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Abstract

For certain Dirichlet series almogt surely (a. 8.) of order (R) p € (0, o) in the right-half

plane, a. s. every point of the i 1mag1nary axis is a Bozel pomt of order p+4-1 and with no finite
exceptional value.

In [9, 10] we studied the distribution of values of random Dirichlet series a. 8.
of infinite order (R) in the right-half plane or in the whole plane and introduced the
N-sequence {Z,(w)} (nEN,) of random variables,- a sequence of independent,
symmetrio and equally distributed real or complex variables of finite variance in the
probability space (2, 7, £)(w€ Q) for which 37006 N, such thab

Jm <1 | Z, ]—1/n, (aZ,) <o,

where w is the common measure defined by Z,(w). The eclassical Rademacher,
Steinhaus and Gauss seqtiences are special cases of the N—sequence.

In this paper corresponding to the N-sequence we study the distribution of
values of random Diriohlet series almost surely (a.s.) of finite order (R) in the right-
half plane and improve some results in [6] and [T7]. Hers we have Borel points of
an acourabe order (R) and with no finite exceptional value as in the case of Borel
directions in t3], the method adopted baing different. We indicate corresponding
regults for some random Dirichlet series a. s. of finife order (R) in the whole plane.
The results in this paper can be extended to the cass of (p, g)~order(R) as in [9],
{10].

§1. Some Lemmas on Meromorphic Functions

We ghall give some lemmas on meromorphie functions and we generalize firgh
the modified second fu_ndamenta,l theorem in the unit diso in [5], p. 291 by replacing
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constants e; by functions of slower growth. Let f(z) be meromogphic in |2]| <1 and
put

8 (r, f) =glv-lﬂr(—1—_i_l%l—g>2¢dmd0 (z=re®, 0<<r<1).

Consider the Ahlfors-Shimizu characteristic function
To(r, f) = j S“ 8¢ 1) g
for whioch the relation
|Tr, ) ~To(r, £) —log* | (0) || <2Tog2 @
holds, where T'(r, f) is the Nevanlinna characteristic fanction™'. We have

Lemma 1. Suppose that f(2), ¢1(z), pa(z) and ¢p3(z) are four dfz,ﬁ'erent Sunctions
meo"omorrphw in |z |<1 Then Ym>0, . ' |

e D= DAL, s-a)ro (L, )

+ A(m+2)log 1: +B,

évheq*e N (r, f=g;) is the usual notation in the theory of meromorphic functions, A
4s an’ absolute constaint and B is @ constant depending only wpon ¢1(2), pa(z), gvs (2) and
J(0).

Proof Put

9(e) =L =01(2) | @2(2) —0s(2)
FO =0 Pa@ =0 D"
By Theorem VI. 21 in [5] (p. 260), Ym>0,

8(r, 9&) <Z(B, @) =b) +F, B
where n(R, g(z) b;) is a usual notation, by;=0, by=1, by=00 and 0<r<RB<1. Ym>

0, let R=%1—-. From (2) we obtain
r mS(%, g) dt< 3 J' n(f, g= ,) t+j Am(mi+1)  dt
iam~+1/t ¢t /&4 t 2 (1—-t)(m=+1/t) ¢ 3
and consequently _
m 1 S _ 1
(225 Tl =T 5, 9))<Z W (R, g=b) +24m log(2-).
and »
2\< mr+1 > 1 (_1_ )
To(r, <(1+ 2NN (ZEEL, g—))+24(m+2)log 2+ To (5, 9).
Since

T, ST (7, 9) +4 2T (r, ¢1)+B,
" where B ig a constant deponding only on @, @s, @s, and £(0), we have

S mn)<E (L sa) s B )
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and obtain the conclusion of Lemma 1 by (1).

If we take p;=a; and m=1/3, we obtain immediately Theorem VII. 15 in [5]
(p.291). :

Definition. If the non-decreasing. positive functédn h(r) (0<r<1) satisfies

hm <10g h(fr) /log ) =p,

then we say that h(r) is of ordefr o.

" Let f(z) be meromorphic in the sector A%, [b) ={z||2| <1} U {¢] |argz— | <b}.
If a€ C U {oo} (with at most wo exceptional values) and V3€ (0, b), n(r, A(t. 3),
f=a) is of order p, then ¢” is called a Borel point of order p of f(z), where n(r, A(
3), f=a) is the number of roots of f(2) =a in A(% 8) N{z] [¢s]<r}.

Put

sttt | (kYo
@,on{lzl<ry . .
H(p, t, b) ‘
= {{p} UC U {oo} | @ meromorphic in |z| <1 and S(r, A(%, b), p) of order<p}.
If Vo€ H(p, t, b) (with at mosh two exceptional functions) and V3€ (0, b), n(rw,
A%, 3), f=¢) is of order p, then ¢” ig called a strong Borel point of order p of f(2).
" We congider a conformal mapping in the following lemma.
Lemma 2, Ve>0, 35€ (0, 1) such that
w({#)b< |z <r} N {z| |arg?] <&/2} C{o]| o) <1-(1— rr)av/208}
Sl |o] <(819+1)/320} N e |arge| <s},
where

gy
'w(z> = 2;m;/}’i . 2zau/2z~: — 1 ' (3)

- and b is a constant depending on 8.

Proof Since lim ((1—p™°)/(1—p)) =m/¢s, IE ((1/2)*/%, 1) such that 1/2<

7~>1-0 _

P72 <1 and (1—p)w/2e<1—p™°< (1—p)*/* when b<p<L1. |

It is eagy to verify that w(z) maps conformally the sector A (0, &) inlo the unit
diso |w]| <1 and w((v/ 2 —1)%/) =0.

‘Lot zo=pe®€ A(0, s). By (8) we have ,

_ ' AT B 0*+D*— A*—B?
1= lwto)[= O+D D+ (& +5) (C+ 1P
- 810"”25(1 —p™/*) cos(pu/2e)
02+.D2+«/(.A27{7'Bg) (02+D2)

where : '
A=p™* cos(pm/e) +2p*/* cos(gmw/2e) —1,
B=p*gin(gam/e) +2p™/*gin(gpwn /- 6),



28 CHIN. ANN. OF MATH. Vol. 11 Ser. B

O =p%* cos(pm/8) —2p™/* cos(pm/28) — 1,
D=p/*gin(pm/s) — 2p™/* gin (pm/28).

Since :
1< /e 4-2p™/2 + 1 4 dp™/% (1 — p/%) cos (pew /28) + 2p™/* (1 —cos(pa/s))
=2+ DO+ DP-- &/ (A2 + B (0P + D3
<2(C*-+D*) <20,
we have

max{l— |w(pe'®) [pe® € A(0, &), p=1r or p=xe}<8(1—r)(2w/s) =16(1—r)w/8
and
min{l-w(pe®) | [r>p>b, |p|>e/2}>8:(1/2) (w/25)(1—p) (v 2/2)/20
>(1/20) (w/8) (1 —p) > (m/208) (1 —1).
Hence
w({z]b<|z| <r} N {el |arge| <8/2}) C{w|1—|w|>(w/208) (1—r)}
={w| |w| <1—(w/208) (1—1)} |
= {w] |w] <1—(16a/s) (1 (819--7)/320)}
cw{{z||2| <(819+r)/320} N{z| |args| <s}.
We egtablish now some relation between Borel points and strong Borel points.
Lemma 8. Supposs that ¢ is a Borel point of at least order p(>1) of f(2)
meromorphic in the sector A(%y, b). Then ¢™ s also ¢ siorng Borel point of af least

order p of f{z).
Proof  Take a€ C|J {oc} guch that for sufficiently small >0, we have

lim log n(r, A(4.:8/2), f=a)}/log(1/(L—r))=p>1, 4)

r=>1~0
Without loss of generality we can assume thab f=0 and that £({~/2 —1)%/%) = oo,
a. By (4), 3(0<)r,}1 such that ve>0,
n(rm A0, 8/2), f=a)=(1/(1—ra))"
Congider the mapping (8) and let R,=1— (%/208) (1—r,). Then

1/ (A —ra)=(208/m) (1/(1—R,)).
Hence Toy Lemma 2, we have
n(By f(z(w)) =a) +0>n(r A0, 8/2), f=a)=(1/(1—r.))*=0(1/A-R,))**

where z=z(w) ig the inverse mapping of (8) and O is a suitable constant. Hence for
the function f(z(w)) meromorphic in the unit circle, n(R, f(2(w))=a) is of order
at leagt p. By a lemma in [4], N (R, f(z(w))=a) is of order at leagt p—1(>0). By
Nevanlinna firgt fundemental theorem, T'(R, f(z(w))) is of order at leagt p—1.

Vo(z) € H{p, 0, b), i.e, S(R, A(0, b), ¢) is of order less than p and consequently
8 (R, A0, 8/2), p)(0<d<Db) i of order leg than p. By Lemma 2, S(R', ¢(2(w))) is
of order legs than p and by a lemma in [4], To(R', p(2(w))) is of order ab least p—1.
By Lemma 1, N (R, f(z(w))=¢(&(w))) iv of order at least p—1(with Hwo possible
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excoptional values in H (p, 0, 3)). By a lemma in [4], n(R, f(z(w)) =p(z(w))) i3 of
order at least p. By Lemma 2, n(r, 4(0, 8), () =@(2)) is of order ab leagt p. The
proof is completed.

§2. Random Dirichlet Series of Finite Order (R) in
the Right-Half Plane

Let (0w %,) (n€N,.) be a sequence of complex Borel measurable gpaces and lek
{Z.(w)} be a sequence of independent random variables defined in the probability
space (2,4, %) and taking their valves respectively in {(C,, #.)}. Evidently)
Z(w) ={Z1(w), Za(w), -} is a mapping of Q into ]j C.. Let

pa(Ba) =Z(Z;*(Bn)) (VnEN,, VB,EH,),
Then {(C,, %, w.} forms a sequence of probability spaces. Suppose that they are
complete, i. e., if AC H.(VnEN,), u,(4)=0and BC A, then BEH,, Lot f[ %, be

fi=1
the leagt o—algebra of all sets of the form

B={Z1’ Zz, '") I (er Zz; "‘)G I]:_j’; Cn; ZJEBngJ: VjE{L 27 "ty “o}a %DENFE-'}

| &)
Since for any set B of form (5)

Z(B)={w|Z(w) EBy, §€ {1, 2, -, mo}, o€ N+}=Q{Z_1(BJ)}€M

VBE ﬁ #. we have Z71(B) € .«7. Hence Z(w) iy a random variable defined in{Q,

n=1

&4, &) and taking values in the product space ( ﬁ C., ﬁ éé’,,). Lotk
. n=1 =]
w(B) =#(Z(B)), VBE I] Hn.
For any set B in 11 %, of form (B),

u(B) = ({w|(w) €BY) =P({w| Z,(w) €B, VIE{L, 2, -, no}, mE N}
- #({w| Z:w) € B}~ [1 n(B).

QOonsequently ( f[ C., f[l %, ,u,) i the product probability space of the sequence of
#=1 n=

probability spaces {(C,., %, w.)}(seo[2]).
Now we study Borel poinis of some random function meromorphie in a gector,
Lemma & Suppose that {Z, (w)} (wEN,) is a sequence of the independent
comples random variables defined in probability space (2, o, P) and satisfying
K =sup {P(Z,(w)=0)[0€C, nC N, }<1. (6)
Suppose that the sequence of functions {p.(&)}<H (p, 6, b)—{oo} (p>1, € R, 0<h<
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o) and thbt the random series
. Ju(Z) = Z Zn, (w)%(z)

defines @ random meromorphic function in the sector {z||argZ —6|<b} N{z||z| <1}.
If 6 is a. 5. a Eorel point of order p(>1)of fu(2), then it ésa. s. @ Borel point of
order p and with no finite e'a%ceptq’,ornal value. -

Proof We can assume that ¢ ig surely a Borel point of order p(>1) of f,(2).
Otherwise we exclude an event of probability zero.

Ve€ (0, 1), take N>loge/log K. V{e.t5as if {w]Za(w) =op
" p=N+1, N+2 }=¢ put D({e}5) =

If E]w(;EQ such that Z,(wp)=¢, n=N~+1, N+1, .-, put A

: N s
(-X.ii Xz, % Xn) IFOI' E Xn‘pn(z) + n=§l—1 0ﬂ¢n<z)’ : ) }

@<{bn};+1> ={ . !
i ig a Borel point of order p with a finifie exceptional value.
”"'We now prove that there are at mogh two different elements in & ({c,.}N+1) Otherwise
“there would exist three different '
(X, Xigy oy Xiw) € 9({0n}§.+4) (4=1, 2, 3),

three corresponding constants @;& 0 and >0 such that the order of
wlr, 6, m B Xupa()+ 3 cpa®) =ay )
n=1 n=N+1
N oo
=1, 6, 1, 2 Xama () + 3 Z(wo)ga(x) =)

n=N+1

would be less than p. Pub.

gD,-(Z) = é (Z,,(’Il)o) —X!”)(}),,("n’)“‘w; (j=1) '2; 3)'

Then the order of n(r, 8, 9, fu,(2) =@;(2)) would be less than p. Hence ¢ would not
be a girong Borel point of fy, (2. which ig in contradiction to Lemma 3.

In order to 'eomplete' the proof we need only to prove that #(H) =0, where
H={w|For f,(z), ¢ is a Borel point of order p with a finite exceptional valne}.
Put | :

Y= {(Xy, X5 ) [ XEC(FEN,), (Xy, Xs, -, Xu) EDUXIT0},
Q= {wlzi('w}‘ Zy(w), )€Y},
Since Vw € H, (Z:(w), Za(w), + Zn(w)) € D({Z, ('w)}m), we have (Z1(w), Zs(’W),
)€Y and consequently H Q. Henceé
P(H) <PQ) = u(¥) =& (L)

=1im (- Lypas (425) wa(@Z2) 1o (@Z) - (m>N)

| : | .
. =}£J .U'N+:l(dZN+1>"‘Mm(d’zm)J“”j-lYﬂi(dZi)“‘lllN<dZN)

m—»oco

= lim J"’f . J13 % <dZN+1) so0 Ly (dZm) J" . 'I Loz Néx);,b_y(dzi) ey (dZ,,)
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<tim [ para@as) @) [+ 1 5 oo 02(@Z0) 1 (@Z0)
. . J n=1 .

m—rco

N
<tim [ [ 30 [T o (B = X ) 54188 012 -t (@) <2E V<28,
J a=

mM=>c0

where w, wi, wa -+ are meagures -defined by corregponding random variables and

(X4, -, X4) are elements in D({z,}5.1), the number of which is at most 2. Since

>0 ig arbitvary, the proof ig completed. : _
We improve here a theorem in [7] and [11] on the order (R) of a Dlmohlet serles

whoge abscigsa of convergence is zero. . : ‘ I
Theorem 1. Suppose that for the Dirichlet series

f(s)= i bye~ ™ (s-=a+fi;t')-
n=0
the abscissa of convergence is zero, where =
0=ho <Ay <hg oo LA 00

and o
- loglogn . p - B AT I T
i-l'lf log A, < 1+p (0<p<00), Cmma N L (7) :
then
log* log* M (o, f) log+ log* |b,) P
Iim

| By et @

where ‘

Mo, = _smp_|feti)] ©@>0).

. The left-gide of (8) ig the definition of the order(R) p'of f(s) in Res;s0. .
Proof In this theorem the conditiong lim (n/A,) <oo in [7] and- lun (logn/log 7\%) .

ni-»00

oo in [11] are replaced by a weaker condition (n. Hence we need only 0 modify :
the determmamon of an upper bound of 2 g S0 Con

n-»0
By (7), 3p” € (0, p) such that

loglogrn, p”. '
},I_E]o log A, <1+p"'

Henee, 3N, Va>N, A,> (logn) @+e/p~ 1 and congequently

2 6—1n60<N+1+ ‘0o ’6—50(103”)(”’"'"”" N+1+ i '-wlogin')”"",
8=0 n=N+0 ) ) +
i —eo oo dt e
=N+14+ 2 4+ 3 « .+ -
.. n=N+1 n=T+1 t
= 1 1-—50
Otq=T

where 7'=the integral part of exp [(2/ 80‘)p”] and - O is a constant The rest part of
~ the previous proofs remaing unohanged :

Remark. In a certain sense condltmn (7) ig best posmble If 7»,. (log n) XA
then RO R A LT S SR
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. loglogm o
S Yy S preps

and for the Dirichlet series f(s) = i g~ Mne
fn=
M(a, f)= 3o = 3 (1/n70"")

é (1 /nus) >/ 3(1/30)0/2

where 7' ig the integral part of 1+6Xp ((—3—1—>P> Hence -

log*‘ logt* M (o, f)

3113) log (1/0) =P

while.
. log*tlog*l. .
_ 3-13?3 logAn 0,
contrary to (8). '
Given a Dirichlet series satisfying the COIldl'blOIlS in Theorem 1, we consuder the

Dirichlet—N geries
| Jw(®)= Zb Z.(w)e 9)
Where {Z,(w)} isan N —sequenee deﬁned in (Q, o7 #). We have, VwEQ, 3N (w)>0
a. s. such that Yn> N (w) | . N '
nh< | Z,(w) | <n' (see 8, 91).
By thig regult and Theorem 1 we find eagily that f,(s) i8 of order(R) p in Res>0 a.
8. We shall prove that on cerfain sequences of points whoge abgeissas converge to zero

Juw(s) isa. 8. of growbh rapid enough. _
Theorem 2. If the Dirichlet~N series (9) sat@sﬁes the conditions in Theorem 1

«and if the sequence of complew numbers {sn} satisfies

T B <Ro sn< 51 o T (0)
where A, B and Q(>1) are positive constandts, then
i Log*log* |fusm) | o 5. =) 1
,],f_l,?, —ogon, P a.8. (Res, cr,,.) . (11)

Proof By Theorem 1 we need to prove P(H) =0, where

S +
H_{ Iog log™* lfw (m) I P}
Take (p>)6,40 and put

m-m —log om
H o= { w

E 10g+4103 |fw<8m)| <p é }
- —logom '

"We see that H= UH
Suppose that #(H)>0. Then ElfnoE N + such tha’a VYw& H,,
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T log*log™ | fu(s) |<p—sm and Q(Hm) >0.
Mmoo '“log Om o

Hence, Yo & H,, 3M,E N, such that \7’4n>Mw _
2 bZn (@)oo | <expI((1/om) **). - (12)
Evidently H, = J{o|lw€ H,, M,>m} and conséquently Jme € N ;. such that p(H’)

>0, where
={o|w€ H,, M,<mo}.
Then VYm>m,, Vo & H’, (12) holds. :
By an extension of a lemma of Paley-Zygmund to N -gequences EIN =N(H'), ¢=
e(H) >0 such that - )
oo 2 . :
31 [Ba] 27 (1/0) j | S0z @)en | p(da) (o [9, 101).
= . ’ ‘! ln=N L .
Since Vm>m,, Yo & H’, '
3167, (@)e
n=N : :

oy . S
< 21 baZs (@)™ | +-exp ((1/om) ™) -

<k 512,69 e,
where K =max{l, [bi], |ba], -, |By-z]|}, We have Ym>me
3 brerm< (/o) [ KA (1473 [2,0)] ) exp(3(1/0m)) P(de)

<Oexp(2(1/owm) pmene),
Where 0O is a congtant, Hence Yn>N, Vm>me
[, 6™ < /G oxp (1) =)
and :
log*|b, |<log N € F MGt (1/0- Yeon - | (13)
Take n sufﬁclen’oly large, 3 m=m(n) such that
Qr< 7\'1/(p+1—eo)<Qm+1 (8o=8.).

By (10) and the above inequalities

)\,}L/(P'Fi"so)/B} % > _QZ_ 1/(p+1 so)/QA

and by (13) : ‘
log* | b,| <log n/ ¢ -+ QAN =50/ (®t2=e0) . B=pteny (omen)/ (e}

Hence
i——- 10g+10g ‘b ' < P—&o < P \
n-sc0 log A, . ptl—s p+1

- contrary o Theorem 1. The proof of Theorem 2 is completed.

Now we can prove the main theorem in thig paper,
- Theorem 3. If the random Dirichlet—N series

Fo®= DbZ(@e™ (14)
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satisfies (7) and the right side of (8), where {Z.(w)} is an N-sequence of random
variables, then for f,(s), a. s. every point it (¢€ R) s a Borel point of order(R) p+1
and with no finite exceptional value, . e., Vo€ Q—H, Vi€ R, V3>0 and Ya € C,
. ,,lf,fflo Iog»n(i);),g%?:y{w @) —p+1,
where P(B) =0 and (0, t, 8, fu=a) denotes the number of roots of -
fo(s) =a in {s]Re s>>0>0, |Ims—4] <d}.
Proof Fix %€ R and take ¢€ (0, w/2). It i3 eagy to verify thatb

Z(S} to, 8)

6av(it, 8)/6 1+26w(ito—s)/2e
eov(zto—s)/s+1+2ea¢:(m—s)/2s
maps conformally the half-strip 4(%, &) ={s|Res>0, |[Im s—1%]<se} into the unit
dise {z| |#| <1}. The inverse transformation

—1+2+~2F 22
1+2
maps conformally the unit circle into 4(%, &), where for the logarithmic functiong

-~ 8(2, o, &) =7}to———2f-log

concerned we fake the branch which takes real values on (0, 1).

‘We shall prove in the following that the random analytic function in the unib
dige ' o |

9 () =fu(s(z, to; &)

satisfies a, 9. . _

Ve for which (15) holds, by Nevanhnna Second Fundamental Theorem, Yac—C
possibly with one exception, the order of N(r, g,,,~w) is p and by a lemma in [5]
‘the order of n(r, g,=a) is p+1. By Lemma 4 and a conformal mapping we gee thab
—'?/to is a. s. a Borel point of order(R) p-+1 and without finite exceptional value of
Ju(s). Arrange all the rational numbers in a sequence {f,}. Then ét,(n€ N,) isa.s.
-a Borel point ag 4. Hence for f.,(s), a. 8. every 44, and consequently every ¢4 is a
Borel point of order(R) p+1 and with no finite exceptional value,

In order fo complete the proof we need only fo prove that (15) holds a. 9.
Otherwise ag before we see that I8€ (0, p/2), JEE L(P(E)>0), IbE (2-74 1) such
that Vo € H, Ver b, 1), '

[l |G dp @/, (16)

‘We ghall prove that thig is Jmpossuble by Theorem 2. Take {rr,.} such that b<<r,}1

and that . :

| (A=) = (w/32) <1/zn> | @)
Put

n

4,9, ) ={{@, @)1 gulrem | >0 (12) " ).
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——

If (16) were verified, for arbitrary ny€ N, and wo,& F we would have

'm'-Am <¢y CDO) < (1 “"I',.) 67 (18)
where m is the Lebesgue measure on [0, 2x]. Put
Blp, @)=1[0, w/8] x B~ | ] 4.(p, o). (19)
There would exist @o& (0, w/8) such that |
P(B(po, 9))=1/2)P(H), - (20)

sinoe otherwise by (20), Fabini Theorem, (19), (18) and (17), we would have
DN .' (/8 w/8 [ '
(1/2) (w/8)PE) =" W/DPE) dp> " | LacP(de)dp

r

[ atdp ) > (/8 ~ Zmds(p,0) )P (da)

o/

> (w/8w/32) P(der) = (3/32) wP(E).

L%

Hence, by (20), Z(B(po, »))>0 and Vr,, Vo & B(ps, »)CH,

|fu(s€Ere™, to, 26)) | = | gu (r6™) | <exp((1/(1—1ra))"% (21)
Lel s(fr,,e“"o lo, 2¢) =a,+ 4%, where o,= — (4s/m)logu,,
— 1+7,6%+ N/ 2+ 2r2e% e
: 146 o
The caleulations concerning u,, 7, and o, are ag follows:
1= || =1—~/(42+B%) /(0?+D?) '
_ 4r, cos po—2~/ (L= 7r2) 2+ 4rZ cos® po — dor cos ¢o+2a/»—2'r,,fy gin g,
O+ D?+ /(A% + B?) (02+D2)
- 1 —r&+2r? cos? o — ar, c08 Po+a ’o",. COS o — T2 COS Po + 2, COS @o —
(1/2) (CP+ D)+~ (A2+ BD (P + D% o
_(@a- rr,,) (L+7r,) (H +r,H cos go—rp(L—r2) 008 po+ 1 —r2—z(1—1r2))
(1/2)aH (0?+D*+/ (42+ B?) (0?+D?)) ?

Up =

where

N2 <a=~{1—-r)2F4r2c08® go<2,
N2 <w=~1+r2c082p0+a <2,
O0<<y=+~/—1—rkcos2pp+a <1,

A2 —1<A=—1+r,co8 p+5<2,
0<B=r,sinpy+y<2,
1<O=1+7r,c08 po<2,
0<D=r,8inpy<1,

1+~2 <H =2r,008pp+a<4.

Hence we obtain
B (1/20) (1—rp) <1—|u,| <32(1~r,),
(/80) (=)<~ (po/ o1~ (1—1,)/20) < — (da/mlog ||
— (4¢/m)log (1~ 32(1 1)) < (8208 /m) (1—1,),
and consequently by (17 ),
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(8/bw) (w/32)°27* < 0, < (3208 /0v) (mw/32)/°27/2,
By Theorem 2, we would obtain a contradiction to (16). The proof of the theorem ig
completed.
In the case of infinite orders(R), it is not difficult to obtain lemmas analogous
to Lemmas 3 and 4. Hence the Borel points concerned can be strengthened as with
no finite exceptional value.

§ 3. Random Dirichlet Series of Finite Order (R)
in the Whole Plane

Suppose that {Z, (o)} is the Rademacher or Steinhaug sequence and suppoge
that the random Dirichlet serieg

fol®) = D buZu(w)e™
verifies
Tim (log |8, | /A log M) = —1/p (0<p<o0)

and .
11m (log n/A) <co.,

In [6] it wag proved that the series j§ a. 8. an entire function of order(R) p and that
for f,(s), a. s. a Borel line of order(R) p in every horizonthal gtrip of width w/p.
Aoccording to ideas in thig paper we can take {Z,(w)} as an N-sequence and the
Borel line can be strengthened ag with no finite exceptional value. But we cannot
now diminish the width of the horizontal sbrip.

On the other hand, we can prove the regults of J. E, Littlewood and A. O,
Offord® on Borel directions of random Taylor geries for some random variable
sequence and prove them with a shorfer proof.
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