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.Abstract

Reasoning expressions are those which express the reaasoning procedure by means of
only deduction rules and the initial formulas (axioms or assumptions) without the help-
of any intermediate results. They express the procedure systematically, completely and
concisely. The deduction rules are mappings from formulas (premises) to formula
(conclusion). The elementary rules are certain propositional connectives (but not
necessarily truth funetions) while the higher rules are certain quantifiers, Besides, the
detackment rule is an inverse of the connective implication, and is itself the kernel of
deduction method; while another inverse of implication (i. e. the suggestion rule) is the
kernel of induetion method. ’

§1. Reason_ing E_Xpressions

We need a long time to understand the reasoning procedure. When we begin
studying geometry in middle school we are told to write the reason for each step.
However it requires. only fo write out the theorems (formulag) used without
mentioning the deduction rule applied. Evidently the deduction rules applied are
neglected and the reasoning procedure iy exp’reésed imcompletely. Later on, when
representing the reasoning procedure we generally give a list of formulas (i. e.
intermediate results) connected by such words ag “hence”, “therefore”, ‘‘fogether
with so and so we have::-”, efo. Sometimes we use also words “Beside”, “On the other
hand”, eto. to hint that we restart the reasoning. Some persons, however, would not
bother about such hints at all, they use solely “hence” and “therefore”, or solely the
gymbol “=", go that the readerg could hardly follow their reasoning. In the papers
published in periodicals the authors, ag a rule, omib a great deal of (obvious)
intermediate results whioh should be supplied by readers when reading the papers.
Since such supply ig difficult to be done it ig the main cause that such papers are
very difficult to read.
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At the early stage of mathematical logic, B. Russell and A. N. Whitehead™
emphagsized the distinction between principles (i. e. deduction ruleg) and (pfova.ble)
propositions([5] p. 98, especially the note, p. 106, efc.). Yet they did not correctly
know the nature of deduction rules (for example, they listed the defachment rule
ag one of primitive propositions), hence their words about the distinction are not to
the point. It i from later logiciang that we know correctly the nature of deduction
rules and can dis-bingﬁish them from provable formulas. To compare with production
in .a factory, deduction rules correspond to machines, the (provable) formulag
correspond to raw materialy, applying rules corresponds to driving a machine. In
order to express completely the reagoning. procedure, therefore, i ig necesgary to
write out fully in every step the appliéd rules together with corresponding provable
formulag. This i the requirement proposed by mathematical logicians. Such
expregsions are very cumbersome and unmanageable indeed. Except very few
ingtances at the very beginning, no one would uge such expressions henceforth.
Logicians develop various concise abbreviated formats instead. "All of them,
abbreviated or not, depend heavily upon immediate results, without which we could
not understand the expressions at all. In other words, we have to List sucoegsively
conorete intermediate results. Reagsoning procedure would be expressed by a ligt of
concrete formulas (perhaps attached with applied rules).

In contragt o this, we may express the caloulating procedure without the help
of any intermediate results. For example, we have the following reasoning procedure

(in the Gentzen s sequent calculus):
(1) A—A (2) B»>B

(4) H>ADB “(3) ASB, AsB .

4) ~(5) H, A>E (6) H, B>D Jub
B () H, A>D Cub
In caleulation, thig corresponds to the following:
- Wi s,
() 82 (6) 3
(7) 96 X
But we have a much better expression to fake place of (B), that ig
©) (4% (8-+5))#3 or
| (B =((D+(2))=(8).

(0) is superior to (B) not only in its concisensss but algo in that it expregsey
the whole caloulation procedure without the help of any intermediate results.
Furthermore, the initial datas may be arbitrary (e. g. variables). Thus we get the
concepts of “algebraio forms”, “equations”, ete., with which we promote greatly
mathematiocal soience, Besides, becauge we make use of variables and discard the
help of conorete intermediate regults, we should think about such deep properties ag
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the commutative and associative laws which would be neglected if' we were
caloulating for ever the concrete numbers (ag do pupils in primary schools). It is
evident that the expression (A) corregsponds to (B), hence we may gay that the
expression we now uge for reasoning procedure remain in the stage of primary school.
It is urgent that we should have a bebter expression (corregponding to algebraic
expression) for reasoning procedure. Such expregsions would be called reasoning

. @XPresyion:..

‘Wo would agk: “could we (imitating (O)) write (A) as follows?”

(D) Cut Out (4) D—(1) (2) (6)

According to the present usage, “>—>(1)(2)” denotes only the application of
the rule >— to (1) (2), and not the formula (3) (i. e. the result of the application);
hence “Cut (4)=—>(1)(2)” is not well-formed and so neither is (D), that means
(D) is not available. Itis, however, very natural and convenient to let “D—»
(1) (2)” denote the formula (3), i.e. the regult of the application of the rule D—>to
(1) (2) (and not only the application itgelf), If so then (D) is available.

(D) is called reagoning expression which we may define recursiveiy as follows.

Définition (1) (Initial) Formulag are reasoning expressions;

(2) If ay, o, -+, @, are reasoning expressions, and R ig n—placed rule (i. e,
deriving a conclusion from n premises), then Rosoty+ -, i8 Teagoning expregsion;

(3) Reasoning expressions are thoge obtained by (1) (2).

We would note that there are two kindg of rules, elementary and higher rules,
the formulation of item (2) should be modified correspondingly for thege two kindg
of rules (see below). .

The reasoning expression is strange to us, and if is difficult to write and read
at present. Bub from the experience about calculating expresgions and aboub
programs in computers, it iy evident that with only very few training we could
write and read reasoning expressions quite easily just as we do for algebraic
expregsions. We propose that reasoning expressions. should be taught and employed ag
early as possible, preferably ab the same time when we learn algebraic expressions;
ingtead of teaching get theory in middle gchool it iy bebter teaching reasoning
expressiond. Thug we could write and read the concige reasoning expression without
having to check and to supply the long list of intermediate results.

§2. The Nature of Deduction Rules

- Bince we regard “Raay--a,” as the result of applying R to the premises ay, o,
wee, &, What ig commonly written ag ' ‘ SR
’ - R; o, aig) 0+, oa}—f8
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should be written ag Rouey+-a,=8. Deduction rules are regarded as mappings from
formulag to formula, i.e. as propositional functions.

Ruleg are divided info two kinds, elementary and higher'. The former does not
contain bound variables and corresponds %o propositional connectives; the latter
containg kound variable and corresponds to quantifiers.

The most important elemenﬁéry rule is the detachment rule, it reads (in
ordinary formatbion):

D:  aB alB

and, ag mentioned above, we would write
D(a—>B)a=p2.

The higher rules may be characterized as follows. A% least one of it premiges
oontaing at least one variable which could not be substituted by constants or
complex expressions when being applied. Such variables are called rule variables (or
hard variables). They are genuine bound variables, ,

There are two important higher rules, the substitution rule and generalization
rule. o |

The substitution rules are still divided into two, thab is, gubgtitution for
individual variableg and substitution for propositional variables; they read:

(85): al@) [Fa(é);

(89 a(p) [2a(B). |
When the rule being applied, the « or p in it should be variable proper and could
not be substituted by constants or complex expregsions, For example, the following
deductions are illegal: S

a(3) - (16),
(2 +2) -a(16).
Tt should be emphagized that the symbolism “a(e

or

” and “a(¢)”need many

explanations to olarify them; hence it would be better to use the subshitution

operators (é:), <'8> ingtead. And then the substitution rules would reafl thug:
o/ \p _

D «t2(f)a

@x
oo w22

The opérr’ﬁor (§> may be defined recursively ag follows (similarly for < '§>)
y (€
@ (

>a=J(~‘--, £, +-+) when o ig the atomio formula f (-, & +*);
7 .
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@ (£ )a=1(£ ) when s e
- ®) < i>a=< i) go ( i )y when a is Boy and is a two-placed connestive;
@) <i>a= <g>,8 when a s (3)3 and Q is one of V or 3;
®) <i>a <§><i>/3 when a i <§>B, y+ 2 and y is not free in &
© (£>a=<§><i><;>ﬁ when o i <§>3, y+5 and g ocouzs free in &, hero z

ig the first variable whioch oocur free neither.in & nor in §.
Another important higher rule is the generalization rule, Whmh reads (in
ordinary formation):

(O o)

() st L) st
B—a |= B> o, where  ig not free in 8,

Ag mentioned above, we would write

(D)= (F)e=(5)e
()= ()

<i1><ﬁ_9¢)=/8_> <:>a (% is not free in B).

It ig obvioug that, for example, the substitubion rule ig sharply distinguished
from the operator of substitution in the ordinary formation; the former ig uged in
reagoning procedure while the latter is used in the formula-formation procedure.
But sinoce we regard the deduction rule as mappings from formulag to formula, i
there any difference between them?

' S,
Now, we have ( §>a= ( §>a; the only difference between rules and operators
7 @

seems to be: the deduction rules are applied only to provable formulas while the
operators could be applied to arbitrary formulas, not necesgarily provable ones.
However, in the fleduction from assumptions we have applied the deduction ruley fo
unprovable formulag (i. -e. assumptiong) already; hence it seems that we have no
reagon to keep this distinction any longer. In other words, we should identify the

. £ ‘
subgtitution rule and the substitution operator, denoted by ("’ ), < 'ﬁ), and should
w .
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. . o e : . \4
identify the generalization rule with the universal quantifier, denoted by ( >
@

Thege rules would read thus:

(el (O
(e o (2)rms=(2))

The first three are tautologies; i.e. special cages of the laws o=g. The proper contents
of them should be formulated thus:

If & ig provable, then go is ( §>“ and< B)a;
v p

If « ig provable, then go ig ( v )oa.
@

Or we may write these two sentences ag two itemg in the recursive definition of
“provable formulag (or theoremg)”.

‘What about the detachment rule D? We know that the eonnectlveetransforms
aand B into e—>B, while the detachment rule frangforms «—B and « into B.
Remembering that the addition + fransforms ¢ and b into ¢+b, while its inverse
trangforms a+b and @ into b, we see that, in a certain sense; the detachment rule D
ig an inverge of —. Since subs’oré,ction —. may be characterized ag:

N b—a denotes the ¢ such that a—l—o—b
in the same way, the rule .D may be characterized ag:
Dpq ‘denotes the r such that p—r=g.
Tt i evident that there ig no fruth function which ig inverse of—>, so the rule D ig
not a truth function.

By the way we note that the inverse of "] is "] ifself, since from g¢="]p we
. have p="T]g. There is no inverses of A and V, even if we allow deduction rules o
be their inverges, ,

Sinco the conneotive —» is not commutative, it would have two inversés. The
firgt, from o—>B and o to get B (the necessary condition of «). This ig the detachment
rule D, whioh is the kernal of the deduction method. The second, from o—B and B
to get & (the sufficient condition of B). We call it the suggestion rule, denoted by §,
which ig the kernal of the induction method. It ig well known that if a—>8 and « are
universal valid then so is S; therefore, the detachment rule (and the deduction
method) always gives valid cono'lusiqn from valid premises. In contragt, even if a—
B and B are universal valid, it ig not necessary that « should be valid; hence it ig
quite possible that from valid premiges we may suggest invalid conclusion, i. e. we
- may ebtain invalid conclusion from induction method. Owing fo this fact logiciang
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generally blame induction method for its containing errors, or justify induoction
with unnatural and untenable arguments (e. g. with probability interpretation,
th.). They do not gragp the true nature of the induction method. Either from daily
life experiencs or from the development of science we know that it g very
important o derive necessary conditions or to suggest sufficient conditiony for given
premiges. Of courge, the necessary and sufficient oonditions should be appropriate to
the eurrent oiroumstance, If the sufficient condition guggested ig not valid in the
ourrent ciroumstances, it is nob appropriate, and we should suggest new ones
ingtead, until we find the mogt appropriate conclugion. Similarly, although the
necessary conditions are always valid, yet it may be unappropriate to us on aceount
of being too trivial or being irrelevant to our purpose. In thig case we have fo
derive again new necessary conditions ag well. In a word, %o gel an appropriate
conclusion we need to go along by trial and error method whether in induotion or
in deduction (of. Moh[2]). | v

By introducing new connectives D and § (thé- two inverées of —») the
propositional caleulug would have a lot of new subjects o study, and many old
problemg would have new formulations. For example, we generally say that « and
B are mutually deducible with help of oy, oy, ¢, oy under the rules By, Ry, -+, FB.
Formerly we verify this fact by meang of deduction: to derive o from B, and to
derive B from «. Now we may say that if there are two reasoning expressions 7 (x)
and G'(«), which are buil$ up from = and @y, «s, +++, o by means of By, Ry -+, B,
such that we have '

. a=F(B) and B=G(a),

then « and B are mutually deducible. Sometimes it iy eagier fo find oub the
exprossions ¥ (z) and G(x). '

§3. The Deletion of Two Higher Rules—Substitution
| Rule and Generalization Rule

‘Ag well known, we have:

D) < v )a =< v > < y )a (y not ocours in «) (relettering of bound variable);
7 y/\@®

(2) When y does nob ocour free in ¢ and =y, then

()=

o (2) o (D( o

Now, for the new connective D, we have
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 ({Jpo-n(E{Z)e
® (V)oss-00@ (" )o{ Ve

The formula (4) ma.y'be regarded as oné item in the recursive definition of operator

(5 ). or we may ipi'ove it ag follows. Leb « be B~>y; then DaB =y, and (§>o¢= (i) Jé:

—>,< § )y; hence both gides be ( §) v, and wo get (4).
\ @ »
It the main connective in (3) were “=", then by the same method we would

got (5) < Z) paﬁ-—-z)('v

>06< V) B. Since the main connective in (8) is —, we should
v/ \o A

prove (5) ag follows. Let a be 8>, then D(8) < V) o ig <V> B~—>< v ) v, and then we
. 7 @ .

got (5) easily.
Suppoge the bound variables has been suitably relettered. From (2) we may

v
6) to the right of ( ), or conversely. From (4) we
©

either transfer the operator (
2

| 'may transfer the operator < 5) to the right of D; although (5) is much more
z
: | : v ,
complioate than (4), yet we could still transfer the operator Yo the right of D.
: @

By induction, the substitution operator ( §> may be iransferred to the right,
® .

and eventually to the front of axioms, If, as remarked by J. von Neumann, we
regard the result of substitubion for axioms ag new axiomd (axiom gochemeg), then
the subgtitution rule ig unnecessary and may be deleted.

By induction again, the universal quantifier may be also transferred to the
right, and algo eventually to the front of axioms. If, following W. V. Q,uine, we
regard the universal closure of axioms ag new axioms, then the generalization 1ule
may be derived as a metatheorem, and may be deleted from primitive ruleg.

It should e emphagized thali the assertion that we may delete thege two rules in
our axiom system means no more than that we may trangfer the two operators fo

. . \v’
the right until they come %o the front of axioms. Ag for the operators (6 > and ( ),
. . . : @ @)
they are indispensable indeed. 'We need universal quantifier to form negation and

\4 v N
implication such ag | ( ,)a and( >a-—->,8; we need substitution operator o write
x @ -
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v v o
out the axiom < )04—->< ¢ )a. Some writer would write it ag ( >a(w) —a(§);however,
x @ 0

the very meaning of a(#%), a(£) should be explained with the help of< §>

(Added in proof). I should be emphasized that the reasoning expressions wonld
play important roles in mechanical proof (e. g. the proof of the correstness of
programs). We wonld discuss this more in detail in other papers. Besides, it is
desirable to give eorresponding reasoning expressions in every mateemabioal papers
so that, firstly, it would help readers so understand the deduotion itself, 'seeondly,
when we are acoustomed to the reagoning expressiang it may take the place of the
long ligh of infer mediate formnlas (which is used up to now).
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