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- ON THE OPTIMAL PARKING PROBLEM™
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Abstract |

In this paper, the concept of dual predictable projection is used, for the optimal parking
problem, A strictly rigorous, simpler treatment is introduced and the optimal stopping rule is also
given explicitly.

§1. Introduction and the Main Result

The optimal parking problem, presented by Sakaguchi and Tamaki™, is desoribed
ag follows. A motorist ig driving hig car along a street foward his desfination, and ig
looking for a parking place, If he finds an unoccupied parking place, he must decide
either fo pai'k there and to walk the digtance to hig destination or to continue
driving, expeoting to find another parking place nearer to. hig: distination., It ig
agsumed that " |

1) The location of the destination T' is a random variable, 0<7'<co, with a
known digtribution function F (z) and finite expectation;

2) The unoccupied parking places appear randomly in accordance with a Poisson

process with parameter A>0, i. e. if denote the unoceupied |— — T >
_ 0 T1 Ty oo Ty T
parking places by O.<T1<T2<6-'<Tn<---, then Ty, T'y—T'y, o+, Ty—T, 4, <+ are i, i.
d. and the common digtribution is exponential with rate A; '
3) T and {Ty, Ty, - Ty -} are independent;
4) The speed of walking ig 1 and the gpeed of driving is —1— 0<r<1.

If the car stops at 8, then the whole fime duration spent to reach the destination
8+ |T-8].
What we observe ig the two stochastlc prooesses
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Yi=1r., >0, @)
i. e. at time ¢ we know if T’ or 7'y, T's, --- do appear. Therefore, § should be a stopping
time with respect to (X Y 1)ss0, and §=1T'y, where N is random. Obviously, § is a
finite stopping time, so-called a stopping rule in [1]. |
Now the problem is to chooge S 1o minimize the expected time
| | E{r8+|8-T]}.
Let O=inf{s: F(2) =1}, and

(@) =3— F( >J ¢™OF (dy), «€ (0, 0).

It is eagy to see ﬁhat the function ¢ is well deﬁned on the mterval (O 0), and
S O<gv(ft;) <1, e (0, 0). ' A )
Now our main regult can be formulated as follows. N o
Theorem. ;S’uppose thwt gv(w) gs mer ewswng on (0, O) , and.

a= mf{a; (o) > 127”}

Tken the optfmrml stoppmg rule for the parking pfroblem és

8*=inf{T,: n>1, T,>T or T,,>a} - @)
“'We give some sunple examples o 111ustrate the oondlblon ‘aggumed in the -

Theorem.

‘Ezample 1. When F(a) is the degeneérated distribution function at point O>O "

we have

o ‘ q)(m)":e_;,(o—-a), we (O, O};
and @ ig increasing on (0, 0). . e

Ewample 2. When F(z) is the umform dJstrlbutlon funetlon on the interval
(O 0), we. ha,ve i '

~a(0~a)
| p(@)= ?»(O )[1 a1, z€ (0, 0)
It i3 eagy to verify that ¢ is inereasng on (0, 0).

Ezample 3. When F ()is the exponential digtribution fuhotion with rate W, We
have 0=o0, “and, ' -

o)==
- By the way, if O0<co, it ig not. deFloult to show
llmcv(w} 1. - (B
But it =00, (B) ig not true in general as 1nd10ated in Example 3. )

. Since the gtopping rules we considered have the form S=Ty, where N takes
integer values, our optimal parking problem esgentially is one of disorete fime case.

€T ==V,

And under our aggumption ‘about the function- @, 15" Will be reduced to a special -

monotone cage, the optlmal stopping rule Wﬂl be found out directly. We need. not

L
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appeal to the general results of the optimé,l stopping theory, presented in [1]. Our
idea of dealing with the problem is somehow diﬁ'erent from that in [4]. Even the
formg of the results are slightly different. In fact, [4] did nob give explicitly the
conditions which guaraniee the existonos of the optimal stopping rule. In our
opinion, our treatment ig shrictly rlgorous, s:tmpler and eagier to understand. In
view of the general theory of stochagsbio procegses, what we use ig jusi the conoep’o of .
dual predictable pro;eotlon Essentlally, the idea ig the same ag in [2].

§2. A Special Monotone Case

Let (Z,)n1 be a, digorete time filtration, i. e. an increasing sequence of o~fields:
FICF o CF oo, and (X,) .1 bo an adapbed sequence of integrable random
variableg, i. e. for each n, X, ig meagurable with regpect o Z,. Set

Y ,=EB[X,|F -] — Xy, n=>2. '

Proposmmn Suppose L ‘ ‘ _
Y o<Y < <Y, <000 _— ' (6)
) S*=inf{n>,1: Y,‘+1>0} ¢
gs finite. Then : £ o R

EX o= mf{EX g ;S’ isa@ stoppmg rule},
%, 6. S* is the optvmml stopping rule for (X, Falasis
Proof Let S be a stopping rule. Then

BEXg=E {Xi-!— 2 (X;,, Xk-:l)} {X1+ 2 18—» 2 (Xp— Xkd.)}
=E{X1+ §2<Xk—x,ﬂ_1)1g>k-}=E{xi+ ZE[XE = Xurt| Fial Lo

;E{Xi‘*‘i’iykisﬂ, } v . o (8)
where we commutate the summations to get the third equality and use the fact that
{8=k} € F_1, =2, for the fourth one.

Now frem (6) and (8) it is eagy to see that in order to minimize HXg for £>2
we should make . S .
1gon=1, if ¥, <0,
. {lg>k—"—'0 if Yk>0
Hence, $* definied by (7) ig the 0p1;1ma,1 stoppmg rule
Aoccording to [1], the monotone case means thab
" 4,= {E[Xn-l'iltgz-ﬂ] >Xi}, n>1
igan mcreasmg sequence of events. Obv10u91y, if the condition (6) iy satisfied, i. e.
(Y p)nss i increasing, so i8 A4,={Y,.:>>0}. Hence, the case we congider is just a
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special monotone one, in which the stopping rule defined by (7) ig always optimal.
On the other hand, in view of the general theory of stochagtic processes estab-

lished by F'rench school, <X 1+ kiz Yy ) is jugt the dual predictable projestion or

n>1
compensator of (X,),»1. Compared with [2], it can be clearly realized that the idea
of using the concep’ of dual predictable projestion to deal with the optimal stopping .
problem iy the same ag in [2]. The Proposition here ig also a cerfain predictable »
criterion, which is praoﬁloally ugeful ag we ghall gee in the followmg

§ 3. The Proof of the Main Result

Set
Fi=0{X, Y, s<t}, t=0,
i. e. (,/ )i=0 18 The filtration of observation. Since (X, ¥ ¢)mo is a multivariate poink
process, from the resulis in [3] we know that (F )i is right continuous and the
following Lemma, ig true.
Lemma 1. For each (F:)-stopping time S, we have
Fs=0{Xgrs YVry =0}

We should make decisions at T, n=1, 2, -... What we concern with is the
filiration (Zg,).»1 indeed, From Lemma 1 and definitions (1) and (2), the following
Lemma can be derived immediately.

Lemma 2. For ewch{n?l, we hove

Fo NI <T} =0 {Ty, -, T} N {T,<T},
F o, T =T = {Ty, «, T\, T} N{T,>T}.

Lemma 8. For every integrable random variable £, we have

B¢|Fr]= ‘%ﬁ?"j'ﬁ:ﬂl’ ’f"] lp,<x+BE|Ts, v, Ty Ty, (9)

Lemma 3 i a direct. congequence of Lemma 2. Notice that the event {T,<T} is
not meagurable with respect to {T, .-+, T.}, which inocurs some complexity in
the formula (9). The details are referred to the Appendix. ‘

Now we are ready for the proof of the Theorem. At first, we obgerve that the
-objective function hag the form :

B{rS+|S-T[}=E { ﬂ:¢di+J’:Y;dt+ [fa-rya)

=E{ ﬂz (é"_—1+2Ys)dt+I:(1—Y,)dt}

8 :
éE{ . (T“1+2Yt)dt}+ET. (10)
- Secondly, we caleulate . .
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Tysa
Z,,=EHT (r—1+2pe)dt| F, ], n>1
by formula (9). Noting that T, T,.1—T, and {Ty, .-, T} are independent, we have
Tnst .
ZT":LT,,>T=E [IT (’r _1+21T<t> dtiT”>T l Ti, *rey Tm T]

—BL(r+1) Tua=T) [Ty, o, T Tlppor = " 000n, (11)

E[{(’r - 1) (Tﬂ-{-i-_Tn) +2<1,n+1;"T) +}1T”<T|Tiv e

Zpdp,<r= iy el Ts . 1] Tl 1p,<r. (12)
On the other hand
BL(Tos13=T ) r,<2|Tsy ++y T) = By, cxB [Tosa—To| Tsy ++r, Ty T1| Ty ooy T
o — - Blnaly T (13)
Hlipy<r|Ty, -y To] = Bllaca| Ty, ) T]|gur,=1—F (T) (14)

E£<Tn+1 - T) +1Tn.<¢'-l Ti) °% Tn] =K [Tn+i - Tn +2— T) +1z<1’ l Ti) Y Th] l 2==Ty
- J:F (dy) JT: (w+z—y) e dw| sor,

=..£ = - (y—T%) : .
AL,,@ MTIDF (dy). (16)
Substituting (13), (16) into (12)yields | -

Zlgy = [r—1+29(T) 1z, <a. (16)
Oombining (16) with (11) gives ‘
Zy="FL tng e lr =14 20 (T) g, . ()

Obéerwng that from (3) and our asgumption on ¢ we have
. {TQTn} o {T,<Tn-+i})
r—1+2p(T,) <r-+1, on {T,<T<T,.1},
T.<T,a1<T<0, pT,) <pTns1), on {T,41<T},
we conclude that ' : _
2y <Zp, n=>1. ‘
Since § =Ty, by using the Proposition in section 2, we obtain fhe oplimal stopping
rule . ' , _
S*=inf{T,: n=>1, Z,>0}. (18)
From (17) and (18) we know immediately that S* hag the form (4).

Appendix

Let (2, #, P) be a probability space, G @ sub-o-filld of F, and ¢ an %'ﬁtegmble
random variable. Then for every AE F and G € Y, we have
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[ BleLg
=) L T (19)

Proof Set H={B[1,|%]+0}, then HE ¥ and

P(4H%)=| E[my]dp.—.o'

where H°={HE[1,]| 9] =0} ig the complement of H. Hence, the right gide of (9)
makes genge. Define

Pi(F)=P(AF), FEZ. .
Then for every G- € 9 we have

Pu() = | Bt 91aP

BlE1419] p_ E[§14]| %] B[E14| 9]
¢ E[lAAl g] ap “LGH E[ljfﬁ] AP=) E[1:; 7] 4Pa

-, BEulg1ar=| ¢.ap-| ¢ap.
(19) follows. '
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