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Abstract

In this paper, singular integral equations with upper and lower translations are
diseussed and the oquivalence for solving them in X and H, are shown. Equations with a
single pair of upper and lower translations are studied i detail. Their solutions as well

_ as'the conditions of solvability are obtained. -The method used comsists of transferring:
them to boundary value. problems of ana,lytlc functlons in upper and lower ha,lf—pla,ne&
and then solving the latter. '

§1. Equations with Translations

In practical engineering, cerfain mechanical problems (for exﬁmple, éf; [t 2D,
are reduced to solve the singular integral equationg (SIE) of the following typs:

mp(t)—i— b J ‘P(5'> d'r; é _Cri _J'+°°_ o(v) dr

651 2w ) (T —b—0i;)" ,

—.k,jél 26207;’7/ —co (zp' q)t( >B)k dT:f(br —°°<t<+°°) <11)

where a, b, ¢y dis oy Bjare glven-oonsta,nts sa’oisfyiqg fhe condition of normal type
a —-b"‘#O N (1.2)

Ima,>o Tm Bi<0; =1, vy i - (1.3)
funetion f 'belongs to Holder class on whole real axis, denoted ag f € ﬁ @ should be-

and

solved in H. o; and B; are called upper and lower translations respeetlvely
Equa.tlon . 1) is called an SIE W115h tra,nsla,tlons a; and ,8, in H

We deﬁne a gubolass of ﬁ

H={fIfE€R, f(o) =0y oy
If f€ A, and p should be solved in Ho algo; then (1 1) ig sa1d 1o be an SIE m'

00
For brlefness, J is abbrlevaated to symbol J-
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H,. We show that the disoussion of SIE in H may be reduced ’ao- that in A, o. For

this purpose, we give the following lemma,
Lemma 1. If f€A*(0<u<1), y=Tmz+0 and p>1, then )

|f () = f (o) | M '
R e a9
where M s a constant independent of z. In particular, for natural nuwmber n, we have
@), < :
ey | < -5
Proof Note that '
LG {COUPREYY S
J Teelr A T
while . :
e T J =
1Ti121/2 ]'r;l [v—2]? lzl“ |7 —2|? [z |7 —dy[?
, TTel Iyl” - J(v P+ - |
J - da‘ 4 J~|zl/2 d 21+u ’
R e e AP S G P |
hence (1.5) ig proved. Thenoce (1.5)’ ig evident gince J-ET—;‘%TJ:O.'
Now, lettmg t—>c0 in (1.1), we obtain
rp(c0) =f(o0) | 1.6)
by the above lemma and the results in [3], where ‘
r=at Noy—du). .7
If we congider the equation L '
: b [ oo(w) < Cuj 9o (7)
apo () + ' J 71 d7+k,12=1 2wt ) (v—t—oy)"® do
s J @o(7) —_ —
o Bt ) et gy o) meo<i<tes, 1.8

in H,, Where Jfo(t) =f (@) —f(c0), then the solutlons of (1.1) and . 8) are related

a8 follows.

Theorem 1. (@) If v+0, then equatfz}on . 1) in H and equwtéon '(1 8) in Ho
are both solvable or not and if they are solvable, their solumorrbs are frelwted as

20 — () +- f (°°)
(ii) If r=0, then f(o0) =0 és @ necessary cmol@t@on foa‘ the solwb@lwty of (1.1) én H;
of this conddtion is fulffz,led then d.1) én H and (1.8) in Ho are both solvable or nos,
and 4f they are solvable, their solutions are related as
(1) =po(t) +0, |
where O &s an wrb@tmfry constand, o
In the sequel we always assume (1.1) is given in A\, which Would give rise to
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great convenience in digcussion, .

The methods of solving squation (1.1) in gome simple types were studied in[4],
but the results obtained there have some limitation. In this paper, we investigate
the case in which only one pair of upper and lower tranglations appears in (1.1)
and obtain complete results. The equation congidered here may be written ag

b (oM@ ¢ o(7) __d J’ o (v)
atp(t)+au7} ,[ 7—d brt+ 2m% J v—t—o & 2% ) v—1t—8 dw
=f(), Ima>0, Tm B8>0, —oco<t<+00. (1.2)

‘§2. Reduction to Boundary Value Problems of
Analytic Functions

Introduce notations

A 90(7) dy, Imz+£0,
sn =]
{ =
1 ‘P(’b‘)
Pl R =z, Imz=0
and projection operators
Se) (), Imz+0,
S*p) () = ]
%) @) { 15 0 +5 (50 (), Tm =0,

Then (1.9) may be rewritten ag

(a-+) (8*0) (8) — (a—b) (879) () +0(S*p) (4-+0) ~d(Sp) (¢-+ )
= (8*F) () — (8~F) (), —o0<t<+00. | (2.1)

4 = {(w—{— B) (8%p) (2) +0(8*p) (s+0) — (§*f) (2). Ime>0,
(@—5) (87p) () +d(87p) (2-+8) —(87f) (), Imz<0. |
By (2.1), 4(z) is an entire function with lim A(z) =0, **’ and hence 4(z)=0. Thus,

200

(a+Db) (S*(p) (2) +e(S*p) (z+a) = (8*f) (), Imz=>0, 2.2)

(@—b) (8~9) (2) +d(S~p) (z+B) = (§-F) (2), Imz<0, (2.3)

Denote the clags of functiong analyfic in Imgz=¢>0 (<0) and &€ H, on y=0

(<0) by A“‘f[o (A~H,). Then 8f and 8*p€ A*H,, Obviougly, to solve (1.9) in
a o0 is eqmvalent o solve the following problems in A*H oand 4~ Ho Tegpectively:

Let

Dt (z) = 7\.'15*(2+a)+ (S*f)(z),y>0 (2.4)
T~ (5) = 0~ 2+ B) +— 1 b<S"f)<z), <0, @B
where -
A=—c¢/(a+b), p=—d/(a—b). (2.6)

Preocigely, we have the following theorem. : :
Theorem 2. If g is @ solution of (1.9) in B, then 8*p and 8~p are solutions of
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(2.4) in A*H, and (2.5) in A-H, respectively; comversely, of O (z) and D~ (z) are
solutions of (2.4) in A*Hy and (2.8) in A ﬁo respectively, then p(8) =& (1) — &~ ()
¢s & solution of (1.9) én H,. ,

Thus, we need only discuss the methods of solvmg (2.4) and (2.5). Introduce
translation operator T',:

(Tag) (2) =g(z+a).
Then, (2.4) and (2.5) may be written in more compact form:

B+ (2) =M (T.D*) (8) + —~3‘—<S+f) @), >0, @2.7)

&~ (2) = u(Ts®) () +—=5 (8F) (2), y<0. | (2.8)

We would discusy the methods of colvmg (2.7)" (in A*Hy) and (2. 8) (m
AH o) for different cases.

§8. The Case (M| <1 or [u]|<1
By (2.7), we have immediately by -itera,ﬁi'on '
B () =g BWTISH) () +1+ (T8 (), 9>0. (3.1)
Assume [A] <1 in th1s seotion. Thereforo, if (2.4) hag a solution in A*H. o
then, letting n—>oo in (3.1), we have
- P (Z)—————— Z N(TI8*f) (=), y=0. (3.2)
In fact, we may verlfy it is aobua,lly a solublon of (2.4), for, by.denoting |S*f| =
msx [ (1) (&) |, then - L
v> ‘ : R A
: (M(TISH) () | <IS*F (AL
The series in (8:2) then converges uniformly (and a,bsolutely) on y>0 and hence
we eagily know @*(2) € A+7§T ‘ ‘
Snmﬂarly, We may obtain the solutjon of (2 5) in A ﬁ
A @—(z)..__.._z,,, (THSF) (@), y<O, (3.3)
when [,wl <1.
Thus, we obtain
‘Theorem 3. When [A]| <1, problem (2 4) has-unigque solution (3.2) in A*ﬁo, '

when | w| <1, problem (2.B) has unique solution (3.3) in A~H,.
- These results are the $ame with those in [4] in faob.

§4. The 'Casé I:?vl.-_<1‘ or_“w‘l <1

.. Now we assume A=¢" (0<0<2w). As above, we know that,. if (2.4) has a
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solution, it mush be A S
df*(z)—————Ee’”('-”&S*f) (2, y=0, 4

and the series appeared in the 11rrh1;~hand member ought 130
(A) oconverges un1form1y on y=>0,
(B) belongs to A*H,.
Conversely, when condition (B) ig fulfiled, it ig nob hard to verify that (4.1) i a
solution df (2.4). Thereby (B) implies (A). We aall (B) the condition of solvability
for (2.4).
" This condition of solvab1hty ig eggentinl when A =1, In faot, ’ohere exigty funchon

F® =33 whlch does not satisfy this condition, sinoce 2 (T’S*f) (0) = 2 w-—l—ga
J.—
dlverges |

Now assume A=e¢%, 0<0<2w. We may show that (B) is falfiled automatically.
Let us verify condition (A) ab ﬁrs’ﬁ. Denote a, =5”21 ¢?, the n

|@,| <2/(1.—cos8), n=1, 2, «, (4.2)
We have ’
. lim(TZS""f) (Z) =07 y>07 ' (4 .3)
uniformly and ) -

31| @EI84) (o) — (TSP (2 |

| L f@ || _v=r—ja

< ]2011 y=1j] (z— 27‘7“)2! 7 Z-z(gil)a
o o )14

<R+ 523l fﬁ;,a)zl g

Ml | o]
<o ( Im o f—l [Im(z—i—ja))”"

<M<(“[+‘“‘”)2,.1 (byLemma D). (4.4

P (Imoa) 2+4 =~ ‘,)1+u

Noting (4.2)—(4.4), we gee the geries in (4.1) converges uniformly on y>0 by
Abel’s trangformation and :
) — + - f (’V)d"f 4
O @ = $N @y Say j[w ey SO
To verify condition (B),  we need only verlfy the geries in (4.1)€ H on y=0 ginoe
(A) ig already fulfiled. For any 21, 2, (Imz;>0, Imz2>0), by Lemma 1,

e+ ) ()~ S0 @) )
<-—2W()< ) L

2w =1 TR —j6 T jo

<lial Sl SO o] 1@ __la]”

2. (7—2 (v—21—ja)? |

+b
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<M[zi-z2[ﬁl:[Im<z2+ja>1m<zi+ja)]~<1+'u>/2
M [#1—2a| < 1 | _ .
(Ima)l'“‘ Z} j'1+-u' ’ (4'6>
To verify H condition at co for @*(z), we need only verify it for ity boundary
values; by noting (4.5), it ig sufficient to verify it for function

J(n)dv oo
0(@) = 2“’.[[7 @ — (j-i—f)a][r —g—jal’ <ot

Note that £ € A% and we may agsume %< 1/2. Take 0<v<w. Then,
l@(mi) D (as) |
24 | w1 —ws ¥ ij dr
1—cosf A [+ |*|v+ov— (G+1)a][v—ja]
24 (w1 — w5 ("

<= *‘ILof!a)_lfwwi[ {'c'-fzgl“(«v~ja[2
<4(él”—?a(£o[:;;[2[a ZU 17+wi[v(7j22;%17§5a1'2

+] mwi;u[;f;i%-ja{%} o
<-4(£1[ﬂ<)[:§;1ﬁ§g é{(f m%[fﬁi-jaw J ['z‘[zuirfzg-jalz)l/’

+<J{r[”"['vd; —jal® J lvl"”(vﬁvzﬂ'alzylz} |

LAM [af |m—m|® &/ 1 T 1
ST co(:a)w(ilmma)z §<(m1+ga[ 1w2+ya["+;wi+ja|«lm2+ja[v)"‘

<

SAM ol L1l e [P e |1
(1 GOSH) (Ima)zw—v Uy Ta | 7_1’ wi’l‘ja l (D2+ja i j1+u—v
16AM a]? _lirs 1
STA cost) Ima) T |y wg | 122 Y

i It may be similarly dissussed for p=e"?, 0<6<2m.
Thus, we obtain the following theorem.
Theorem 4. (i) When A=¢®, 0<<2m, problem (2. 4) in A*Ho has w/wque

solutbon (4.1); when A=1, iis cornd@m(m of solvability is
iQ +
o 2 TS @ € 48, (4.7)

and the Zeft~hwnd member is its unique solution when this condition 48 fulf@led (11) When
w=6" 0<0<2m, problem (2.B) én A~ H, hws unique solutdon

o~ (2) =———-— 2 ¢ (TH5°f) (z) y<0 (4.8)
when w=1, its condition of solmb@l'z/ty is
8 @e A-ﬁm . - (4.9)

and, the left-hand 'me'mbe')‘ bs Gts unique solution Gf this condition ds ful f@led
Remark 1. By (4.8), we find that, if series (4.7) converges ab certain point
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on =0, then it also converges for any y=0.
Remark 2. By Privalov’s theorem™, we know that, ‘o verify series in (4.7)
€ A*H,, wo need only verify it takes value 0 at co and its boundary values €A,

§5. The Case || >1 or |p|>1

Now we disouss the cage [A{>1. We have
Lemma 2. If f(3) € H, and o is real, then ¢'f (%) cH,.
Proof It ig sufficient to prove ¢ *f (t) € H in the nelghborhood of oo, For any £,
ta(— o0 <ty, tg<<+4o00, [b1]>ta]),
A= (e (ta) — ' 7"f (ts) |
<UF () = () |+ 1F () | [ o=
‘When [#3—134|>1, then
A<|f (o) =F (t0) | +A[2a] ™
<If (&) =f () | +A[t1tzl“"’2ltz‘-—til“/”

= I£ ) =F @) [+ 4| = E |

when [f;—%[ <1, then
A<|f () —F ) [+ 4| o] ltital "’”[tz—til

The lemma i proved.
For f@e H,, we introduce the followmg operators (o is a real parameter):

q J "m’-f('b') dq;r yaé()

TH@=] T 6.1)
o %) =3 ' i - .
. %J‘%—Ldr, y=0; |

(L) @), s |
e { Lo @+ 5 @@, y=o. €5

The following gsimple fact would be used fréquently.
Lemma 8. (i) If F*(z) E A‘*ﬁo, then (L F"*) (z) may be ewtended fo an entWe
' functfwn with

hm(L F*)(Z) 0, _ (5.8)
lim [ (L5 Ff)(z)+e~i°zﬁ’+(z)]=o | o (5 4)

: y>0

(i) If F- (z)EA" 0, than (L*F ) (2) may be ewtended fo am entire function

with S : :
Em(BEF) =0, . (5.5)

w=0 -
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Hm [(LgF~) () —e™"F~ (2)] =0. (5.6)
: 538 _
~ Proof (i) By Plemé.j g formulag
(LgF*) (1) — (L“I” PIOET A *(i)
By this, on putbting :
V() = {(L*F*) (2) — e~ 92 F* (), y>0, (56.7)
' (L;F*)(2), . y<O, ' (5.8)
we know that ¥'(z) is an entire function. Obviously, we have (5.3) and (5.4).
+(ii) may be gimilarly proved. ' :

For gimplicity, symbol (L~F*)(z) in (i) will denofe the mentioned entire
funotion, but it should be reminded that its expression is given by (5.2) when y=0
and by (5.7) when y<<0. Symbol (L*F~)(z) in (ii) is similar,

Lemma 4. If £ € H,, then

(1) when 0<<0, B ' .

(Lz8*%)(2) =0 (for any 2), ' (5.9)

(Ls8%f) (2) =6 *(8*f)(2), y=0, (5.10)
- (LE8f) (@) =7 (84 f) () — (LEf) (), y=0, - (B.11)
(LS () == (Laf) (@), y<0; (5.12)
(11) when 0=>0, ' | :
(LE8=f)(2) =0 (foranye), - . (B.13)
(Lz87f) (@)= —e™*(8°F) (), y<O, . (B.14)
- (LS (@) = (Laf) (2) —e™*(87) (), y<0, (5.15)
(Ls8*f) ()= (Lzf)(2), y=0. (5.16)

Pfroof (L;8%f) (2) is entire by Lemma 3 and
lim (L; S*f)(2) =0, 0<0,

by (56.3) and (5.4). Henoe (5 9) ig valid,

Noting the expression (5.7) for the enfire funection (L7S*f)(z) on y=0, we
obtain (5.10) by (6.9). Using them, we have (5.11) and (5.12) regpectively.

(ii) mmay be proved analogously.

Lemma 5. (i) If F+(z)eA+ﬁ' and Tma >0, then

(LT F*) (2) =64 (T Lz F*) (2)  (for any 2), (5.17)
(LETF*) (2) =6 (TLEF*) (2), y=>0. (5.18)
(11) If F~(2) € A-H, and TmB<0, then
(LETeF~) (2) =6 *(TLiF~) (2) (fofr any z), (5.19)
(LToF") (2) =°# (Tl F™) (2), <. (5.20)

Pfroof Noting the expregsion (5.7) of L F*(z) on y>0 we get
' (T L; F*) (2) = (T WLEF*)(2) — 670+ (T F*)(z), y=0,
and noting the expression of (L;T.F*)(z) on y=0, we got
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(BgToF*)(2) = (LzTol*)(2) =e™*(TuF*) (2), y=0.
Subgtitubing the latter into the former, we obtain
(TL7F*) (2) — o~ (L;TF*)(2)
= (Tl F*) (2) —e™* (L Tol™) (2), y=0.
Noting . that the left—hand member is an entire function and congidering the
properties of both gides at oo, we know (5.17) and (5. 18) are valid.
() may be su:mlarly proved. -

Let :
£=In|r|/Ima - : (5.21)

and denote Ae#*=¢"(0<<0-<2w). Applying operators L} and L; to (2.7), we get, by
Lemma 5

(L) (2) =6* (T Lf @) (2) +w—}r—3(L§' S8tf) (), y=0, - (b.22)
(Li®*) (2) = (T Ly &) () +3}3 (LiS*f) (), foranys.  (5.23)
Denote w*(z) = (L{d*)(z), then (5. 22) Tecomes the following problem, in A*H 0!
(D) = (Tt) () +—r (L@, 920 (5.24)

(Ly®*) (z) ig an entire funoction by Lemma 3 and €A Ho, e‘ﬁ'z(L‘c D+) (z) E AT Ho
Therefore, on putting w™(e) = (L; &*)(2), (5.23) becomes the following problem of
entire function: = .

W (2) = 6 (Tur™) () +

Mb'(L;s%f)(z) (for a,n_y 2), (5.25)
w™(2) € A~H,, | . | (5.26)
¢ (2) € A*H,, - S (8.27)

* whioch will be called a problem in A,H,.

The following lemma ig obvious, ‘

Lemma 6. If &*(z) is the solution of problem (2.7 ) in A*ﬁo, then (Li®%)(z)
4s the solution of problem (5.24) in A%, H and (L;®*) (z) és the solution of problem
(5.25) in A H,; conversely, if w*(z) 4s the solulion of problem (5.24) in A*Hy and
w™(2) b5 the solution of prcblem (5. 24) in AH,, then @*(z)= e‘f’[fw*(z)—fw @)] is
the solution of problem (2.7) in A*H,.

Problem (5.24) in A*H, has been already solved in § 4. But we should note that
problem (5.25) is not a problem in A*H, in general, hecause the given -function
(Ly8*f)(») and solubion w™(2) € A*H, in general (otherwise, they are identical to
zero). Howsver, by noting (5.26) and applymg operator T . 150 (5.25), the problem

-ig transferred to the followmg problem in A H 0! ‘

w(2) =e” “’(T-aw )(z)— (T—was+f) @), y<0. (5.28)
No doubt, the solution of (B. 25) in A ﬁ 0 is neoessanly the golution of (5.28) in
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A~H,. We prove that the converse is also true.
First, if w™(z) is the solution of (5.28) in A~H, then (5.26) is valid
evidently. |
Secondly, by noting that the funotion (T'_,w™)(2) in the right-hand member
of (5.28) is analytio in y<Im e« and continuous on y<Ima (€H, in fact) while
(T_.L;S*f)(z) is an entire function, it iy eagy to extend w~(2) o an entire function
by (5.28) (retaining the symbol ™), then (5.28) is valid in the whole plane, i. e.,
(5.2b) ig fulfiled.
We ocall suoh a function w~(z) satbisfying (5.25) and (5.26) an upper
pseudwolution of (5.25) in 4,H,. Evidently, it posgsesses the following property:
| limw™ () =0, 0<y<Ima. (5.29)

Thus, we have |

Lemma 7. The solution w™(z) of (5.27) in A~H, (afte'r etension) ds an upper
pseudo—solut@on of (5.28) in AHo.

Note that the upper pseudo-solution could not be thought as the solution of
(6.25) in A,H, ye since we have abandoned the .condition (5.27).

Analogously, we call an entire function satigfying (5 256) and (5.27) a lower
peeudo-solution of problem (5.25) in A4,a,.

It is very evident that an entire funotion being both an upper and a lower
pseudo-solution of (5.25) in 4,H, is the solution in 4,H,.

Lemma 8. If w(z) is the solution of problem (5.28) in A~H,, then rw*(z)-—-

e (Lt .w™) (z) 4s @ lower pseudo—solution of problem (5.25) én A Ho.
Proof By Lemma 3, w*(2) ig an entire funotion and ev1dent1y
et (z) = (Lt,w™) (z) € A.*Ho,

i. e., w*(2) satisfies (6.27).

We may prove

ToLtiw™) (2) = %6 (Lt~ ) (2)

‘“% e ¥t (L 8*f)(2) (for any 2). (5.80)

For this purpose, note that application of T, L*, o the right-hand terms of (5.28)

would give regpectively
(T, L+ T_,w)(z) =e**(Lt,w)(z) (for any z), (5.381)
(ToLit T Ly 8*f) (8) =¢#* (L, Ly S*f) () (for any z).
In particular, by (5.11) and (5.7), for y=0, _
T LffT-aLs 8*f) (2) =e**[**(L8*f) (2) — (8*f) ()]
| = KD (LrS*F) (5); (5.32)
~ but the functiong in both sndes are entire and go it is valid in the Whole plane,
Oombining (5.31) and (5.82), we get (5.30), by which we have
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w*(2) =e (T _qw 78%f)(2) (for any z). (5.33)

-

This means w*(z) satisfies (5.25) and the lemma ig proved.
By the way, we mention thab
lim w*(z)= lune #8( I% 07 ) (2) =0, 0<y<Ima (5.34)

200

Lemma 8. The solution w™(z) of (5.28) in A~H, is identical to w*().
Proof Denote 3(z) =w™(z) —w*(z), which i entire as proved hefore. We have
8(2) =6®(T,0) (z) (for any z), (5.35)
limdé(z)=0, Osy<Ima. (5.36)

Fandcd

They follow from (5.28) (valid in the whole plane!), (5.33) and (5.29), (5.34)
regpectively. Hence d(z) =0,

By Lemmas 7, . 8, 9, we know that the solution of (5. 28) in A-H, is also the
solution of (5.25) in 4,H,. Therefore, solving these two problems are equivalent.
Thus, Lemma 6 may be restated as follows. ' | .

Lemma 10. If &*(2) s the solution of (2.7) in A*H,, then (LF®*)(z) is the
solutéon of (5.24) én A*Hy and (Ly®*) (z) 63 that of (5.28) in A"ﬁol; conwersely, of
w* (z) Bs the solution of (5.24) in A*Hy and w™(z) és that of (5.28) in A"ﬁo, then
v (E(z) —e‘f”[fw*‘(z) w(2)) (6.37)
gs the solution of (2.7) im A*H,. |

Remark 8. By (5.10) we know that (L*;rw“) (#) =e**wt(2). As we have shown
(Ltew™) (2) =6¥*w™(2), we may write (5.37) in another form:

D(z) = (LE;w) (2) — (Ltsw™) (). ‘(5 38)

Since problems (5.24) in A*H,y and (5. 28) in A-H, have been solved in § 4,
thereby we have

Theorem 8, If [A[>1 and denote A= e“‘“e"’(0<9<2m:) where & 93 given by
(b.21), then

(i) when 60, problem (2.7) has @ unique solution dn A"H o with boundary value
RO (N j ) g
? <i> 2(w+b) +w+b ;0201!’& o—t— .?“
+ g%t = o~ J' —;{frf(,v)
S a+b = 200 ) v—i+jo
1 <1 Sf(w)dv |
“a—b A M2wt J v—i+ja’ - . (b.39)
(1)  wnen 0==0, then the conditions of solvability of the problem (2.7) in A+H,
areé

< #7f (o) ¥
e fj; L ;a dv € A*H,, (A5.40)
$ 1 (5O g 4p, - (5.41)

=1 2% J v—2+9a
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and 6t has & unique solution with boundary value (5.39) if they are ;w%é-sﬁsd.
Proof (i) When #+#0, we need only calculate w*(z) by Lemma 10. Since
w*(z) is the solut on of (5 24) in A*H,, using the results in § 4, we have
w(2) =—+ E e (TLLEf) (=)

(L) )+ g ad j TS 4y gm0, (5.42)

wt ) v—2—ja

T + b
Similarly

w™(2) -

5 20 (TLLE) &)

1 "_‘WJ’. e~ (7)
a+b 21 2w% J v—2+jo dv

~ifz oo .
+ c(:+b % K’Ziavfb J wfj':)—g;‘a ! g/<0 ' (6.43)
By (5. 42) and (5. 43), we obtain (5.39). -

(ii) When @=0, by the results in § 4, the condition of solvability of (5.24) in
A+H, ig that the series of the last term in (5.42) €4 'ﬁIo,, i. 'e., the condition
(5.40). Similarly, thabof (5. 98) in A~H, is that the series of the last term in
(5.48) € A~H,, which is acbually true by results in § 3. Hence, for requiring w™(z)
in (5.43) €4~ H,, we need only require (5.41).-

Asgan 111ustratlon, we take f(£) =¢*!/(t+4). In this case, (5 40) ig not fulfiled
“while (5.41) is fulfiled. So (5.40) and (B.41) i8 independent to eaoh other
For problem (2.8) in A~H,, we have analogous regults:

Theorem 6. If |w(>1 and denote w=e""Pe®(0<0<2m), where
- p=In(u(/ImpB, ' . - (B.44)

then, :
(i) when 0, (2.8) has undque solutfborn, (2.6) with bounclwrry volue

e i int oo ijo [ -umr
0=~y i—basm-h L

. et ie‘”"J “’”‘f(q;)

Ta—~b = 2wt ) v— t+gﬁ
T a5 g‘i‘ w;m J rff_:f;,'e; - (5.46)
(i) when §=0, the condétions of solvability for (2.8) are
| Somr ) o W;f(;> dweAHs, (5.46)
S gy | Sy e 4R, (5.47)

and it has a unique solution still Wrbh boundary value (5.45) if thoy are
fulfiled. ' ' '
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§ 6. The Solution of Equation (1.9)

We ocall the get
S={( w)[(A=1, [u|>1, Ae¥*=1 or ue"®=1},

where £, % are given by (5.21) and (5.44) respectively, the singular geh of
equation (1.9). By the previous dlsoussmns, we ob’ﬁam the main regult of this paper
ag follows, '

Theorem 7, If f(2) EHO, then

(1) when (A, w) ES, equation (1:9) in Ho has unique solution

(1) =2*(H)—2~(4),. - ‘ (6.1)

where Dt and @“ are Jiven tn Theorems 3——6 a‘espectwdry wccoa‘dfmg to the com'espmdmg :

cases; y
(i) _zbhen (A, w)ES, the conditions of solvability for (1.9) én Ho are given in
Theorems 46 respectively, and it also has unique solution (6.1) if they are fulfiled.
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