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Abstract

The followunh results are proved in this paper

1) If areal quadratic differential system has two strong foei, then' around them thore
cannot appear (2n, 2m) distribution of non-semi-stable limit cycles, where n and m ase
natural numbers.

2) If a real quadratic different.al system has two strong foci of different stability,
then around them there ecannoi appear (2n, 2m) distribution of non-semi-stable limit
eyeles, where n and m are natural numbers.

In the papers [1, 2] we have discussed the problem concerning the impossibility
of (2, 2) distribution of limit cyecles of any real quadratic differential gystem. But
‘we have not solved the problem completely. Even in [2], there was still a propogi-
‘tion not striétly proved. Mdreover, we have not described clearly the process of
-escaping the appearance of the limiting Case B), in which we have two infinite
goparatrix cyocles each bassing through a pair of oriical points at inﬁnity: not
diametrically oppodite. In thig paper we continue to develop the ideas in [2] and add
$hree new theorems strictly proved, by which we not only solve the above mentioned
problem satisfactorily but also prove the impossibility of some other distributions of
limit oyocleg for real quadratic differential systems,

Ag in [2], we agsume that the system '

&= —y+Sow -+l + mowy+mpa= P (2, ), y=a(l+aw—y) =0(z, y) 6))

(where o +0, 80>O, 0<n<1, mo+mndpy<<0) has a (2, 2) distribution of limit oyocles
as follows ) .

I'yoI'>0(0, 0), I'hDINDN(0, 1/q), (2

where O is an ungtable strong focus, N is a stable strong focus, I'y and I'; are stable
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limit cyoles, I'y and I} are unstable limit 'cy'oles » Without Vloss of generality, we
may assume ¢<0..In case >0, only a few words of the present paper should be

changed correspondingly.

In [2] we have used three different families of generalized rotated veotor fields

(RVE, for abbreviation):

Fy: to add a term 8y (1-+aw—y) o the right hand 81de of the first- equatlon in

system (1), where &, is a parameter. Since

Bt (PO, O-UP),

Fi 1s a Whole plane genera.hzed famﬂy of RVF.
Fz to add a term 0w similar o that in Fy. Smce

gg =—a(1+av—y)/(P*+Q7); -
2 .

F, is a half plane generalized family of RNF.

Fa to add a term g (1 — 1) sumﬂar to that in Fi. Since

B (14 ang) ()] (PQ),

Ky deﬁnes a family of generalized RVF in each one-of the four reglons'
: ’ 1+aw—y=0, y— 1>0
- The mﬂuence of the inereases and decreases of 81, 82 a,nd ms ) 1‘1, 1"'2, 1‘1 and
% can be geen in the following table: - '

I U O A D
d1 increases o expends- { . conmtracts .| expands .. | - | contracts , -
0y decreases contracts -} - expands f .-} . contracts | . expahds . -
Oa increages . . - , expands. | eontracty .- [|.. . ‘contracts ex’pa‘uds'i :
Oy deereases_"_ s ' contracts . " . expands .. | -expands - : ébn"c:racf.s': :
" g increages ©.¢ ¢ . .contracts - expands contracts . expaﬁ'&s B
mg decreases - egpands - " contracts -~ " expands © contracts

By a,pplymg F; and Fs to.(1), we get:.
B= — g+ (So-+8; —ma) w10+ (mio-+ma) vy +my?y = w(l-i—aw Y). (3
Theorem 1. If system (1) (4én which. a<0, 60>0 0<n<1, fmo+n80<0) has
(2, 2) distribution of limis cyoles as showrrb n (2), and we take ms>0 én F3 and O, in
Fy such that Pl CERTE
80+_6g——'m3=m0+m3=0, o T4
then the system obiatmed, frrom ®@): - B :

1) In geueral Wé can’ prove tBaf, ‘When N isa strong focus and O IS a weak focus of order three, then
they have the same stability. e '
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&= —y+lo?+ny?, g}-—=:b(1+am~—y) : (5)
has no Vimis cycle as well as separatris cycle, and O, N will change their stability due to
the fact that: | |
: L'+—0 and ['—>N.

Moreover, we must have 2§<1.V

Proof 1If 21=1, then 0 is a center of (5). But we cannob geb a center from:(8),
which wad assumed %o have limit cyeles around O and N, by applying first Fy (in
which mg increases from zero to —me) and then Fy (in whioh 3, varies from zero to
—mp—8), except that after Fy is applied, I'y and I'y both disappear. In thig cage we
should have 8o+mo<<0 (i. e., I'y disappears before m, attains —me), and so 82
inoreases in ¥y, Moreover, when &, increases but still less then — 0o ~— My, no‘ Limit
oycle can appear around O. Only when 3= —8y—my, a family of olosed orbits
suddenly appears around O. o

On the other hand, if 8o+mo<C0, then after (1) is apphed by F3, N is gtill av
stable focus and I} still exists, Then under Fy, I} contracts again and attains N
when 8, = —3, —mo. But this contradiots the fact that IV is algo a center of (5) and
the non-intersection property of RVF. '

Therefore, under the condition (2), 27 #1. The non-existence of limit cycle and
c'ep:«),rad;rlx oyole for syster (5) when 21 ael can be proved eagily by usmg the Dulae
funotion (1—g)%* (See [3], Theorem 15, 1). ‘ '

Next, assume 1—21<0. Then O will be an ungtable foous of (5), which cannot
be the limiting position of a gtable limit oycle Iy, Similarly, N will be a stable
foous of (5), which cannot be the limiting position of I";. The only possibility for O
to be unstable in (B) can ocour in the following procedure:

When mg= —mo>0, we must have 8, —mg=23¢p+mp<0. The second mequa,hty
means thab before m; arrivesat —m o, O hasalready changed ifs stability for a certain
my, 0<ms<<—myp (due fo I';—>0, or due Vo the sudden appearance of an unsiable
hmﬁ; cyele I'y from 0). 8o we have at this moment the system

1) Notice that the transformation of coordinates:

Yy = 8= ‘/1nn “ g ~\/1 ~n @

_ transfoi*ms (5) into

du nl
T Wk o,

g1y 0 ] @ " w]
dr u[lhrn-—l 1—-n au+n__1w.

ana[n+2nl]~an _an(3l—1)
1-a¥ i-n La—1 1-nl 1-a2V 1l-an I-n

We see tha,t the ﬁrbt focal quantlty of N in (5) has the same sign as a(—-1), so the focus N0 ( %

@

- ' Since

e

of (5) has different stabxhty with the focus O (O, 0).
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&= —y-+ (8o —mh) w+1a+ (mo +mp)ay+ny?, y=o(1+as—y).
Evidently, 8,—m}=0. As m; inoreases from m} 0 —me, O becomes a sfrong stable
foous. On the other hand. I'; contracts but still exists when mg= —my, while I
expands but disappears before mg= —my'; also I's, I's, I's all disappear before m;=
—myp (for the reason, gee Theorem 2 below).
‘We then apply Fi. When 9, increases from zero to —8o—me, the unstable limit
eyole I'y (or I'g) reappears, it coniraocts to O and changes' the gtability of 0. How-

ever, I", always contraocts under Fs and F'y, g0 it oan not contract to N, But when a2

= —mo—Jp, system (8) has no limit oyele; this is a contradiction.

Therefore, we mugt have 1- 21>0. Now there are three suboases:

1) do-+mo>0. Thig meang that When ms moreases from zero to —-mo, I’y contra-
ots buf shill exists, N changes its stability before mg= —my. So N J_s a ghrong unsiable
foous when mg=—meo. Then ag 8, deoreases from zero to —8—mo, I'1 contracts o O
and changes the stablhty of O, while N changes from wunstable strong focus into
unstable weak focuy, Meanwhile, Iy expands and dlsappears under F3 before mg attaing
— My, OT dlsappears under F; before 3; attaing —8—

_ 2) So-+mo=0. Then () contracts to O (N) thn g inereases from zero to
—mq, I's(I's) expands and dJsappears b,efore mg @_ttams —mo. And we may take 8=
0. o | | B
3) 8o+'mo<0 Then ag 8, mcreases from zero 130 —3p—mo, L' expands I} con-

tracts (’uhey may coincide and dlsappear before )q abtalns —dp—my), 1"1 contracts

but still exighy. Ay m, inoreages from zero b0 —mo, Iy contracts (or reappears then
contracts) to O and changes O into a weak gtable foous. I GXpa,nds (or. reappears
then expands) to I’ and d1sappear¢ aga,m (or T appears first, it breaks and generaties
an ungta ble oyole I’y Iy, then they oclose to each other, comclde and dJsappear)
before Mg attaing — —myp. On the other hand Iy contraots again and a,ttams N when
mg= —Myp. | '
From Theorem 1 we gee tha.t in order 0 use thig theorem and Theorem 2 below

o prove the 1mp0981b111ty of (2, 2) drstrlbutlon of limit oyoles for gystem (1), to uge
only Iy and Fy 19 ingufficient. So in the following we will uge three RVF’ Fy, Fyand

F altogether. We take suitable values ™y (-—m_o>m3> 0), (61<_O and 8,0 such that

D).
" mo-tang— 61——0 and 60 m3+‘o‘2—l -8,>0, €)

Then after a,ddmg dw (1+aw y) 82w and mgw (y— 1) to gystem (1) we will get a
gygtem , |
' z=—y+ (3o~ m3+82+81)a;+ (Z—l—a61)m”+fn/y y m(1+am y) ®

1) It may expand, becomes a separatrix cycle [, then disappears; or ' may appear ﬁrst which then
breaks and generates an unstable cycle-I'j, it contracts and coincides with '} and then dxsapyears

.
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II). The applications of Fy, Fy and Fy to (1) should be divided into many sub-

. gbepg-end performed alternatlvely This means: We get -
. M4 N
51-—2513' 3——2’”&3” dg= E oty
| where N and M are sufficient large na’ﬁural numbers and 81,<0 82;5>0 Mg; > 0. We
. then add 3@ (1+aw—y), Suw dnd fms,w s(y—1) to (1) alternatlvely for 2(N+M)
jnmes altogether®, such that: @ )
]’1 and Z“z can ab most coinocide and beeome a seml—sba,ble eyele I, but 1“;0 does

.not dlsa,ppear under Fy,.

‘When oondrtlons Tand II : are sa’msﬁed system (9), in general will have even -

number of non—-seml—stable oycles (a,t least two oyeles F1 and Z’z) around a .strong
unstable focus 0. ‘
" ~Ths above purpose can be achieved, because: .
o a) Under eondmon II although I'y may aﬁ;eﬂn 0 and dlsappear or 0 may
: ehanga it9 stablhty ﬁrc’a and generates a third oyole T, which expands, _ coinoides
with I'y and then dlsappears when I'y decreases or mj increases. But ag 9, inoreages
to a con91derab1e amount, 0 W111 beeome uns’ﬁable and regenerates I"y, which expands
K again, ’ ' o
b) Similarly, although 1’2 may expand and become a separatrix oycle I', then
dzdappear or F may appea,r ﬁrst breaks and generabes a 'bhll'd cyole 1’4, whioh
But as 82 1norea,ses 1;0 a oonmdera,ble amount anew I W111 reappear agam it breaks
and regenera’ues a new Iy, Whloh contraets again,
' o) We W111 now give a more de’ﬁa,lled explalnatlon of the lagt sentence in b) Ag
“we know, when Fij ig applied to system (1), the number and pogition of oritioal
:'pomts on 1+aw— -y =0 do not ohange But the position of oritical pomts on 1+aw— Y
' =0 will move under the a,pphoa,hlon of F;. (with mg;> O), and maybe one or two
oritical pomts dlsappear at infinity, may be fwo, oritical ‘points comclde and then
dise isappear. Also under the application of ng (with 82k>0) orltleal pomts on 1+aw
—y=0"canno$ dJsappear at mﬁnlty, but the posuuon where two critical points
;comelde w111 move. '
| Suppose we a,pply now Fa, and sz to an intermediate system

z= Y+ Yot la+m oy, g = =a(l+aw—y), . (E)
where 5’>0 and mp <0 and get a system : - : o
' ' a;—¥ —y+ (& m35+8m.,)a;+l’a;2+ (m’ +m3,)a:y+ny g/ m(l—i—aa: y) (%)

The -coordinatey of hhe 'bWO oritical, pomts on 1+aw —y= 0 are determined by the

quadratle equatlon

g el RERR R

1). We denote siich’ apphcatlons of By, Ty and kY by Fu, By, and Fas. Tehpectively; -
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[V + (m/ +mag,) a+na®] o+ (2an+m'+9d' +82k‘—,a)cv+rrz,— 1=0,’ A)
There are two possibilities for the disappearance of these critical pointy:
1) When ‘

: . —Q
~ the coefficient of #? in (4) equals zero, :é_,nd hence a critical point disappears -at
" inf mtyl) | .
| _ ‘Without losg of- generahty, we may asgume:?

2an-+m/ +6’——a>0
. 80 the.other eritical point § (saddle) on 1+aw—y=0 lies at the rlght -hand:. 91de of
_the y—ax1s Ag Mg, inoreages from my; -a. new crltlcal point R (node) appears from
infinity at the right hand sgide of §. R and S move olose t0-each other as. mg; inerca-
. ges, .. : . . .
2) - When ms‘ attams the value (Whloh makes the discriminant of (4)s,,=
equal to zero)

_ (2an-+m/ —a+8’)2+4(1 rrb) ' +m'a+na)
ms; ,
da(n--1)

and contmues to increase, R and § como:de and then dlaa,ppear 3

.
> Mg

Now, if m m,o,‘ <9, or eqmvalenﬂy, . _ .
(a+m' +8)2+4/ (1 -n)<0 ()
and we take dy4=0, mg>d" in (¥), then after the apphoatlon of y, ]"2 expands and
may become a geparatiix oyols I’ passmg through 8, T disappears together with the
dlcappearance of S, ® while I'y contracts to O and becomes a stable foous,
We then apply Fy. From (*) We see that I'y will rea,ppear if only 82k+8 =My
>0. Moreover from (A) and (#) we know that for 82;, sufﬁolently large

1), If Z’ +m'a-+nab<0, ‘bhlS possfmhty does not ex1st because we have already assumed mg;>0, If l’
E "m’a-r na2-—0 then after the a.pp] ication of Fai (wﬁ;h m3,> 0), onme new. critical pomt a,ppears from
" infinity. N ;
2) Otherwise, if 2an--m'+8' —a<0, we may investigate the behavior of N, I' and I, For when a<0,
sepa.ratnces surounding O(N) come from the saddle point on 1+as—y=0 lying at the right (left)
K hand side of the y-axis, if the later existy. If 2an--m'+8 —a=0, then the apphcatlon of F% makes
two critical points disappear ait infinity in dn‘.’ferent directions. -

" Notice that undexr thé-transformatio‘u: T==— u, y==_1.—-i'_'ﬁw, @ _ L
‘ n n dr 1-
- transformed into: : oLt e A o
‘ %~=—w-—\/ T ( s >u+z’u2+Jl 2 o v (1 n)w2 u!-1~—\/ at— w] o

and for this system the quanluty coorespondmg o 2an-+m! +6’ —ais \/ (a——2an—fm, 6’)

3) If ‘ms,;<0 then, there i is no crltma,l point on 1+aa: y==0 for 82,,=0 and m3,>0 saparatrices surroundmg
"~ Ocome flom critical pomts at infinity : .
'4) In case g <0, 1"'2 may expand and. become an infinite separatrix cycle passmg through two non-
diametrical opposite critical points at 1nﬁn1ty and then disappear. - C
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~(a+m'+& +84) 2+ 4V (1 —un) >0,
or equivalently '

(an+m'+8 +0y—a)?+4(1—a) (V' +m'a+na?) > 8+
4a(n—1)

Then for mg;=ms; and the above 8y, (A) will have two different positive roots,
i, e., the critical points § and R on 1-+aw—y=0 reappear. If the two separatrices (In
goes from § to the left and L, goes in § from the left) do not coincide and make
a oyole®, then we may increase dg again so thab L1=L§, and then change their rela-~
tive position and generate a new oyole.” |

d) Notice that the values of |3;| and ms are bounded, Wh1le 62 can inoreage
indefinitely, When 8y —mg-+83+8:>0, 0 will beoome an unstable node, I'y and I'y
will both disappear heretofore. _

Therefore, there will exist suitable values of 8;, ms and §,, suitable subdivisions
of Fy, Fy and ¥y, and suitable order of applications of the Fy/g, Fg's and Fa/s 1o
gystem (1), such thab gystem (9) has a strong ungtable foocus 0, as well as two non—
gemi-gtable limit oycles I’y and I'y, whioh were agsumed $0 exist a’ the very beginning
* of thig paper (of coulse, (9) may have another new appeared even number of non—
semi-stable cyoles ag Well) ®, But the 1mp0591b1]11;y of thig situation will be proved by
the following Theorem 2. ' : | | .

V Now, rewrite (9) into: : ,
o= -—y+‘o‘m+liw2+m/y ). g}=w(1+dm—y), | . (0)
where ¢<0 and 0<n<1. | o |

Theorem 2. If in system (10) 6>0 amd 13<1/2 (>1/2), then %t has no. Z@mq,i
cycle arotind ,N (0), and can h_afve only an odd number of non~semi-stable limst cycles
around O (N)¥®. It has no limit cycle én the whole plane for li=1/2 and any 9.

Proof The gecond part ig clear from the theory of RVF, since when I;=1/3, &
=0, (10) hag two centers. Ag to the first part, we prove il only for the cage 1,<<1/2.
We have seen in Theorem 1, when 8=0,0 is a weak stable focus, N (0, 1/n) is a weak
ungtable focus. When & inoreages from zero, both O and N become gtrong unstable
fooi, and a gbable limit oyele I'y bifurcates from 0, which expands with the increase
of §, but no limit eycle can appear around N, by the theory of RVF. It ig eagily seen

1) According to the results obtained by the computer for a spscial quadratic system in [5], the appeé-
rance of a new saddle-node is always accompanied by the appearance of a separatrix cycle.

2) In case T’y disappears at infinity, the increase of 8y, will alto make the reappearance of the infinite
scparatrlx cycle just mentloned in footnote 4), it then breaks and generabes a new ['s again,

8) The only exceptional case is I‘ (the semi-gtable cyqle obtained from I'; and Iy vunder Fy) approachey
T (the separatriz cyele passing through the finite saddle poiut §; or the two critical points at infinity)
as —>oo0, In this case we will have for system (9): div|,=0 or ojay=1 for the infinite separatrlx cycle
- as in Cage IT: (i) ‘of [1]. Bus this is also 1mpossfble by the following ’l‘heorem 2.

i) We conjecture the limit eyecle is unique in'this case.
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that if 1+ aw—y =0 intersects —y+3z+1:12%+ny? =0, whether at one or at Hwo points,
and whether they locate both on the same gide of the y~axig or they are.separai,ted by
the y-axig, §; mugh lie in the right half plane, provided a separatrix oyele T exists

around O and passes through a saddle point §; on 1+aw—y=0. ' ’

Now the line

P, +Q,, 6+(2Zi——1)a; 0

ig a vertical line fo the right of the y-axis for all 3>0. Wken 0<<d«1, it separ ates »
0 and §8;. On eliminating » and y from o

' 6+(2h—1)w 0, l+az—y=0, —"y+8m+lld:2+m/f 0
we gee at once thot there exists a unique 3,>0 such that (10) ,, passes through Si
For thig 3,, limi¥ oyoles or separatrix oyecles of (1) already disappear, since they
cannot situate in a half plane in which P s+ @y =0. Therefore, when a separa’mx oycle
T pagsing through 8 appears, it must be inner stable, because P +Q,,<O at ;. This
ghows that when & increages from zero, r cannot appear before some gtable limit
cycle T, expands and pasges through Sl I', may be I'y, at this tlme lnmt cycle »
around O is unique. But ag d increases, a semi-gtable limit cyole Iy may also apl ear
suddenly outside I'y, it then spits into I', DI (:31"1), I'; contracts, coincide with Iy
and then disappears, while I’ plays ‘the role of I’i, expands and ﬁna]ly ,becomes the
separatrix oycle T.

When I' (the limiting posi‘nj.on of T,) is an infinite separé,brix “oycle péssingv
through two critical points at infinity not diametrically opposite, we can Use the
ceriterion of Cage IT in .[1] o show that I’ must also be inner stable, . since at this
time the p091t10n and the characteristio roots of the oritical points at mﬁmﬁy and
hence the inner stablhty of T aze not affeoted by the appearance of the term 9§, in
the right hand side of the first equation in (1). '

Similarly, when. §>0, h<—%¥ no limit cycle appears around O, and ‘around N

- there can appear only an odd number of non—senu~stab1e Limit cycles if exish, 1’ |
In a gimilar manner we can prove:
Theorem 3 The system | _ .
T= ——y+6m(y 1) +le?+ny?, y=o(l4as—y) v (@

(in which l<—1— and 8<O) has an ocld number of non—semé—-stable cches around 0, if

ewist. The same cancluscorn also holds &f O cs replaced by N (0, 1/n). ,
Prroof When §=0, O (N) is a weak stable (unsta,dle) foous, no limit cycles eXJst
When 3 decreases from 0 o nega,tlve, 0 W) becomes a strong unsta,ble (sisable)'

- »
1) In case 3<<0 we need only replace’ “h<—-( ) by“ly >—2-( -12-> in the first line of Theorem 13 -

then the conclusion of this theorem still hold.,. .
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foous, and a gtable (ungtable limit cycle I'y(I'}) appears.
Notice thab ‘

L P,+Q,= S(y D+ @ =1a=0 .

isa stralght hne 1nterseotmg 1+az—y=0at (0, 1) when |31, a,nd it coinoides

with 1+aex—y=0 when d=3,= 1- azz <0 For thls value d=39,, limit oyoles around

0 (N) alrea,dy dlsappea,r So if sepa,ra’orlx oyole passmg through a saddle point Sy
(S,) appears around O (N), 81 (Sz) and O (N) mugt Lie in different sudes of the line
P,+@Q,=0. Since P, +Q,,>O (<0)a1; 0 (N), we have P +Qy<0 (>0) at-8; (8y).

Therefore, the separatrix oycle passmg through 8y (;5’2) is inner stable (ungtable), .

WhlGh has the same sta,blhty as 1"1 (1’1) the theorem follows a$ once.. .
Remark 1. The conclusion of the ’sheorem also holds if Z> 1/ 2 and 5> 01’ o

Theorems 1 and 2 show thatb the a,ssumptlon of the existence of I‘z for gystem-

(1) 1s 1neorrect Hence we. have proved

Theorem 4 F0fr system (1) it ds emposseble to hcwe a (2 2) d'bstmbuteon of R

limat cg/cles satesfyeng comlfz,teon 2).

Remark 2. 'Notice the reason that we can transform (D 1nto (9) (in which we ‘
bave no form mxy) Wlthouh a,ﬁ'eotmg the number of. limit ayoles around .O lies in

tho fact tha Some<0, or the same, that O and N have different stability.
Remark 3. From the whole procedure of $he proof of Theorem 4, wo goe that
the followmg theorem also holds:

Theorem 5. If in system (1),.0(0, 0) and N (O ——) are strong foce of deffefrent

stability, therrb around them there cannot appear (2n, m) non—seme—sﬁable l’lf’m’bt cycles '

where n and m" are Positive integers.

Hspecially, under the condétion of Theorem b, | @, 1),' (2, 2)', ' (2, 3), o and (4,

1), (4, 2) (4, 3), --- distributions of limit cycles are. all impossible.

Remark 4. Although we oan find in [4] an example of (2, 1 dlstrlbutlon, :

there the stablhtv of the two foci are the same and one of them is a weak focus.
Remark §. In [4] it was proved that the sys‘uem '
a: P200s9 stma g/ stma +Q20089
where 0<0<<1 Pg——-w'y,

1 . .

hag 2 limit cycles around N 1 (1 0), and one llmlb cyole arou_nd N 2( 2 0) Bub ‘here .

both N and N 5 are strong stable f001

" Remark 6. If 8,>0, me>0in (1), and the sys’oem is aetually known to have

two llml‘b oyoles Ty (stable) and I'y (unstable): such’ that FaDl"iDO ‘anda third

1) We congecture that the limit cycle is unique around-O-or N,
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one I'y (stable) around N, such as in [B]. In order that system (9) satisfies condi-

tions
8o m3+8”+81=0, m+m’3~81=0,
we can bake . ' ' ‘
—m0<m3<0 8i~m+m3>0 83 = — &g — fmo<0
Thig means that I'; always con’ﬁracts I’ 1 expands and Iy eon’ﬁracts in "y and Fs, but
I'; contracts and I'y expands in Fy. If we want that I'y and T’y do not disappear
under the applications of Fy;. and Fy, then, |m3| .and [3;| ‘musgh have certain upper
bounds; but then there is a possﬂnhty that, fmo+'m3 81—-0 may never be gatigfied,
On the other hand, in order that Wlo+m3 8,=0 be gatisfied, there iy a possibility
that I’y coincides with Iy and then disappears under the application of Fy; or Fy,.

Now, if we notice that even if i in eondltlon (2) Nis a stable weak foeus . e,
mo—m&,—o hence mo= ~ndp<<0), we can Sbill prove that (2 1), (4 1) (2 3),
(4, 3), - dlstrlbutlons of limit-cycles for gystem (1) are 1mpossﬂole usmg ’uhe same
procedure as before. Hence we can strenghhen a part of Theorem 5 ag follows:.-: _

Theorem 8. If in sysiem (1) 00, 0) ‘and N (0, 1/w)’ are sirong focs, then
around, them there cannot appear (In, 2m) distribution of non-semi-stable lims oycles;
where n and m are positive integers. |

Proof Take (2, 2) distribution as an example, Suppose that at thig time condi-
’olon (2) ig replaced by _

eSS0 (0,0), I'4DIVDN(0, 1/n),

Where 0 and N are both strong unstable fooi, T'1and I, arestable limit cyoles Ty

and I are unstable limitb cyoles ‘Then we can apply Fy, Fy and Py 1o system (1)

suitably, so that I'/—>N and N is changed into a stable weak fosus, while I'y, I'y, I
gtill exist. But such a (2, 1) digtribution of limit oycles is s’alll 1mp0951ble for system
(1), as we have just mentioned. o :

'The author conjectures that by using the method of ‘this paper, maybe other

problem relating to the disbribution and number of ]_umt oycles of real qua,dratlo:‘

dlfferentla,l systems can be solved la’ner on,
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