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GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS

TO THE TYPICAL FREE BOUNDARY PROBLEM

FOR GERENAL QUASILINEAR HYPERBOLIC
SYSTEMS AND ITS APPLICATIONS
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(Dedicated to the Tenth Anniversary of CAM)

Abstract

In this paper the authors prove the existence and uniquoness of global “classical
golutions to the typical free boundary problem for general quasilinear hyperbolic systems.

As an application, a unique global discontinuous solution only containing » shoeks on
>0 is obtained for a class of generalized Riemann problem for the quasilinear hyperbolic
system of » conservation laws. '

§ 1. Introduction

‘Under certain decay hypotheses we proved in [1] the existence and uniqueness
of global olasgioal solutions to fhe fypical free boundary problem on an angular

domain .
D= {(#, o) |t=0, 2:() <o<,(t)}
(21(0) =22(0) =0; @y () <wy(t), VE>0) (L.1)
. for the ﬁrst order reducible quagilinear hyperbolic system
GRS
{ o ((r H<ulr 9), (t.2)
Py ——+u(r, s) ——————0 :

and this result was used in [2] fo dlSOUSS the global perturbatien of the Riemann
problem for the system of one-dimensional igsentropic flow and construct a global
discontinuous solution only con’ﬁalnmg two shocks in a olass of piecewige oontmuous
and piecewise smooth functions. '

»+In this paper we shall generalize the previous regult to the typical free boundary
;problem on the -angular doma,m (1 1) for  the followmg genera.l qua,sﬂmear
hyperbolio system ' g :
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3 (S n) ZL ) =) (=1, -, ), (1.8)

where = (uy, -+, 4,)* denotey the unknown vector function, {;(), M), w(w) (I, j
=1, ++, m) are guifably smooth functions of v and

det({y) #0. : 1.4)
The boundary conditions are as follows:

on the free boundary o =3(t), .
gf(ar(tr w)) 'M) =0 (’I’=~’1, hRe) m); (15)

‘gz” =Fa(bs(t, ), u), m2(0)=0; (1.8)

on the free boundé,ry o=w4(%), |
( gs(as(t @), u) =0 (s=m+1, -, n), .0
dt =F1(b:(¢, @), v), 21(0) =0. o - .8

We shall prove in § 4 that under certain_ reagonable hypotheses problem (1.3)—(1.8)
admits a unique global classical solution on the angular domain (1.1). Then thig
result will be generalized in § 5 to the typical free boundary problem on a fan-ghaped
domain. Finally in § 6 we shall uge the result of § & to consider the discontinuous
initial value problem for the quasi]inear hyperbolio gystem of conservation laws

L@
at a“ 0, | (1.9)

: Uo’ (97) AN O,
t=0: u={
us (v) 220,
where u= (w1, *=, U T, f(u)=(f1(w), ++, fo(u))T ig a suitably smooth function ofu,
uy () and wl (o) are given smooth functions on #<<0 and on >0 regpectively with
ug (0) #ug (0). co (1.11)
Problem (1.9)—(1.10) may be regarded as a perturba,tlon of the correspondmg
Riemann problem (1.9) and

(1.10)

. . -‘u_, m<o, » .
t=0: ={ (1.12
in which L |
&= U3 (0) : _ R ¢ 13)

.Suppose that |u+-u | ig sufﬁclenﬂy small and the solution to Riemann problem
(1.9), (1.12) is composed of consbant states and n typical shooks, We ghall prove in
.§ 6 that problem (1.9)—(1.10) admits a unique global discontinuous solution only
containing n shocks on >0 in a clagy of piecewise continuous and piecewise 'smooth
funetiong and thig golution is a global perturbation. of: the solutlon o the corr93pond—
ing Rlemann problem. ' '
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§2. An Uniform A Priori Estimate |

In this section we consider the following typical boundary value problem on the
angular domain (1.1) for the quasilinear hyperbolic system of diagonal form

L) Fh= B an@un (=1, o w), 2.1)

o= (8): = z It B gty Wt g GOBE  (r=toem), (2.2)

i%=1

8

B=a1(4): Us= Z Bsp (B utp+ E 95w (B, w)usty+ g5 (4,1 bs (t) (s=m+1,-m). (2.3)

Setting F,(t) =} (t) (4=1, 2), we suppose ’oha,t this problem satisfies the followmg
conditiong: :

(Hl) Ny @iy i, G G b, Fyare all suitably smeoth funo’ﬁlons, INOreover, g
and g, are bounded if « is bounded and #=0. |

(H2) Boundary conditions (2.2)—(2.3) possess a unique 90111171011 u= u° |

(H3) There are no characteristic ourves entering the domain (1.1) from the

origin, i. e.
A (@) <F1(0) <F3(0) <A:(u®) (r=1, +o, m; s=m+1, e, m),  (2.4)
then o
— % (of® 0
0<c, & g:ggg tguoﬁ ) O3 = mg f;:ggg <1 (2.5)
(r=1,+ m; s= m+1 ey W), '
(H4) Tet | | |
0= (6,0)), (2.6)
O_y=diag(o7?, -+, 0710, 2.7
we have o ’ -
O]y <1, (2.8)

where the minimal characterizing number 1A | miw of 2 nXn mabrix A=(ay) is defined as

[4lawes inf max 31| Teay| (of.[80).

—'I 0 ¢=1,---.n J=1

Lemma 2.1. Under aswnpt'i/ons (H1)—(H4), there ewist positive constants s, and
s(0<8<<8p) so small that of

lglfCt)-‘alf(O)|<80 (z’ j=17 *'% ’)"), Vt>0, (2.9)
lbl<t) |< 1+7’;’, (Z_-’—'l, R 'n‘)) Vt?O, : (2.11) ‘

then on the existence demain: of. the. classical solutwn u=u(t a;) to pfroblem (2 1)—-

- (2.8), the fouow@ng undform.a.priors estimate. holds: -
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Ks

lu(t, o) | <475 Vi=0, (2.12)

where K is a positive constant @ndepundent 0 f 6.
Proof Noting (2.8), we may suppose that (of. [3])

3 3 180050 |oFiori<t (=1, -, m), (2.13)
p=] s=m
ﬁl 5’31 105+ (0)0,(0) |07071 <1 (s=m-+1, v, m). (2.14)
g=m+1 r=

By (2.11), it is easy 1o see that for the value u® of the solution ab the origin,
uniquely determined by (2.2)—(2.3), we have

lu"] <.A.08, . . : : (2 .15)
where A, is a positive constant. Hence, we can take >0 so small that
lu(t, @) | <eo, (2.16)

provided that >0 ig suitably small, where so 8 a small positive constant to be
determined later on.

In order to prove (2.12), we firs suppose thaﬂs @. 16) holds on the whole
existence domain of the clagsical solubion. Let §=f(=; ¢, ) be the I-th characteristio
curve passing through the point (4, @) on the existence domain of the classmal
solution:

d—ﬁiﬁ-i-@—~x,<u<«v, fi 4 w>>>, (w<t), -
(2.17)
v=t: fi(v; ¥, ®) =a. o _
By (2.4), (2.10) and (2.16), for any =1, -, n there exists a unique (¢, ©) <t
such that ' :

Fr(m(s, ©); § @) =as(we(t, @) (r=1, -+, m),

. 2.18
fs('vs(t) w_); , w) =-"£B1('b‘3(t, @ )) (S=m+1, Hhe) '"’)7 ( )
provided that g,>0 ig suitably small. Let
T (b, @) =7:(2r (%, w)r ACA w))))

vl ) =7 (v:(t, @), 21(7:(4 2))), _(2.19)“

 (r=1, - m; s=m+1, -, ).
By (2.10) and (2.16)-—(2.18) we have |
(F1(0) — 80) b — (F5(0) +80) 7, (8, ®) <9’1(f') —@a(7r (4, @))
_ t—a (%, @) t—v (5, @)

2 (e (t, @)
<¢ .t-m—z';v(-t,-m{;

_fe(% #;-w)’-f-"fr('vr(i, @); t, o)
L))

- <SM(u®) + Aggg |
here and hereafter, 4((¢=1, 2, .--) will denote positive constants independent of .
(t, w). Thus, noting (2.5), when g4>>0 is suitably small, we have = . L
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| t< (o7 1+ Agg0)w: (b, ©)  (r=1, «, m). (2.20)
In a gimilar way we ge?b
7 (%, 'v)<(asl+Aseo)m',s(f; @), r=1, -, m;) (2.21)
w5 (8, @) < (05t Asso) 7, (8, @), <s =m+1, (2.22)

Observmg (2.5) and (2.13), we can chooge congtants a>1-and 8>1 such that if s,
>0 is suitably small, then _
| :1+A | <SG, =1, oo, m;
{(o‘ 280) (0" 380) <& (fr m ) (@.28)
(0s+ Ageo) B<1, s=m+1, v,
and

0‘2 2 |9,3(0)939(0)|<1 o (2-24)

p=1 s=m+<+1

Let ‘
Cu(t)= max |G o) A=1, -, n),

vi(t)<w<wi(t)

u(t) = lz__riafznu;(t), (225)

V() =tu(s).
We want to prove that there exists a positive constant Ko such that -

V (5) <Kos _ - (2.26)
on.the exigtence domain of the claggical solution, provided that &>>0 and s>0 are
suitably small,

By the definition of V' (¢), (2.26) obviously holdg provided that $>0 ig guitably
small. Suppose that (2. 26) holds for 0<#¢<CT, we shall prove that it still holdy for
I'<i<BT, provided that the olagsical solution exigts on 0<<t<<ST. _ |

Using boundary conditions (2.2) and (2.3), for any (%, ) in the domain (1. 1)
with T<\¢<<BT, we can integrate system (2.1) a,long the r—th oharaoterxstm ourve
from (%, ) to (v (4 @), @a(zr (%, #))) and then along the s-th characteristio curve
fI'O]Il (,'Vf-(t: zv), wﬂ('vr(ir m))) o . (7r8<t7 m)r 1. (T'S(ir m))) No-ﬁng (2°9)7 (2~‘11)’
(2.16), (H1) and that 7,,<w, this procedurs gives

lue (3, @) | < ﬁ (164 (0) | + As80) |s (e (5, ), wa(7e {8, 2))) |

g=m+1
-A58. ‘t'- a .
i T fw , V@
<2 2, (0n(@0u(0) |+ ds80) [ts(3n(t,0), axCont D))
+ n Age + Ag *é j o u?(v)dw, (rr=\_1, e m)

1 1473, :z;)
- e R (2.20)
When T<t<gT, it follows from (2.20)-—(2.23) that \ | -
LpclicwG o<, @28
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By (2.24) we can choose 8 so small thab

xﬁ " (lé’rs(ﬂ)é’sp(O) I + Agso) <Go<1. (2.29)
‘Noﬁing (2.28)—(2.29) and the fact that (2.26) holds on 0<<¢i<7, it comes from
(2.27) thatb ,

tur (5, @) | <00K08+A78+A7t[ ;/ W (x)dy, (r=1, «vy m). (2.30)

Similar egtimates hold for w,(t, #) (s=m+1, ---, n). Then it ig eagy fo geb

t V)

V(£) <OoKos+ Ase +A8f Aty Py 2o (2.81)

Suppose that W (%) sabisfies | |
W (1) =60 K o8+ Ass+ A f W’ <’”) dr, T<i<@T. (2.32)
Then we have _
V< (@) = GoK oo+ Ags (2.33)

1 (60K 08+ Age) Agln (at/T')
Hence there existy a positive constant K only depending on 4z and f, but indenpen-
dent of T', such that

provided that ¢>0 ig suitably small. Repeating the same argument, we get (2.26)
on the whole existence domain of the olassical solution, Noting that u(0, 0) =u’
satisfies (2.16), from (2.26) we obtain immediately (2.12), Wbieh implies that the
previous hypothesis (2.16) ig reasonahle prov1ded that s>0 iy guitably sma]l Thig
finighes the proof of Lemma 2.1. '

' Remark 2.2. The hypothesus that u(t, @) i3 a 0" solution is not necessary in
the proof of Lemma 2.1. In fact, Lemma 2.1 ig still valid provided that w(?, @) is
continuous, the charaeterlstlo ourve ex1sts and the infegration along the charaote-

Tighic curve makeg genge.

§3. Typical Boundary Value Problems With
Fixed Boundaries

‘We now consider the following fypical boundary value problem fon the angular
domain (1.1) for the quagilinear hyperbolic gystem (1.3):
o=0a(8): Up=Cr(ar(), Uns, ***y Un), (r=1, «oc, m), (8.1)
C w=23(8): Us=C(as(8), wy, +*¢, Unm), (S=m+1, ov m). (8.2)
Still sebting F () =a} (£) (6=1, 2), we suppose thab
(H1) Ly N, Gy @, Fyare all O funotions, 1w are O? funotions and

V(@) <Kos, T<t<pl, (2.84)
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——

pa(0) =0, (0) =0, (i j=1, -+, n). 69

(H2) Boundary conditiong (3.1)—(8.2), possess a unique solution u=u’ at the
origin. Without loss of generality, we may suppose u®=0; then

G‘;(a;(O), 0) =0 <Z=1, eery 'I’L). (34:)
(H3) (1.4) and (2.4) (in which 4*=0) hold and
' 1, I=4,
(0) =8,;= .b
zla( ) 1] {0, Zaéj). (3 )
(H4) Let ' ] '
o oG, ‘
O auq (ar(O), O) 7, P=11 sery, My e
o=\ oa - 5, g=m+1, +, n/)’ 3.6)
o y §=mM y 2ty T
Lo (@(©), ) 0 L,
. @—i?dia’g(o‘;j‘) Y .0-7:1)@7 (3'7)
where o;(1=1, -+, n) are defined by (2.5), we have o
"@—i“min<1- ' (38}

Theorem 8.1, Under wssumpio}ons (H1)—(H4), there ewist positive constanis e
-and & (0<e<go) so small that 4f

la®-a®], l4® <

and (2.10) host, then the typical boundary value pa’oblem (1 3), (3. 15-—(3 2) admits
@ unique global (Jrsolutfwn U= u(t x) on the angulwr dcrmam D (see (1 1)), moreover,

(i=1, +, m), V80 ' (3.9)

[u(t w) | < V(t w)ED _ | o (3.10)
m)l;g: )]\.1+t V(4 9)€D, . (3:10)

where K is:@ positive constant independent of . _ .

- Proof By the local existence theorem of clagsical c'011113101351 (cf [8]),in order to
prove the global existence of o solutions, i g only neceggary to geb some uniform a
priori estimateg for the solution itgelf and ite first order derlvatlves, therefore it
suffices o prove (8.10)-—(3.11) on the exigtence domain of the olassical solution.

Let

. { 'v=(,ui? "'7‘ Q)")T—-:C(u)u,
(3.12)

Lo ou
w= <w1, oy w»f-—-&(u);%,

where { (v) = (C;;(u)) ig the nxn mrbrix and 2% P ( 8;;1 L ) Slmﬂarly o the
- proof of Lemma, 2. 1 we may firgt suppose that :
- luGs, o) <80 . L. (8.18)

holds on the existence domain of the classical solutlon _Hence, notmg (8.5), (3.2)
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can be written ag

o (3.14)

{uz='vz+ é bm(v)wm, (=1, =, m),
"'3—'—%':+ 2 guk(’v)'vﬁ'wlm (Z 1, ey m),

- provided that g,>>0 ig suitably sma,ll.
By gystem (1.3) it is easy to gee that v and w satisfy the following gystem

D)= 3 ap@) ot D dw o, (=1, -, n),
at Jrke=1 Frfo=1 (3 15)
oy 3w;= 2 - 2 1 '
R + Mo 5 j,7v§'=]1 Ci5s (V) wiwy, + j%i dui (V) vy, T=1, -+, n).

Moreover, boundary condition (3 1) can be rewritten as
0)uy + 2 Grm(ar(?), u)uiuk

| +G@@J%@1,gm, (3.16)
then, noting (3.18) and (3.4) we get : :

o=2a(t): o= ) 3‘3" <¢,<t>‘, 0)0, + §:. ACIONDIY
+1

g=m

+ Or ((lr (t) ) ((Z,- (t) Qy (0)) (’I‘ 1 veoy m) i (3 . 17)
Similarly, from (3.2) we get '

s=as(®): o= 3128 0,0, Dvp+ 3 gl ), Doy

p=1

+gs(as(t)) (as (t) —as (O)), (s=m+1, -, n). (3 18)
Furthermore, differentiating (3.16) with respect to ¢ and using gystem (1.3), (3.5)
and (3.14), we get the boundary condition on s =wy($) for w as follows:

o=a(®): w= 3 L (a®), 0 -FBBuit B Gn@®, 1), Do

g=m+

-+ j%i Gri (ar @), Fa(t), v)vswy+ 3, (a,(t), Fa (®), v)d.(t)

(""’:1) ;'": 'm)- o (3.19)
Similarly we have ' ‘

.(n—-=a;1(t): Wy = ﬁ: aGs (as(b), 0) Fi(ﬂ "‘MJ(O) ’.lUp+ j§1§s’k<as(t)"ﬁyi<t>, @j@j’l)k

=1 @'M,, F:L(t) *‘7\.\,(0)
+ 3 Gnan(®), Fa(®), 0)omntGa(as(t), Fult), )i (8),
(s=m+1, +e, n). | (3.20)

According to the properties of the. minimal characterizing number (of. [3]),
the minimal characterizing number of the matrix '

F4(0) —(0)

oG, F4(0) —2,(0)
\’é&;(as(())y O)' Fj(O):—"'Ks(O) . ' O
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ig equal to the minimal chareicterizing mumber of the matrix

o, L F4(0) =2,(0)
0 aa, (O OF TR0
06, o F,(0) =1 (0)
ou, (@ OF 5009 0

Thus, noticing (2.5) it ig eagy to verify that all assumptlions in Lemama 2.1 are
satisfied for problem (8.16), (8.17)—(8.20); then in the existence domain of the
olaggical golution to the original typiocal boundary value problem we have

(v(t, o), l+t

where K ig a positive constant mdependent of ¢, provided that go and ¢ are guitably
small. Hence, estimates (8.10)—(3. 11) come from (8.14) and system (1.3); then
-the previous hypotheS13 (8.13) is actually reasonable provlded that s is suitably

(8.21)

small. The proof of Theorem 3.1 ig complete,
For the purpose in § 6, we congider the following initial value problem with the
initial data given on #<0: ‘ '

{zcuw)( Gy 24)=0, (=1, -, ), (3.22)

$=0: u=u’(2), (m<0) o (3.23)
Ag a congequence of Theorem 3.1, we have '
Corollary 3.2. Thore exists a positive number & so small that &f u"(w) € 0" and

{ |u®(@) —u <0>]<1+fw_l ,Vm<0,. .26
|u” (@) | < 1+8]w[ , Vo0,
then on the domadn -

D={@, o) |t=0, o<&f}, (3.25)
where £ swtisfies '

£< mm (a2 (0)}, - (8.26)

the indtial value problem (3 .22)-——(3 .23) admits a unigue global O soluidon u=u (4, )
wiith - : ‘
K s

lu(?, a;) w(0, 0) | < , V(3 w)ED
{ (3.27)
| 2265, 2)), | 221 )]< o Y ED,
where K is a pos%twe constant independent of 1.
Proof Taking the transformation of independent variables
| t=t—aw, 5=10, - (3.28)

where >0 is 50 _sm_'a,ﬂ that ‘
1— —ar ma.x {K (u°(0))}>0, _ (3.29)

1,2
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the domain D ig reduced to the angular domain

{{(75 z) |t=>0, —'lt<m<1 §a§ 7l (3.30)

and the original initial value problem on D to the following boundary value problem
on D

{zmww( Lt 22 )0, (=1, -, w), 50

where

n@—T%%amhlm n). (3.32)

Problem (8.13) can be regarded as a special case of problem (1.8),(3.1)—(3.2)
in which m=0 and @.; is the null matrix, hence by Theorem 3.1 problem (3.31)
admits a unigne global O* solution u=u (%, ) on D with

{Iu(t %) —(0, 0)[< K°8 , Y@, BED,

l“a—:(;‘;,i (t x) !< Kog , YV, 8)€D,
=

provided that €>>0 ig suitably sma.ll ‘Noticing (8. 28) (3.29), we get the global O*

solution u=u(%, ) =u(%, z) on D and (8.26) holds. This ends the proof-of 00r011ary
3.2.

(3.33)

§ 4. Typical Free Bdundary Problems on an
Angular Domain

- Theorem 3.1 will be generalized fo the typical free boundary problem in this
seotion. For the free boundary problem (1.8)—(1.8) on the angular domain (1.1),
we give the following assumptions:

(H1) There exists a unique state u® such that

g;(a;(O, O), u°) =O, <Z=‘—~1, e, ‘)’b). (4.1)
‘Without loss of generality, we may suppose thab «°=0; then ‘
g;(w;(O 0), 0)=0, (Z-———l, ooy, Q’b)., ‘ B (4.2)

Moreover, (38.3) and (8.5) hold. |
(H2) In a neighborhood of u=u’=0, boundary conditions (1.8) and (1. 7) can
be rewritten ag ,
o=u3(t): U =G (@&, @), Unms, **th), (P=1, +os, m), (4.3)
o=01(): us=0(as(t, ©), %y, ***, Un), =m+1, ¢+, n). (4.4)
(H3) There are no characteristio ourves entering the domain D from the origin,
i, e.
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?"f<0) <Fi(bi(0’ 0)’ O)<F2(bﬁ(07 0)9 O) <?"8(0)’ ('l‘=1, ooy My S=m+1, oo, '"‘))

(4.5)
then
<ot FRUBIAY, (0 B0 08
(r=1, -, m; -s=m-+1, -, ) (4.6)
(H4)Let | ‘

o O ZMG; (a-(0, 0), 0) (,,.1 p=1, +es, m; ) @

3Gs (ws(O 0), 0) O " \s, g=m—+1, e, m, /2
0.1~ diag (o5, -, o2™)6; (4.8)

we have . o
161 min<<L. (4.9)

Theorem 4.1. Under assumptions (H1)—(H4), suppose that &y, Ay, G4y @y, Fy, by
are O functions, p are O functions (I, j=1, --, m =1, 2) and (3.8) holds. Then
there ewist positive constants eo and &(0<<e<<eo) so small that if on ©=1x:(3)

[“f<t'r a:)—a,(O, 0)[< 8tr (".=1) 't m)) Vt>0:
{ o oa (4.10)
| 22 g, >]] B g, >]<1+t, (r=1, +eym), V0,
| Ba(%, @) —5a(0, 0) | <so, V=0 - (4.11) -
wndonzv @1 (%)
|@s (2, m) a:(0, 0) | << t’ (s=m+1, «-, n), Vi=>0,
fivt a0 i
|2 s(t 2| [ G, w>]<m,' (s=m+1, +er, m), V0,
[51(%; ) —b1(0, 0) | <so, V=0, (4.18)

then the typical free boundairy problem (1.8)—(1.8) admits o unique global classical
solution on the amgular domain D (see (1.1)): u=u($, )€ 21(8), wa (8) € 02,
Moreover, we have (3.10)—(8.11) wm_d'

[, (8) =2, (0) |, |2h(2) —2h(0) [ < Koo, VE=0, (4.14)
‘where K is a positive constant independent of t.

Proof. According to the local existence theorem of classical solutions (see [3]),
under aassumptions (H1)—(H4) the typical free bonndary problem (1.3)—(1.8)
admits a unlque classical solution u= u($, @) GO* and wi(t) , #a($) €0? on a local
domain _

D) = {(, o) |0<$<9, wi(t) <w<mg(t)}. o (4.-15)
In order to get the global existence of clasgical solutions, it still suffices to prove the
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uniform egtimates (8.10)—(8.11) on the existence domain of the clagsical golutbion.
In the course of derivation of thege a priori egtimates, since the olassical solution
hag been supposed to exist on the exisbence domain, the originally unknown free
boundaries can be actually regarded as the given boundaries with (4.10)—(4.13) as
the conditions on them, therefore, we can establish the desired egtimates in a way
completely similar to the previous section. _
In faot, on the existence domain of the clasgical solution, let ‘
ar(8) =a,(b,05(t)), 3s(8) =a(b, 81(8)), (r=1, -+, m; s=m-+1, +>+, n), (4.16)
{ﬁ1<t>=ﬁz<b‘1<t, 21(8)),u(t, 21(H)),
' Fﬁ?(t) =F3(ba(t 2a(®)),u(t, 22(8)));
similarly %o the proof of Theorem 3.1, we can gtill suppose that (8.13) holds on the
exigtenoe domain of the olagsical solu’o'iﬁon;' then by (4.10)—(4.13) there existy a
positive constant K, independent of ¢ guch that on the existence domain of the

(4.17)

olaggical golution we have

B -20) [<Kots G=1,2, - (4.18)
Iaz(t)—&z(0)1<—f%;, (I=1, v, ), . (4.19)
[3’; (t>l< ﬁir (Z=i, °*%y 'n')'

Repeating the argument in § 3, we get that (3.10)—(3.11) hold on the existence

domain of the claggical solution, provided that gy and >0 are suitably small. Thig

also illustrates the validity of hypothedis (8.13). The exigtence of global clagsical
solutiong ig then proved. Moreover, (4.14) is nothing but (4.18). This finishes the
proof of Theorem 4.1. '

8§ 5. Typical Free Boundary Problems on
A Fan-Shaped Domain

For the purpose in § 6, Theorem 4.1 will be generalized %o the typical free
boundary problem on a fan-shaped domain (ef. [3]) in thig section.
The fan-shaped domain under oconsideration is

D=1 Di={G, ) 1820, su(®) <a<an(®}, G.1)

where ' ,
D;={(, o) |t=0, ;(3) <o<w4(®)}, (G=1, +++, n—1) (6.2
and o=a;(%) (¢=1, +--, n) are free boundaries sa’ﬁisfyiﬁg :
{w;(0)=0, (G=1, -+, n), '
N 2(f) <@y (8), VE>0, (5=1, ++, n—1).
" Suppose that for any fixed §(¢=1, -+, n—1),

(5.3)
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(ub yu'n T (5 . 4—)
satigsfieg the following quamhnear hyperboho sysbem on D;:
35 006 (Bt B ) =0, (1=, ). (6.5)

Suppose furthermore that uf (fz; 1 o m— 1) gatigfy the following boundary conditions:
on o=a;(t) (6=1, o+, m),

g‘ W, w) =0, (b=1, -, n—1), (6.6)
fl? = Fi(ut, uf), ,(0)=0, 6.

where u®=u’(%, @) and u"—u"(t ) are the given O' functions.

We give the following assumptions for the typical free houndary problem (5.5)
—(5.7) on the fan-shaped domain (5.1):

(H1) There exists a unique state u»°(4=1, ++, n—1) such that

. @, w0 =0, (=1, oo, n—1;6=1, -,n), : - (6.8)
where u%°=u°(0, 0), u™°=u"(0, O)
(H2) Leb
=<’I)i, ) ’v:;)i,'_"g(u"o)w’ (’1;=0) 1, oo 'Yb), S (59)

where { (u) = ({y(w)) is the nXn matrix. For any fixed 4(é=1, +--, n), (5.6) can be
rewritten as

'Ui—l 1:—-1(,0@—1 T fv;—l, ’U1, RS 'vg} (Ir 1 9;—1), (5 10)
E= G (i e, 05 0h, oo, 0), (s=0-F1, o, m). .
_ or any fixed ¢(4=1, -, n ' R
H3) F fixed 4(6=1, ++, m) -
MO FoOL FHLOAL (r=1, oo, G5 s=0+1, oo+, m), - (6.11)
where
MO=N("?), (=1, «+, n; 6=1, ++, n—1), (6.12)
Fuo= P ui=b0 b9, (i=1, «+,n), .
then ,
| F», w AN— Zi'“‘1 °

(r=1, +, 4 s-———w—l—l, . @———1, ey 1),
The characterizing matrix of problem (8.58)—(5.7) is the following - (n—1)n X
(n~1)n matrix(of. [3]) '
By Oy
4 B o ()
o= .. (5.14)
Ans Bia O | B
O ' "An—i | Bn-:l ‘
where ‘
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A= O 0 <8=’Z+'1, oo, fn,;)
1 O oGs (v¥10, %) ’ g=10, *, m,

a,vs-—-l
T (iy0  pitd,0 '
B O | _3'65(” , h0) (p, p=1, o, G ) .15)
‘ Q(i?__(,vi—l,o fv‘5°) O ’ g, S=0¢-+1, <o+ m,
ov}, ’ ’
o a’UHl ('U‘ o ot 0) O ('r"_:'lj! °0 'i') )
¢ O 0 p=1, «es, $+1

are all nXn matrices and v%%={ (uh°)uh°, Letb ,
O_;= (diag(al, «, ol -, 037%, «oe) o71)) 710, (6.18)
gimilar 0 Theorem 4.1 we can prove
Theorem 5.1. Unrder assumpmons (H1)—(H3), suppose that Eu, N, G, P u°

" are all O* functions and .
10 _t]min <1; (56.17)

then there ewists a positive constant & so small that if on a=w;(§)

ou° ou’ 8
luo(t; a’) _.MO(O’ O) I,'IW@’ m) ’ !_é?"(tr w) <_1:t—’ Viz0 (5'18)

and on o=u,(1) _
"t a)—ur o | |2
et =000, O, [ 22 G )|, [ 2204 )] <52
then problem (5.5)—(8.7) admits @ unique global classical Solution: u'(, ») € O*(Dy) (6
=1, vee, n—1) and o;(t) EO”('Z}——l +, n) on the fan—shaped domain (B.1), moreover,

, V=0,  (B.19)

lut(t w)! ° 'n"'1>7 .
{ (5.20)
25, 0, |5 '8“ 9, >|< VG, )ED, (6=1, -, n—1),

|0 (8) — o, (0) | <-EE_ V20, (5=1, -, m), C (B.21)

where K &s & positive constant @ndependenﬁ of ¢.
Remark 5.2. Similar results to Theorem 5.1 still hold for the typioal froe
boundary problem on more general fan-shaped domains(cf. [3]).

§ 6. Discontinuous Initial Value Problems

In this section we turn fo the discontinuous inifial value problem (1.9)—
(1.10). We give the following hypotheges: | ‘

(H1)(1.9) is a hyperbolio system, i. e., it can be reduced to a sysﬁem of charac-
terigfic form
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zz,j(q/)( S ) 5) =0, (=1, ) 6.1

with det|{;| #0.
(H2) System (6.1) is striotly hyperbolic and all charao’oerlshos are genuinely
nonlinear in the gense of P. D. Lax.. Without loss of generality, we may suppose that
M (w) <Ag () <o <Ay () : (6.2)
and. . ' 3 ' ) \
| Vau(w) - (w) =1, (h=1, -+, n), - (6.3)
where {*(u) stands for the k~th ecolumn veotor of the inverse matrix {~*(u) of {(w).
(H3) The solution to the corresponding Riemann problem (1.9), (1.12) is
composed of constant states and n typiocal shocks (of. [4], [3]).
| We shall solve the discontinuous initial value problem (1.9)—(1.10) in a olasg
of piecewise continuous and piecewige smooth functions. For this purpese we firgt give
the following
Definition u=uwu(t, w) 3s & classical discontinuous solution containing o F-th shock
o= m(t) in a class of péecewsse continuous and phecewise smooth Sunctions, of u=u(t, o)
satisfies (1.9) out of s=w(t) in the classical sence and satisfies on s =wx(s) the Rankine—
Hygoniot condétion |
I @) = () =s(ur—~u) - (6.4)
and the entropy condition
An () <s<hg(u.),

(6.5)
Mot () >8> Agpos (002),

- where u,=u(t, o(£) £0), and s= -@Jgﬁ— (when k=1 (resp. k=mn), the term Ap_y(u_)

(resp. App1(u,)) disappears in (6.5)).

By hypothesis (H3), the solution to Riemann problem (1.9), (1.12) is composed
of n+1 constant states #'(4=0, 1, ++-, n) and n Sypical shocks &= Fi4(5=1, «-, n) guch
that the solution takes the congtant value % on the angular domain D (6=0,1, «+-,n)
where

9

Do={(s, 2))¢>0, a<F%4}, |

Di={(, o) |t=0, Fi<a<F*4}; (=1, ~,n-1), = (6.6)

Dr={(, o) |0, Fri<a} |
and '

W0 =u_Luy (0), &"=w,Luf (0). (6.7)
Moreover, for 4=1, «:, n o ,
: f(&i) _-.f‘@s-;)_,ﬁ ps @;__&;—1), _ - (6.8)
{ A:,;(&‘) <'ﬁviz<b7\:¢<’lzi—-1), v S (6 '9)

Aipd ’12‘) >F‘>M-1(’l’2i'_1) -
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(when =1 (resp. 6=n),the term A;_y (42) (resp. A1 (s)) disappears in (6.9)). In
pa.rmoular noting (6.2), for ¢=1 and ¢=n, it follows from (6.9) that
Frang(ul) <<, (ul), '
M () <orr <) < B, |
Regarding the diseontinuous initial value problem (1.9)—(1.10) as a perturba-
tion of Reimann problem (1.9), (1.12), we have
Theorem 6.1. Under assumptions (H1)—(HS3), suppose that uy (o) and ug () are
O* function on <0 and on @0 respectively, f(u) is @ O° vector function and '

8w, —u_| = [ ) 4z (0)]>0 ®.11)
ts suttably small, then therre ewists a positive constwnt 8 50 small that if

luo (w>"7'u0 (0)[: 'uO,(m)l 1+| [; Vm\o}

(6.10)

(6.12)

|ug (@) —u (), ud’ (@)] < { K Vo0,

then problem (1.9)—(1.10) admit; @ unique globwl classical déscontinuous solutbon w=
u(t, ) only containing n shooks w=a;(£) (@;(0) =0) (6=1, -, n), such that u(t, o)
belongs to O* on each domain D(4=0, 1, -, n) and x;,(3) (=1, +, n) to O on =0
with

uCh, @) — ] < 1K8 V(4 2) EDF, (5=0, 1, v, ),
(6.13)
l (t (Q’ 0, 1 °)"’))
[w,(t) - (0)[< 1+t , (5=1, +=+, n), V$=20, (6.14)

where
={(t, o) [$=0, s<21 (%)}, :
Di={(t, ) |1>0, ;,(t) <e<wua ()}, (¢=1, «-+, n~1), (6.15)
Dr={(4, o) [$=>0, =,(¢) <o}
and K is a positive constant independent of . Moreover, w(0, 0) =u' on the domwm D
=0, 1, +=-, n) and o} (0) =Fi(6=1, ---, n). Therefore, asa global perturbation, u(t, z)
possesses @ structure similar to the solutéon to Riemarm problem (1.9), (1.12) on $=0.
‘Proof We firgh uge the initial condition on #<C0 to solve system (6.1) on the
“domain .
D_={(, o) |t=0, o<&_i}, (6.16)
where

§-=l“l<—’é—-2)-i‘—ﬁi. (6.17)

I ig easy to see from (6.10) that (8.27) holds, then by Corollary 8.2 we can geb a
unique global 0* solution u=u® (#, #)on the domain D_ and there exists a pogitive
constant K, such that '
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(Wt @) —u-],

3“ )]\K°8 V(& oyeD., ‘(6'1-8)

prov1ded that ¢>0 is smtably small Slmllarly, by means of thé initial data on ©=>0,
we can geb a unique global solution u=v"(%, ») on the domain

D= 1{(2, o) 420, 3¢.8}, C (6.19)
where- ' . .
g+=£‘£'£+%ﬂ'."_,‘ (6.20)
and we have . o
" { .
a2, ©) 1t |, 36“ 4, o) )} 1K°§, Y, 2)E€R,.  (6.21)

. Accooding to the local exigtence theorem of dlsconiimuous solutions (see [31), the
discontinuous initial value problem (1.9)— (1 10) admits a unique classical discon-
tinuous solution only contalnmg n shooks &= o, (3) (=1, e n) on a local domain
D(8) ={(t, ») [0<1<, ~o0<w< 00} (8>>0), and thig solution hag a gtructure similar
o the golution: to the corresponding Riemann problem in a _nelghbqrhood of the
origin. Moreover, the entropy condition implies that &=w(#) must lie to the interior "
of D~, x=w,(t) mugt lie to the interior of the domain D, and to the right gide of »=
#1(4); hence the solution on the left gide of s =4 (%) and on the right side of z=u, (t) |
should be furnished by u®(¢, #) and w"(t, «) respectively. Thus, in order to prove the
global exigtence of classical discontinuous solutions fo the discontinuous initial value
problem  (1.9)—(. 10), it ig only necessary to solve the followmg typmal free'
boundary problem on the fan—shaped domain

p=TJ D= (1, &) 80, mi(t)<w<¢,.<t)}' XS,
On the domain Di={(¢, o) [t>0 a;i(.t) <m\w,;+1(t)}(?13=1 , M= 1), | ’ |
3 ) (G0 52 ) =0 =1, '> (6.23)
- On o=ay(3) (¢=1, -+, m), ' |
P —f @) =2 ), (6.24)
Aa(uf) < ‘i“t’* <M(ub),

(6.25)

hosa () > 28>0y, .

Tds
where ! is the unknown function on Di(h=1, «++, n—1), u®=u(%, ) and u"=v"(%, o).
. Since ab the origin (6.24)—(6.25) gives (6.8)—(6.9), in a neighborhood of
=@} (=0, 1, +, n), (6.24) oan be rewritten as (of. [3])
=G (w1, -, W5 1)1, o 08) (r=1, ., i—1),
=@ (v, ooey W74 0, o ) (s=0+1, ++, m),

Fz(,us—l u )’

(6.26)
dm;
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wler,

o=@ (5=0, 1, e, m). (6.27)
Besides, for the minimal characberizing number of the characterizing matrix of
problem (6.23)—(6.25) we have (of. [3]) ‘

6]l =0(), , (6.28)
and then ' ‘
| 16-1]min=0C(), ‘ (6.29)
where 7 ig defined by (6.11), Therefore, if # is suitably small, then
101 mm<1. ' (6.30)

It ig easy to verify that all other hypotheses in Theorem 5.1 are satisfied; then by
Theorem 5.1 there exists a positive congtant s so small that if (6.12) (then (6.18),
(6.21)) hblds, then problem (6.28)—(6.25) admits a unique global elassical solution
vi=ui(t, z) € O (D) (fl}-—=>1, +ee, n—1) and #;(3) E0? (4=1, -+, n) on the fan-ghaped
domain (6.22), and (6.18)—(6.14) hold. This also shows that o =u1(f) and z=g,(s)
always lie fo the inteﬁor of D_ and 13+ regpectively, provided that ¢>0 is suitably
small; then the pi'evious procedure of congtructing the global clagsical discontinuoug
solution is reasonable. The proof of Theorem 6.1 ig finished.
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