ON THE SECTIONAL CURVATURE OF A RIEMANNIAN MANIFOLD**

BAI ZHENGGUO (白正国)*

(Dedicated to the Tenth Anniversary of CAM)

Abstract

Commence to the state of the said

In this paper the author establishes the following

- 1. If $M^n(n \geqslant 3)$ is a connected Riemannian manifold, then the sectional curvature K(p), where p is any plane in $T_x(M)$, is a function of at most n(n-1)/2 variables. More precisely, K(p) depends on at most n(n-1)/2 parameters of group SO(n).
- 2. Let $M^n(n \ge 3)$ be a connected Riemannian manifold. If there exists a point $x \in M$ such that the sectional curvature K(p) is independent of the plane $p \in T_x(M)$, then M is a space of constant curvature.

This latter improves a well-known theorem of F. Schur.

Let M^n be a connected Riemannian manifold of dimension $\gg 3$. If the sectional curvature K(p), where p is a plane in $T_x(M)$, depends only on x, for each $x \in M$ then M is a space of constant curvature. This is a well-known theorem due to F. Schur. Since the group (SO)n depends on n(n-1)/2 parameters, the sectional curvature K(p), as a function on M, depends generally on n(n+1)/2 variables. In the following theorem we determine the exact number of independent variables of K(p) on M and as a consequence of it we improve the above theorem of Schur.

Theorem 1. If $M^n(n \ge 3)$ is a connected Riemannian manifold, then the sectional curvature K(p), where p is any plane in $T_x(M)$, is a function of at most n(n-1)/2 variables. More precisely, K(p) depends on at most n(n-1)/2 parameters of group SO(n).

Proof Let L(M) be the bundle of linear frames over M and O(M) be the bundle of orthogonal frames over M. O(M) is a subbundle of L(M).

Let X_1 , $X_2 \in T_x(M)$ be an orthonormal basis of a plane p in $T_x(M)$ and let u be a point of O(M) such that $\pi(u) = x$. We set $\xi_1 = u^{-1}(X_1)$, $\xi_2 = u^{-1}(X_2)$, $B_1 = B(\xi_1)$, $B_2 = B(\xi_2)$, where $B(\xi_1)$ and $B(\xi_2)$ are the restrictions to O(M) of the standard horizontal vector fields corresponding to ξ_1 and ξ_2 respectively. At any point

Manuscript received April 6, 1989.

^{*} Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang, China.

^{**} Projects supported by the Natural Science Funds of China.

u of L(M) with $\pi(u) = x$, X^* and Y^* are vectors of L(M) at u with $\pi(X^*) = X$ and $\pi(Y^*) = Y$. We have ([1], p. 133)

$$R(X, Y)Z = u(\Omega(X^*, Y^*))(u^{-1}Z), \text{ for } X, Y, Z \in T_x(M),$$
 (1)

where Ω is the curvature form of the connection form ω , and

$$R(X, Y)Z = [\nabla_{X}, \nabla_{Y}]Z - \nabla_{[X,Y]}Z. \tag{2}$$

Moreover, the sectional curvature of plane p is given by

$$K(p) = R(X_1, X_2, X_1, X_2) = g(R(X_1, X_2)X_2, X_1),$$
 (3)

where q is the metric tensor of M.

Observing that $u \in O(M)$ as a mapping of \mathbb{R}^n onto $T_x(M)$ is isometric, we have by (1)

$$K(p) = g(u(\Omega(X_1^*, X_2^*)(u^{-1}X_2), X_1) = (\Omega(X_1^*, X_2^*)(u^{-1}X_2), u^{-1}X_1).$$
 Since $\pi B(\xi_1)_u = u\xi_1 = X_1$, $\pi B(\xi_2)_u = u\xi_2 = X_2$, we have $X_1^* = B(\xi_1)$, $X_2^* = B(\xi_2)$, and

Since $\pi B(\xi_1)_u = u\xi_1 = X_1$, $\pi B(\xi_2)_u = u\xi_2 = X_2$, we have $X_1 = B(\xi_1)$, $X_2 = B(\xi_2)$, and consequently, for $n \geqslant 3$,

$$K(p) = (\Omega(B(\xi_1)_u, B(\xi_2)_u)\xi_2, \xi_1), \tag{4}$$

where (,) denotes the natural inner product in \mathbf{R}^n .

Let θ be the canonical form of L(M); let ω and Ω be respectively the connection form and the curvature form of a Riemannian connection Γ of M. Then we have the structure equations

$$d\theta = -\omega \wedge \theta, \text{ the training of the matter }$$
 (5)

$$d\omega = -\omega \wedge \omega + \Omega. \quad \text{(6)}$$

Since $B(\xi_1)$ and $B(\xi_2)$ are both horizontal vectors $\omega(B(\xi_1)) = \omega(\hat{B}(\xi_2)) = 0$, we have from (5)

$$d\theta(B_1, B_2) = -\omega(B_1)\theta(B_2) + \omega(B_2)\theta(B_1) = 0.$$

On the other hand, since $\theta(B(\xi_1)) = \xi_1$, $\theta(B(\xi_2)) = \xi_2$, ξ_1 , $\xi_2 \in \mathbb{R}^n$, we have

$$\begin{split} d\theta(B_1, \ B_2) &= B_1(\theta(B_2)) - B_2(\theta(B_1)) - \theta([B_1, \ B_2]) \\ &= B_1(\xi_2) - B_2(\xi_1) - \theta([B_1, \ B_2]) \\ &= -\theta([B_1, \ B_2]). \end{split}$$

Consequently, we have

$$\theta([B_1, B_2]) = 0. (7)$$

By definition $\theta([B_1, B_2]_u) = u^{-1}(\pi[B_1, B_2])$, we have $\pi([B_1, B_2]_n) = 0$, that is, $[B_1, B_2]_u$ is a vector tangent to the fibre through u.

Given a principal fibre bundle P(M, G), the action of G on P induces a homomorphism σ of the Lie algebra g of G into the Lie algebra $\mathscr{X}(P)$ of vector fields on P. For each $A \in g$, $A^* = \sigma(A)$ is called the fundamental vector field corresponding to A. Since the action of G sends each fibre into itself, A^* is tangent to the fibre at each $u \in P$. It is known that $\{A^*_u\}$ span the tangent space G_u at u of the fibre through u, where G_u is the vertical subspace of $T_u(P)$.

When G=SO(n), dim g=n(n-1)/2, we can choose a basis $A_{i,j}$ of g such that $A_{i,j}$

 $=-A_{j,i}(i, j=1, \dots, n)$. If $\{\xi_i\}$ $(i=1, \dots, n)$ is a basis of \mathbb{R}^n , as a consequence of (7) we can put

$$[B(\xi_i), B(\xi_i)] = A_{i,j}^*.$$
 (8)

Denote, for simplicity, $B(\xi_i) = B_i$, we have

$$d\omega(B_{i}, B_{j}) = B_{i}(\omega(B_{j})) - B_{j}(\omega(B_{i})) - \omega([B_{i}, B_{j}])$$

$$= -\omega([B_{i}, B_{j}]) = -\omega(A_{i,j}^{*}) = -A_{i,j},$$

and

$$\omega \wedge \omega(B_i, B_j) = \omega(B_i)\omega(B_j) - \omega(B_j) \cdot \omega(B_i) = 0.$$

Hence we have by (6)

$$\Omega(B(\xi_i)_u, B(\xi_i)_u) = -A_{i,j}. \tag{9}$$

Since $A_{i,j} \in g$ depends only on ξ_i and ξ_j , the left-hand member of (9) $\Omega(B(\xi_i)_u)$, $B(\xi_j)_u$ is independent of u. Thus we conclude by (4) that the sectional curvature on M is a function locally of at most n(n-1)/2 independent variables $A_{i,j}$. Since it is a continuous function and M is connected, it must be a function of at most n(n-1)/2 independent variables on M.

Theorem 2. Let $M^n(n \ge 3)$ be a connected Riemannian manifold. If there exists a point $x \in M$ such that the sectional curvature K(p) is independent of the plane $p \in T_x(M)$, then M is a space of constant curvature.

The above theorem improves the theorem of F. Schur.

Proof This Theorem is a direct consequence of Theorem 1. We give here another proof.

Let Y_1 and Y_2 be an orthonormal basis of a plane $q \in T_x(M)$, we set $\eta_1 = u^{-1}(Y_1)$, $\eta_2 = u^{-1}(Y_2)$ such that, for $a \in SO(n)$, $a\xi_1 = \eta_1$, $a\xi_2 = \eta_2$. We have by (4)

$$K(q) = (\Omega(B(\eta_1)_u, B(\eta_2)_u)\eta_2, \eta_2).$$
 (10)

Since

$$R_a(B(\xi)) = B(a^{-1}\xi),$$

we have

$$\Omega(B(\eta_{1})_{u}, B(\eta_{2})_{u}) = \Omega(B(a\xi_{1})_{u}, B(a\xi_{2})_{u})
= \Omega(R_{\sigma^{-1}}(B(\xi_{1})_{u\sigma}), R_{\sigma^{-1}}(B(\xi_{2})_{u\sigma}))
= ad(a) (\Omega(B(\xi_{1})_{u\sigma}, B(\xi_{2})_{u\sigma})
= a \cdot \Omega(B(\xi_{1})_{u\sigma}, B(\xi_{2})_{u\sigma}) \cdot a^{-1}.$$

Substituting this expression into (10) and noticing that a as a mapping is isometric, we obtain

$$K(q) = (\Omega(B(\xi_1)_{u_0}, B(\xi_2)_{u_0})\xi_2, \xi_1). \tag{11}$$

From (4) and (11) we see that, for fixed ξ_1 and ξ_2 , the sectional curvature K(q) for any plane $q \in T_x(M)$ can always be obtained by choosing $a \in SO(n)$. Since we have assumed that K(p) = K(q) at $x = \pi(u)$, this implies that

$$Q(B(\xi_1)_u, B(\xi_2)_u) = Q(B(\xi_1)_{uo}, B(\xi_2)_{uo})$$

for every $a \in SO(n)$. Moreover, we have proved in (9) that $\Omega(B(\xi_1)_u, B(\xi_2)_u)$ is independent of u. Hence, for fixed ξ_1 and ξ_2 , the function $(\Omega(B(\xi_1)_{ua}, B(\xi_2)_{ua})\xi_2, \xi_1)$ is locally constant. This means that K(p), considered as a function on M, is locally constant. Since it is continuous and M is connected, it must be a constant on M.

Reference

en en et a et en des kallande en en en

The second companies of the property of the second

Service and the service of the servi

[1] Kobayashi, S. & Nomizu, K., Fundations of differential geometry, 1 (1963).