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Abstract

This paper gives some applications of number—-theoretic method (or quasi Monte Carlo
mefhod) for numerical evéluation of probabilities and moments of a continuous multivariate
“distribution over a special domain such as cube, ball, sphere, simplex, etc., where the
uniformly distributed sets of points®in such domains, which are useful in experimental
design, simulation, geometry probability, ete., are suggested. Some appljcations of number-
theoretic method in optimization are discussed also.

§1. Introduction

The problem of numerical evaluation of probabilities and moments ig really a
problem of numerical integration. The number-theoretio method (or quasi Monte
Carlo methdd) for numerical evaluation of multiple integrals and for optimization ig
based on the theory of uniform digtribution (u. d.). Let K = [y, b1] X ++- X [a, bs] be
a rectangle of B®, b=(by, -+, by)’, ®=(w4, ***, @), and F (&) bea contintous monotone
distribution function on K, which satisfies #(b) =1 and ¥ (a) =0 whenever at least
one of the w; is a;. Note that a@; s and b;s may be defined o be — co and co regpectively.
We use <b to denote that #;<b(¢=1, -, 5). Fora sot of points P= (@y, k=1, -,
n) in K and a rectangle G'= [ay, 'a;j]zx e ¥ (@;, #5], where x<<b, let N (P, G) be the
number of P satigfying &, € @, and leb

sup LV_(_%.@. — P (&) ! —Dy(n, P).

Dg(n, P) is called the F-disorepancy of P with respect to F(x). If P,= (2™, oo,
&™) iga seduen-ce in K guch that k,—>co ag n—oo, and if Dp(k,, P)=0(1) ag n—>co,
then P, is called an F-uniformly digtributed sequence." If K=1I% where I=[0, 1]
and F («) is uniform distribution on I®, i. e., F (&) =y ++-w;, then we omit the ¥ in
the above notations (of, Weyl [12], Hlawka and Muck [5], and Niderreiter [9]).
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If P= {w;ﬁ, k=1, «+, n} i a set I’ with decrepancy D(n, P) or D(n) for gimplify
and f(«) ig a functien of bounded variation in the sense of Hardy and Krauge with
total variation ¥ (f), then it is known that

Lsf (@) dae — % éf (w;a' (<V(f)D(n) (1.1)

(See Koksma [7], Hlawka [4], Hua and Wang [6]).
Let D be a domain (for example, ball, gphere, simplex, eto.) in R°, In thig

paper we ghall pay more attention to numerical evaluation of

1= f@d, - (1.2)

where dv is the volume element of D and D hag a parameter repreéentaﬁon. Firgt by
uging a transformation a quadrature formula over D can be transferred o a quadra-
ture formula over I, where ¢ ig the dimengion of D. Another approach to bhig:
problem ig to uge a u. d. sequence in D, We ghall gtart from a u, d. sequence in I°,
and then derive the u. d. sequences with réSpect to certain distribution functions, in
particular, to some uniform distribution funotions in. some gpecial domaing: ball,
sphere, gimplex, etc.,, which are often ‘ugeful in simﬁlation, geometry probability,
egperimental design and many prbblems in gtatighios, More detaily are given in our
next-paper with the same title.

Another application of the u. d. sequenceg in D i in optimization. Let f(a) be
a continuoug function on D, we want to find its global maximum M in D. There are
many gradient methods for this kind of optimization problems (of. Avriel [2]).
Unfortunately, there appear only few cages that the global maximum can be reached,
and we oan obtain in usual a local maximum if the function f is not unimodal, and
the dimengion of D ig large, for example, dimension of D=5, because the solution,
in general, depends on the choice of initial point. Therefore, we use the following
algorifhm o find an approximate value of M,

my, =f (wi)r
mk+1=' {mk, if f(@pea) <mg,
S (@), if f(@ppa) >my,

where (@;, @, +-+) is a u. d. sequene in D, i, e., P,={®y, +--, @,} is a u. d. sequence,
After a large number n of steps, we may reasonably expeot that ‘rm,,. ig elose to M, if
S (@) satisfies some regularity conditions. We often use the following quantity fo
measure the uniformity of distribution of these points |

d(n, D) =max min d(®, @), ' (1.3)

€D l<kean
where d(&, @;) denotes the Euclidan distance of @ and xy. d'(‘fn, D) ig called the .
dispersion of the get {a;, #=1, --- , n}. However one can show that if D=TI*, then

Ven<d(n D)<2vs (D) (1.4)
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(of. Zielingki [13] and Niederreiter [10]). This means that it is true fha,t my, is
olosed to the globle maximum M if n is large. In Section 4, we shall generalize the
above result to some kind of J's and give some applications in statistics,

§ 2. Numerical Integration

Let D be a bounded domain in R°’. We are required to calculate the integral
(1.2).Assume that tha dimension of D ig's, dv=f[1dw¢=dw and DCI®, Then i} may

be simply suggested to use the following formula

I=| @) Io(a)dw,

~ where Ip() is the index functisn of D(of. Hua and Wang[6]). This will lead to a
big error sometimes, since f(#)Ip(%) may be discontinuous on the boundary of D.
However, the domain D ig often very speocial in statistios, so it is possible to reduce
the integral over D fo an integral over I*(¢<s). More precisely, suppose bthat D hag

a representation

By=23(1, @) =a(@), G=1, ++, §, | (2.1) |

where @€ I*, and that x;, =1, «-, 5 have con'blnuous derivatives with respect to ¢,
b= 1,+-,%, over I. Let o ' o
| T= (3?03/3%), b=1,,% j=1’ **y 8
and let L . .
' J (@) =det(TT")2,

When {=s, J (@) is just the Jacobian of ﬁransfoma‘ﬁioﬁ from & to ¢. Then we have

I-[ f@a-| f@e@)I@dp, 2.2)
where dq:—[t'_[d(p‘ Therefore a quadrature formula over. I’ induces a quadrature
formula over D. Denote by fv(D) the volume of D. Then |

o@D =[ T@i@. @.3)
Suppose further that g4, -, @; are mdependent and

v(D)7* T (p) = Hfs(%): .

where f;(p;) ig the density functlons of @, b=1, ++, %, and the 'oorr_esponding digtri-
bution functions

P j Fi@dap, =1

satisfying F,(0) =0 and F;(1) =1, ¢=1, -+ ¢, Let F¢(m;) =g, and lot Fri (y;) denote
the inverse function of F;(w,), =1, -, &. Then
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[J@I @D f@F@mw), e

-where F~'(y) = (Fi'(y0), *+ Fi'(y,)), and dy=@;_111dy¢-'
For a given set {b;= U_’w» oer, b’?’>_’ , k=1, «-+, n} of I* with digsorepancy D(n), we
have a set {cy=F~*(by), k=1, .-+, n} which hag F-discrepancy Dr(n, {c;}) =D(n)

00, where F (%) ———j! Fi(z,). Hence by (1.1), (2.2) and (2.4) we have -

| @a—o DL 3 s@E=m)|-

<o(D)Dp(n, {&:})V (f(F7)) -
=o(D) DMV (). » (2.5)
By (2.2), (2.5), and the number theoretlc method we thus may haye the
following two formulas for numermal evaluatlon of the multlple mtegra,l (1.2)

, flarine gﬂx@mma @
and o ‘

Jy f(w)dfv—j—v(D) 3 f(@(e)
-1 Bf@@E-=@))). e

Both formulag have the same order of acouracy.
Define a set of D by ‘

The Volume v(p<g) of the domain in D defined by q><y ig equa,l to
| o(p<y)- j 7 (@)ip=0((D) 11F;<y,>,

s0 thalt : ' :
v(p<y)/ v(D) IIF4<?/¢>

Therefore, if we want the set P %o be scattered umformly over D, or that the ratio
between the number N (p<y) of P lying in the domain defined by ¢<y and n is
apprommately equal to the ratio between v(p<y) and v(D), we should take the seb

{cy k=1, -+, n} with lower F—dzsorepa,ncy in If. Since {e}, k=1, -, n} has F--

disorepancy D(n), we have _
o| Ne<w) _olp<w) l —sup| Y(2<¥)

yGI‘ n (D) yer

N (‘P <y) F (y)

We thug suggest an algorithm for obtammg a seb P of D that ig scattered uniformly
in D from a known set with lower diserepancy in I*. Now we give some examples,

- Boample 1., -The domain D is a S1mplex A= {a: O<ws<ms_1< <zvi<l} Then

. D hag a repregentation

P {ay—a(cy), b1, - u}. @8

—D(m). (2.9)
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; Tj=@1 @iy §=1, o+, 8
~ where ¢ € I°. We have

J(p) = qu"‘
and
o(4)) = j T (@) dep— II =151,
Therefore

fi(?i) = (3—@+1>¢§—i7 ?;=1’ teYy vs
are density functions over I° with corresponding distribution functiong
2 ‘ w‘ . . .
F ?(w,;) =jof t(%)d%":w?‘“1~
For a given set {by, k=1, ---, n} in I® with discrepancy D(n), we ha,ve a gob
CIG:F—:L (bk) =(bl%:/lsv b}oé(sjl); " 7}:/32-1) bks)r o= 1
in JI® with F-diserepancy D(n) too, and a set P of A,:

&= (1) *** Tus)’y b=1, ©ory m, - (2.10)
where . . . .
m]ﬂj:gb%(s—'b+l)’ k:l’ eeey q, j-_—_]_’ ceey 8. : (2.11)

The get P satisfies (2.9).

Baample 2. Let D be the s-dimensional unit ball

By={x: 22+ +a?<1}
which has a representation -
w5—~¢18'2 Sjom, §=1, - s—1,
s = @185++8s1S;

where 8y =sin(mwpy), Oy=cos(wpy), k=2, -+, s—1, 8,=sin(2mp,) and O, =cos(2mwp,)
in which @& I*, Then we have ‘

J () =2*pi* [] 8+~
and
o(B) = T (@)dp

1 s
= 20‘68—1 Jo ¢§_1d¢1 ;;Izj J Sg —id¢‘
2 ¢ 1 s=it+1
”s‘gB (2' 2 '

Therefore. ,
(o) = spiY, ifd=1,
f \@i) = { .
o (sin (py) )~ / B ( 5 ﬁ——;il-) i 5=,
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are density functions over I° with corregponfing distribution functions
33 ;
Fy(wy) = sj . @i dpy =43,

Ft(wt

B(1/2 = @+1)/2)J (sinao)*da, 6=2, +-, 5.

For a given set {by, k=1, -:-, n} in I°* with digorepanocy .D(n), we have a set {ck, b=
1, -+ n}, where
na=bif,
Fi(og) =byy 0=2, <=+, s, b=1, o, m,
in I* with F~diserepancy D(n) too, and finally a set P of By
| L= (Ty1, **+y Tps)’, b=1, 4, m, (2.12)
where
?’m=b:1c{s££sm0k,l+1» '{].=1; ey 81,
PO (2.18)
= by g S
in which Sy;=sin(wey), Ow=cos(mey), ¢=1, -, s—1, Sp=sin(2mwey;), Ops=
cos (2mceys), b=1, -, n '
Ezample 3. Let D be the s—1 dimensional unit sphere
, 8ot ={a: af+oee+af =1}
which hag a representation '
i=1
@wy== QS‘O” g=1, e, 81,
§~1

ws=IIS£’

§=al .
where S;=sin (wp,), O;=cos (wg,), =1, +, s—2 & 1=sin(2mp,s) and O,;=
co8 (2ar<ps_1) in which @ € I*%, Then

J(‘P) 201;3-1]] Ss—z—l

and

- =2 /1 §—i
sy = [ A

| o8 = J@p=2x [1B (5, 25
Therefore '

Filp) =mS5=1/B(1/2, (s—4)/2), 6=1, -+, 5—1
are density functions over I with corresponding digtribution functiong

Fi(w;) = B ar, (s YD) J (sinewt)s1 ds, 0<’b<8

For a given seb {bk, k=1, +ie; n} in I** with d1sorepancy D(n), we have a seb {ew
b= 1, e+ n}, where ;

F;(cm) by =1, ++, s—1, k=1, - ,n,
in I -1 with F-disorepancy D(n) too, and finally a seb P of §o2:
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= (T, **y Bus)'y =1, ©oy 1y (2.14)
where '
§=1
27 R ];Ilsmaw, §=1, = 51, (2.16)

s—1
Dps == H Shi
in wihoh Sy =sin(mwey), O=cos (&u@ce), G=1, esy §—2, Spe1=5n(2mCy,3) and
Oyo1=008(2MCy 1), B=1, ++o, m. '
Example 4. The domain D is a part of the boundary of s-dimensional unit
simplex : B
_ Toy={: as++a,=1, 0,20, 6=1, -+, s}

which hag a repregentation ‘

= (81814002 6=1, -, s—1,

Lg = (Si"'Ss—.‘z o—1)?

where S;=gin (wp,/2), O,=cos(mwp;/2), 4=1, -+, s—1 and ¢ E I*~*, We have

dot (TT") — (WH i} Spe--20, ) det(SS"),

where :
2 2 2 p)
-1 Og go% b Sg tee S?-z Os—i 82 *tt Psoa Ss—i

S 0 -1 0% - 8% .82, OFy 8% - Sia Sty
0 O 0 - -1 1

Note that det(SS’) is invarint if § is replaced by A4S, where A is an (s—1) X (s—1)
matrix with det A= +1. We now prove that there exists an (s—1) X (s—1) matrix
A with det A= 31 guch that |
~1 1 0w 0
0 -1 1. 0
AS=| PP =V
o 0 0. 1
0 0 0. -1
say. In fact, if s=2, then §=(~—1, 1), and the assertion ig true. Suppose now that
§>2 and the aggertion holds for s—1. Then ' ‘

1 —82 .. 0 —1 1 0 e 0
0 1 « O oo 0 —1 Of .. 82 .. 82,
0 0 . 1 0 0 0 e —1 1

By induction hypothesis, there is an [(s—2) X (s—2) matrix A; with det A,;=+1
and ' : ‘



58 o CHIN. ANN. OF MATH, Vol. 11 Ser. B

-1 0% .. 8% . 82,

0 —1 e :
A Ceee Y e : T V-2

0 0. —-11

Therefore
/1 =83 0 .
\o -0 1/

ahd the agsertion follows. We have

de’o(SS’) =det(Vs_1VQ.,_1)=det E E ",' E E = Lg~i,
0 0. 2 -1
0 0. —1 2

say. Since 4;=2 and 4,=24;_1— 4;_,(t>2), we have 4,_4 =s Hence
- s-1 L
J (q,) — (714’8—131/2 ]]1: Sf(s—'n)—iai’

(@) =, T @ == D)1.
Therefore ; 7 L
4  Fol@) = (s—3)SF 10, fe=1, oo, 5—1

are density functions over I with corresponding distribution functions

Fi(w) ;J:ifi@i)ﬁz‘?F (sin(wz,/2) )20, §=1, .+, s—1.
For a given got {by, k=1, ---, n} in I** with disorepﬁncy D(n), we have a get {cx,
k=1, -+, n}, where ’ -
or = (2/m)arcsin (b3®=), §=1, .., s—1, k=1, -+, n.
Finally, we have a set P of Ts_y: = :
= (Ty1, +5%y Bys), B=1, =) m, (2.16)
where -

j—1
2ry = [T BHCD (1~ BYOP), §=1, =, 51,
{ - , (2.17)

Lys =Hb%(-s*1'); k=1, ++, n.

- §3. Some Ai)plicatibns

In this section we shall pay our attention $0 applications of number theoretio
method in numerical evaluation of probabilities and moments of a continuous
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multivariate distributions. The bagic quadrature formulag are given by (2.6) and
(2.7). There are a number of methods to produce sets of points {b,, k=1, -+, n} in
I* (see Hua and Wang [6]). In view, of our experiences, we will recommend using
the following algorithm: Leb (hq, ++«, hs; n) be an integral vector, where ;=1, 0<5,
<nand g. o. d. (hy n) =1, ¢=1, «--, 5. Let
' Pu(k) = (khy, <+, khs) =Xqut, ***y qus) (mod n), b=1, «+e, n,
where 0<gysin. Set :
b= 2gu~1)/2n, 4=1, s+, 8, k=1, s+; n.
Then {b;} is a set of points in I* with lower discrepancy if (hy, +++, hs;.n) are carefully
selected. A table of (A3, -+, kg n) for 1<s<<19 was contained in [6] as an appendix.
Ewxample 5. Thig problem was come from alloy steel industry (see Fang and
Wu [8]in details). Let @ be an sx1 vector which denotes the percentage of
chemical elements in an slloy steel and let (m&)= (@1, +++, p:)’ be the corresponding
veotor which stands for the quahty of the steel. The regression equatlon between

p(x) and @ is
fi(x) =a+ B,

Where a and B are t>< 1 and ¢ X s matrices of regression coefficients and # belongs to
a rectangle K = [ay, by] X+ X [ag, bs]. Suppose that for each € K, we have u(x)~
N.(a+ Ba, X), the multivariate normal digtribution, where @, B, and X can be
used by their leagt square.eétimafors; Let T, 4=1, .-+, ¢, be the constants such that
the gteel is said to be qualified if w;>T, ¢=1, .-, ¢. Thus the probability that the
alloy steel corregponding to # ig qualified is equé,l to . :

p@=[ [ m@ @, Dy 6D
where ¢ = (ys, +++, ), and n,(y, p (), 2) ig the density of N, (u, X). The integral
(8.1) can be eva,lua,ted by applying (2.6) if we choose suitable numbers Ay o=1,
i, suoch that

p@ ="y, (), 2) dy |
~H4-T) 2 Bz, £ (@), ), 3.2

‘whore , . _

2= (2, ++*, 2) = L1+ (Aa—T1)bys, -+, Ty+(4y -T4) b)),
k=1, «--, n and {b,} is a uniformly digtributed set of points in I*. To illustrate the
computbational acourac'y; got X =1I;, the 5 x 8 identity matrix and p (&) =0, T;=—1,
4;=1, =1, ..., 5in (8.2). We have

- 1 ° V .
e[ [ i, 0, L) ay.
Now we have by (8.2) the following: . .
‘Tahle 1 ghows that b-digit acouracy for numerical evaluating a B-fold integral ig
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Table 1.
n E approximate values of p
1069 ' 0.148299406
2129 0.148295351
5003 0.148291410
8191 0.148291358
oo . : 0.148291347

obtained by the uge of 1069 points only. v

Example 6. The moments of order statistics, Let X4, «-:, X, be a sample from
the population with digtribution function F (») and density.f(z). Let ¥'i =X (<Y o_y
=X @< -+ Y1=X, be their order statistics. It is known that the joint density of
Yy «o, Y,ig given by

st ILf (90, ys<ys-1<---<.y1..

Then the order frm, s, m, mixed moment of X, ¢=1, +«+, sig deﬁned by

(s, --,mi)-—s'J Hy}”ff(ya)dv, (8.3)

where D* = { — oo <y, <gjs_1<+:--<yy<oo}. There exist @ and b such that
Pla<ys y1<b)=1.
Taking a transformation z;= (y;—a)/(b—a), 4=1, «++, s, we have

ey vy i) =91 (00" [ LT T(@+ (b —a)e)™f (o-+ (b—a)u)]do

where D ig defined in.Exa,mple 1. By Example 1, (2.6) and (2.7) we suggest the
following two formulag for the caloulation of w(ms ++, my):

i <o) 1 (0= a)* = BT[> ([T ) )

k=1 j=1

where ty;=a-- (b—a)by; and {bk, b=1, -, n} ig a uniformly distributed set of points

in I¢, and

p(me, -+, m)=st (b—a)* = 3 T [+ (b~ a)ou]™f (- (b—a)ow)

=S'(b_a)s bﬁﬂ[w—i—(b a)b”(s j+1)]mjf(w+ (b—-w)b;%(""""”) |

where {cx} and {b,} are given in Example 1.

Sinoce the mixed moments of order statiftics of uniform dlstrlbutlon U(O 1) on
I=10, 1] can be formulated. We give an example in Table 2 whmh\_ shows the (see
Table 2)aco uracies. | |

Example 7. In his study of compositional data, Altchlson [1] introduced in 1986
a so—called additive [logistic normal distribution. Let 7, be a domain defined in
Example 4 with n=N -1, Any ® in T, is called a composition. For a'given @& T,
we denote by @ _y the n-dimensional vector formed by the first n components of .
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Table 2. Mixed moments of order statistics of U(0, 1), s=Y7

7 : , B XXX e) B(X)yX X i)
418 0.03887518 0.00326433
597 ' 0.03888518 0.003389034
. 828 0.03888511 0‘0033211_6
1010 0.03887286 0.00332084
1220 0.03889159 0.00325168
oo 0.03888889 0.00326340
Let , _ '
y=log(x_x/Xxy) = (log (Xs/Xy), +, log(X,/Xx))'". (3.4)

The equation (8.4) yields an one to one mapping from T', fo B*. A random vector &€ T,
is gaid to have an additive logistio normal distribution AN, (u, ) if ite corregponding |
y~n, (p,2). '

Aitchison gave the formulas for E(log(X,/X3)), E (X/X;), Cov(log(X/ X)),
log(X/ X)), Cov(Xi/X;, X3/ Xy). It seems diffioulty for him to caloulate B(X;) and
Cov(Xi,X,), which are required in many practictical problems.

The dengity function of AN,(u,2) is given by

(2m) ~"2(det E)"‘/”(ﬁ X{'l)exp{—— }—(log Xy » ), P (log e
) ¢=1 2 w‘N
and the mixed moment of & i

(X Xf) = (2m) 2 (debZ) 42  [[at

Ty i=1

oxp{ = 1/2)[(1og 22— ), 22 (1og 22— Ja,

-w)} @B

where dv is the volume element of 7',. By Example 4, we have

B(Xp Xt =0 | TL(Ot830rt-+0-3)Q p) do,

where @€ I*, dp= q dp, O=(2/m)"/*(dotT) N2 and

) Q(p) =exp{— (1/2) (g (p) — )27 (9 (p) — )}
in whioch

9(p) = (log (0%) —log (8%--87), -+, log (87--+8%_407) —~1og (8%---87))’,
=2(log Oy —-ﬁl log8,, log O, —-ﬁ;log;S’i, oo, logOy— i logS)’.
= =% i=n

By (2.6) or (2.7) we may obtain approximate values of any mixed moments of
AN, (p, 2). ‘ |

EBwample 8. We meet the problem of direotional data in which some statisfical
distributions are defined over §*~* (see Example 8).. The so—called Langevin disbri-

bution which ig an extensmn of Von Mises and Figher's distribution has a dengity
function ' '
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Oexp{kp'x},a € S5,
where p &8, k>0 and O ig the normaling conglant (of. Mardia [8]). ‘Another
distribution called Scheidegges-Watson distribution has a sengity functor
O exp{k(p, )%, €S,
where O, %, and p have the gimilar meaning ag before (cf. Watson [11]).
We can apply Example 3, (2.6) and (2.7) to calculate probablhtles and mixed
moments for these two kinds of digiributions.

8 4. Optimization

In this seobion we shall generalize inequlity (1.4) o some domains which have
been digoussed in the past sections, Then we give an example o show that the
algorithm mentioned in Seotion 1 ig powerful, | '

‘We suppose that the set of singularities of the transformation &=a(g), i. e.,
the get of solutions of J tp) -0, isa got of D with dimension<f, where & is an s—
dimengional vector, rnd ¢ is the dimension of D. Hence for any glven 8>0, there
exist a domain € and two positive constants ci, ¢y depending only on. ¢ such that fv( &)
<g and ’

Cea<<fi (@) <eqy G=1, -+, ¢,
where @ € I*\€. Then dF;*(p;)/dp, 4=1, +, ¢ are positive and bounded over I*\€
t0o. ' ' , o |

First we take a gob by=(by1, -, bws), =1, -++, min I'\€ with lower discrepancy
D(n). Then we have shown that

cy=F"1(by) = (F (bye), -+, Fi (bw))’, k=1, <, n
is a st in I’ with F-diserepancy D(n) too, and finally we have a set in D: @,=
x(cy), k=1, -, n. .

Let x=a(p), " =w(p"), p=F"(¢), ¢"=F(§*). dw=(dwy, - dos)’, dp=

(dpy, +++, dpy)’, dfr=(diy, -+, dif;)’, and S be the diagonal matrix
S =diag (dp1/dis, -+, dg:/dis).

- da'dae=de' TT dp=dy' STT'Sdyp.
Since %he elements of § and 7' are hounded in I°\€, we have

- & (%, =) =I::::)(dm’ dac)/2

[0 awSTT.Ss <o(s) [ (@papys
- ~0(8)dt(!l'; ¥, -
where d; (y, z) denotes the Euelidean distance in R’. Hence by (1 4), we have
d (n, D) =max mln d(e, a,)<26“%0 (8) D (rn,)l/’ (4.1)

€D 1<k

Then
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Thus if @y, k=1, +--, n, are soattered uniformly-in D, then the maximum value of a :

function on these points may be taken as an approximate value of the global
maximum of the funetion on D, o

Emmple 9. Additive. logistic elliptical distributions, The so-called additive

logistio elliptical digtributions defined on T';_; (see Example 4) are extongions of the
additive logistic normal dlstrlbutlons mentloned in Example 7 and have density

funcotions of the form

© f@)= (ot By AT ag(e), U wy
where coeme |
g(x)= g((log a;‘:'-—-ﬂ>’ E*f(log'—wx—‘:—:-'—'u)) . (43)

and @_, i an (s—1)-dimensional vector formed by the first s—1 components of .

The mode of f(@) can not be analytically formulated so far. However we may use

uniformly distributed sets on T;_4 to caloulate the approx1mate Values of the mode.
When the finction g in (4 3) has the form

where

“ 0= (wm) 2L (p) /T (p=3/2),; -

the corresponding distribution is called additive logistic elliptical Pearson Type VII
distribution. In this cage to find the mode of f (a:) is equlvalent ‘to obtaln the

maximum of

(@) =] [1+( ) - 1(1og —,L)/m]
R £ S
over T's_j. The results in Table 3 show that the approxmla,te values of the mode in
the cage of s=3, p=9, ‘mf5.5“and o L
( 1 —,-o.,7>
O 7 1/ .

/0
R I H ’. S
KT <0>
are closed 110 %hose of the mode (1/8, 1/8, 1/3)’

Table 3 Approximate values of the mode.

g =0 (1+u/'m) L p>e/2 m>0, (4.4)

7 . .Mn ‘ ' i _ . Ty . - &g
283 26.55203 0.3371035 0.3306723 . 0.3422243
L  96.82553 0.3061467 0.8598099 _ 0.3340434

610 . 26.48600 | 0.3604561 0.3150540 . 0.3244899

4181 ' 26.80095 .| . 0.3256147 0.3368701 0.3375152
10946 - 26.90788- - | - - 0.333497L | 0.3337690 |  0.3827330- .-
Carpit ¢ o de.es96 | 03203827 | 0.338882r | 0.3318746

We note in Table 8 that Wlh'en" m iy increasing, the corresponding M., in -principle,

is inoreaging also. But sometimes M,<M,, where n>>n/, because the céé*ﬁé Hci} for
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different n may be completely distinet. Hence we suggest nsing a sequential method
0 improve the above result.

The following program is designed for our presented problem, A

'Step 1. Choose a uniformly distributed set of points {&y, k=1, +-, no} in Dy=
T, ; with guitable ny. Find the maximuin M, of the function among these points, and
assume that it ig attained ab &f= (@1, *+*, Tos)'s

Step 2. Find a small domain Dy of D, such that DicD, and axycDy. For
instance, Dy ig a domain with @} located near the gravity of D;. More precisely, we
odoose a;, =1, «-, s, such that

_ O<ag<wo,, g=1, e, s,
Set ia,=a1+--~-l—az3 and b,=aq;+1—a, =1, «--, s. Then
1>b;>a,-+j§=_‘1, To;— 1§1%=%‘+ E(wo,-— as) =y,
v if
G=1,. ,.§. Denote '
o Di—{w (@1 ) 20)":q,<m<by §==1, o+, 5, ®E De}.
Let 2y, =1, «-+, ny, bo an uniformly dlstmbuised set of points in T';_j. Then we have
a sebt {@y, F=1, +os, ny}, where "
=0+ (1 —a)zy, oG=1, <, s, k=1, +, ny,
which ig uniformly distributed over D;. Denote by M, the maximum of the funection
on &}, 9 which is attained at the point .

Step 3. Suppose that in the jth step we have found the maximum M, of the
function and the correrponding point aj. By a similar method we can reduce the
domain Dj; to Dj,4, apnd make a geb of points on Dm, by which we can find another
maximum M;,y of the function and the corresponding point &}, .

Repeat Step 3 until the search domain is smaller. The last maximum M, is
expected to be closed o the global maximum M of the function.

Applying the above program to our problem, we set ng=ny=---=223 for each
step, and the results are given in Table 4, which improve those in Table 3.

Table 4. The sequencial method for optimization

No a; ’ b; ' M, A . @3 A
1 0.0000 1.0000 | 26.55203 | 0.3271035 | 0.3306723 | 0.3422242
2 0.3000 - 0.4000 26.97836 0.3304331 0.3343395 0,3352274;
3. 0.3300 0.3400 26 .99543 0.3327104 0.38330673 0. 3342224:
4 0.8230 0.3340 26.99994 0.3332711 0.3333067 0.3334323
the A global maximuam . 27.00000 0.8333383 0.38433333 0.33333333

We have done many examples which all show that the present sequential method is-
advantageous. |
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