1},
contradiction. Thug there is k, € A2%, and |A,| <1 such thab
| $(@) = u(@) =1 (ha+ah,) /2
T all
5 € (6.4"e,).
y the proof of Theorem 1.6, there is A€ A% and |A] <1 such that.
¢ (@) =f (ho+ah) /2
T all €0 (4).

Hence @; is onto,

By the definition of N?, we have ker @;=N*. If we uge the same notation &, for
10 composition of @3 and the quotient map from AL onto (L.)s,., we have that Oy
one to one and onto. By open mapping theorem, | ¢3‘1 | <oo. We complete our proof.

The following corollary is a stronger version of Theorem 1.6.

Corollary 2.7. Let f be a unitary bounded (may not be bounded) positive linear
netional defined on Ow(A), g a selfadjoint Vinear functional defined on Oo(A). If
(o) | <sup {|f(ho+ah) | /2| hE AL, |h] <1} for all © € Cgo(A)s.a. then there is hE
»% such that |h| <1 and

g(@) =Ff (ho+ah) /2 for all € 0g(4).
ae proof ig the key part of the proof of Theorem 2.6.

Remark. If f is a trace, then L'=1I*. Moreover ®;!=®;, will be an isometrioc
Jmorphism.

We notice that both the definitions of I* and T* depend on Uge(A). If f is
vitarily bounded we can extend l[ f+ and |<|* to the minimal dense ideal I as
llowing. If €1, ,.,

lolla=sup{|f (ha+ah) | /2|F €B((TD5), |hl<1},
ol =sup { | (ho+oh)1/2|h € A2, |h] <1},
16 following theorem shows that both L' and I* contain I no matter how different
w(A) may ba. :

Theorem 2.8. For svery element o €1, there are @, €0 (4) such that

' lon—2}1—>0 and |@,—z[*—>0. "~ .
Remark. L' spaces for von Neumann .algehras agsocialed with a faithful
_ ormal weight have been studied (e. g. [2], and [10]). The faithfulness-of:the
normal weights plays dn important rulein [2] and[10]. Since abelian von Neumann
algebrag are special cases of 0(X), it is probably more natural.to consider integrals
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initially defined on O*-algebras. Notice also that even if a o-finite inbegral f is
faithful on O (4),, it may not be faithful on a,(A4)%.

§3,.The C"-Algebras M (A), Bo(A) and Other
Non-Commutative Measure Theorems

Definition 8.1. Let M be a won Neumann algebra, f a wesght on M. Supposs .,
sEM. We say {x,} f-converges o =, 4f for every ¢>>0, 0>>0 und a projection pEJ
there are projections ¢.€M, ¢.<p and an tnisger N such that

| (za—2)gall <o and f(p—g.)<e
for all n=N. o
" Let x,(t) be the characterigtic function of the set {t: |¢]>0a}.
 Proposition 3.2. Suppose that f is bounded. If v, f-converges o, then for eve
>0, ' ’ '
F(o(|2a=21))=0 as n>co.

Proposition 3.8. Suppose that x, f-converges to z and f és normal. Then th
edists @ subssquence {z,.} C{z.} and projections p,€ M such that p;<pys f(1—p)~-
.and || (z,— ) p;| >0 as k—>c0 for each 4. -

~ Proof By the definition of f-convergence, we have a subsequence {z{"}c{:
and projections g‘” € M subh that ¢{<¢t”, F(1—-¢) <1/2, f (q,ﬁ"—g,‘}ﬁl) <(1/2)
and || (z" —2) i <1/k. Let ¢™=S—1lim ¢i". Since f i3 normal, f(1-—¢®)<
Moreover | ("’ —2)¢®|—>0. . _

We also have a subsequence {#f”}cC{a{"’}, a projection ¢® €M such tl
J(A—g®—g¢®)<1/2, ¢®<1-¢® and |’ —2¢®|—>0. By induction, there :
projections

n—-1
g(’}) E M’ q(ﬂ)<1 — Z q(‘)’

J (1 2 q(v)><1/2n and {x(")}C{m,(p""l)}
such that [ (2% —2)q™[—>0. Take

‘We have f (1—p)—>0and | (w,.,‘——a,) p;1—0 for every .

Corollary 3.4. Suppose that f is normal, , f-conver ges to @ cmd {z,} 45 bound
Them there is a subsequencs {a;,.,,}c{w,.} and a projection pEM such tkat Ty P>
strongly and f(1—p) = 0.

Corollary 3.5. Let M be a von Neumann algebra, f a faithful normal weight
M. Suppose x,, sEM -and [z.| %s bounded such that =, f—conwa ges b0 . Then ax,

conwerges to = strongly.
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‘Bhe following is a non-commuiative version of Lebesque’s Dominant
nvengenoce Theorem ‘

Theorem 8.6. Lot M be o von Neumann dgebra, f a normal weight on M.
ppose that @, @€ M, y €M, suoh that f (@) <+ and |2,—2| <y for dli n. Then

F(@n—2|)—>0 asn—>wo,

oné aof the following holds
- (1) =, converges to x strongly,

(2) |za—a| >0 weakly,

(8) @, f-comverges o =,

(4) =, comverges to x 4n the sence of Proposition 3.2.

Remark. If a weight has the convergence property stated in Theorem 3.5, then
w€M,, 2,/ and f(z) <oo imply f(z,) 7 f (4).

Let X be a locally compaot Hansdorff space. We say a funotion f defined on X
vanishing at infinity if, for every s>>0, there is a compact subset O of X such
i |f(#) | <e if ¢ 0. Let A be a o-unital O*-algebra (without unit), {e,} be the
ments defined by a striotly posiive element ¢ as in the section 1. Let My(A4) be

> norm closure of CJ e, A*e, Bo(A) be the norm closure of CJa,. Be,, where B ig
n=1 n=1

» enveloping Borel *-algebra of A. Notice that since 4 is o—unital, 1€B.
wiously, Bo(4) is an analogue of the bounded Borel funcbions vanishing ab
inity. Corollary 3.9 and Theorem 3.11 will convinoe us of that. Unlike I/ which
send on Ogo(4), M. o(4) and Bo(A4) do not depend on the choices of Tg(4).

Theorem 3.7. M,(A4) (respectively Bo(A)) 4s the smallest hereditary O*—
algebra of A*" (raspectinely B) containing A. :

Proof Let sE€B,, y€By(4) such that z<y. We may assume that |y|<1 and
e ig an element z € B such that z*2==. By [T, 1. 4. 5], there is u€ B, |u] <1 and

2a<<1/2 guch that z=uy®. Therefore u=y*u*uy*. There are y,E CJ e,Be, such that
a=1

—ya}—0, as n—oco. Clearly y, u*uy, € Bo(4). Hence o=y u uy™ is in 4,(4).

Corollary 8.8. My(4) and By(4) do not depend on {e.}.
Corollary 8.9, Let f be ¢ bounded Borel function on R such that 1111{)1 F@® =0.

en f (@) €Bo(A) (respectively Mo(A)) for all € Bo(A)s.. (respectively Mo(A)s.a.).
Theorem 3.10, Let A be a o-unital O*-algebsa, o € Mo(4). For every o-finite
egral f defined on some Og(4), every ¢>0, 0>>0 and a projection

peCL+ “CJI 2, A% 6,

there are projection
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Po€CLT ) anda,
Po<<p and yE 0 (A) such that
, I @—y)poll <o, |yl <lapl and f(p—po) <e.
Moreover, there exist a projection go<p im A** and a sequence y, < U (A) such that
1 (¥a—2)gol >0 as n—>o0, f(p—go)<s.
Proof For every >0, there is

ve () ende
such thal |y| <{zp| and
1(z—9)pl<a/2.
Suppose ¥ €e,Ad**e,. Since ,
pcCl+ ’.L:Jl 8,46,
p=1—p;, where

mEe CJI 8. A% e,.

‘We may assume that p; €e,Ad*em. Lot pa=en—pi S0 f(ps) <oo. Since Ug(A,
norm dense in A, by [9, Corollary 4.14], there exist p CenA* e, p<paand zE0y
such that

Iy—2)p' | <o/2, lz] <lyps| and f(ps—p") <s.
Let po= (1—6m) +p, then f(p—po) =F(p2—p’) <e. We have

I (z=2) pol < (@ —1) poll + [ (¥ —2) poll <0 /2+ [ (y~2) p| <o,
so we complete the first part of our proof.

By the first part and induction, we can find a decreasing sequence {g,
projections in
C1+ Ol e.A™e,
and a sequence {y,} in C¢(4) with the properties

I (@ —va) gull <1/n and f(g.—p.) <(1/2)"s,
=1, 2’ ves,

Let go=8—1im ¢,. Then we get

I (& —~y.) g <1/n and f(p—go) <s.
‘We complete our proof,

Theorem 3.11. (Generalized Lusin’s Theorem) Let 4 be o—unital O*-alg
Take an arbitary o—finite tniegral f defined on some Uoo(4), projection
p‘E Ci+ C} e.A"e,
n=1

&>0 and 0>>0. Then for every s € Mo(A), there exist a projection pe<p i A*™ and
4 € A such thai
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2 Po=Y Po S (p—po)<s and |yl <(A-+a)|
Proof Notice that for every

z€C1+ O e.A*e,,

n=1
y ez €EMy(A): Now we can use Theorem 3.10 to prove Theorem 3.11 as in [9,
heorem 4.10].
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