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Abstract
In this paper the authers discuiss the additiona) conditions under which a Hungarian -
semigroup isApossessed of the fundamental Delphic properties. It is proved that both the
positive genmeralized renewal 'sequence semigroﬁp and the tame semi~-p-function
semigroup are Hung&ria,n semigroups and possessed of the funddmenta,l -Delphie
» properties. Then the arithmetic propertLes of these two classes of the speom.l semlgroups
 are studied respectively. '

§1. Hungarlan ‘Semigroups and the Fundamental
. Delphlc Propertles

In this section we adopt the concepts and notations of [9]. Let S be a
 commutative first countable Hausdorff topologioal -semigroup Wlth unity., We
denote the semigroup operation by “multiplication”, A
Definition 1. 1. ILet w, vE€S, v is called o Jactor of u, denoted by v|y, of there
exists v '€ 8 such that u=wv. u and v are called mutually assoctate”and denoted by U~
@f we hawe simultaneously v|u and u|v. If in S u~v always %mplfws u=v, 8 s called
non—associate” . : : :
In the following we always denobe the unl’ﬁy by 1, ity sob of assomates by A1)
and the set of asgociates of each u €S by A(w).. ‘ .
1 Deﬁnltlon 1. 2. Call ueS “prime” (not e ﬁ"ectwel'y decomposable, without
. eﬁeot{m factor)if u A1) and q;[u always implies »€ A(w) U A(l) Oall u€8
“antiprime” of u.has no prime factor. The elemenis which are «ne@ther pmme nor
_ anitprime are-called “composed”. :
| Evidently, all u€ A(1) are antaprlme |
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Definition 1.8. Oall w€ 8 “bnfinitely divisible” (clefnoteo; by 4. d. in shoo*t), 'bf'

Sfor any poswtfwe mtegefr n there always ewists the n—th root u ES such that
’ 101 1
w=u"y" " -—(u ».
\—W'——_'

.. nin number

Definition 1. 4. Oall u€S “mﬁmtesmmlly d@wsrz/ble “(denoted by 6. t. d. &m

short), &f u can be decomposed as an infindtesimal tr dangular array {uy €8 k=1, 2, -
. §=1, 2, «ev, ny} suck that

;u?ﬁuki (allk=1,2, ".')
e S |

and satigfies o
' 7%11]1 ug=1. (uniformly for j).

“Infinitely divisible” ig an al obraical concept, “infinitesimally divisible” is a
y g P, y

_ topologleal concept they are different from each other. If in a topological semi— -

group S, alli. t.d. elements are i, d. elements at the same mme we say’ ’uhat S hag
“Weak central limit ploperty ' ’ o ' ' ‘ .

: D G Kendall after summar:zmg the amthme’olc pronertms of probablhty
distribution convolutlon gsemigroup, of renewal gdequence semjgroup and p-function
gomigroup, promulgated a class of abstract topological semigroup which he named

Delphic,: by.the place where: he accomplished his. artiole™. Thig clags of semigroups

possesses the above mentioned: fundamental proper’mes namely
Theorem 1.1. IquS is 6. d. , it bs also 6. 1. d.
Theorem 1. 2. Antiprime elements are all ¢. d.

Theorem 1. 3. All. composed element w€S can always be a‘epa"esentod (noe :

neccessanry uniquely) as o
RN T U= II V4,
where w 63 anmpmme, wu fv, are pr@me, and I is a non—empty subset of pos%mfve fmtegers

Kendall studied in detail the arithmetio properbies of Delphic semigroups which
i8 one of hig brllhan’o contributions o ma’ohematlos His works had been earned,

much further by R. Davidson®™®,

But in gsome semlgroups (such g the proba,blhty dlstrlbutlon convolutlon :

semlo'roup “and nonpemodlo renewal Sequence semlgroup) the Delphic
homomorphlsm does not exist, and in others it may be very difficult to find,
65pecla11y in ‘some abstract topological semlgroups So one needs o define & kind of
semigroups without introducing the existence “‘condition = of* the" ‘ Delphic
homomorphism but requiring still the mogt fundamental’ properties- that positive

*) This concept was ﬁrsi; mtroduced by Rﬂzsa and Székely (See [9], but m dnferent form) It ig easily
seen that they are equlvalent its is ‘first countable.
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integer mulbiplication semigroup has, that ig, all composite numbers ean . be

decomposged as product of primes. By this idea, Ruzsa and Székely put forward the
concept of Hungarian semigroup™, '

Definition 1. 5. Oall S @ Hungarian semfbgmup of the follorwmg oond’&tfwfn,s
are satisfied: o '

A) - For each u€ S the set of associates A(u) bs closed, so one may construct the
Sactor semégroup S/~ : C

B) The set of factors of each element on S /~ s compaoct subset of S/~

O) For each u€ S the sot of associates A (u) =uA(l). -

Theorem 1. 4. If Sisa Hungarian semigroup, then Theorem. 1.3 holds.

In the following we shall continue to ﬁnd the condﬂnons under which the other
Delphm properties hold. ' :

Theorem 1.5. If S és.a Hungarian sembgroup without idempotent element
other tlum unéty, then all antéprime elements are ¢. t. d.. Therefore, if 8 also ks weak
contral, l@m@t property (that is, i. t. d.=i. d.), then Theorem 1.2 holds™..-

Theorem 1.6, If S ésa Hurngaman semagrowp without tdempotent element other
‘than ungty, and 4f in-the factor sem@group S/~, ‘the emistence of n-th root mpl@es
unbqueness and also all elements in A1) -are b. d. and 6. &, d.; then Theorem 1.1 holds.

Proof Since S does not 1nV01ve 1dempoten’r. elenients-other. than unlty, nelther

does S/ ~, Suppose uES/ ~ 91, d., denobe 1ts w—th root by u, for all n, so u"[ ul
Slnoe the set of faotors of % in S/ ~ i compact there in {u"}must be sub—-sequenoe,
{u™ "k} that oonverges o a certain v, g0 u" ->fv by the unlqueness of n—’oh root..

Therefore u u = (u‘n )2—>f02 5 fv" and p=1 Whlch 1mp11es uig i, b. d. That means
‘foralluES i d==>1 t.d

§2. The Amthmetlc of Positive Generah7ed
Renewal Sequences

- Definition 2.1. Call real sequeuce W= {u,} gener alized renewal sequence (uy=1

or wndeﬁned), 'I,f the/re ewfbsts @ nomsgwtfzwe sequence f= { f,.} ( fo—O or undef%nea’;),
’ such tlmt "

| _' u,;f=f,.+_;r2;1 Fitay  (all n_>,;)_, R o (2'.'1‘)
If moreover ' ' S | o

Sy, T ey
thfm u s oélled @ renewal segu‘e«moe They are called pos%szve (renewal or genemliéed' '

{
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renewal sequénces) v &f us>0.

. As usual the class of renewal sequences and generalized renewal sequences are
denoted by # and # respectuvely, and by RZ* and A#* thelr Tespective positive -
subolags, . o

The concept of genera].ized renewal gequences are the natural generaiization _
of the probabilistic model——renewal sequences, to the pure mathematical domain,
proposed first by J. F. C. ngmanm, WhO established the imporfant relations
between them . "

Lemma 2.1. ue%<=>u€.% wrwl u,,<1 (Vn).

Lemma 2.2 ucZe for each k=1, there ewists u(k) E.%’ and 6,>0 such that

R ' U=t (k). (for mn=1," 2, i, k), -
The funda,mental properties of Z were systematlcally studied by Llang '

Zhighun and Hua,ng Zhirui "9, 'From there one can see easily the following
theorem, ' o ’

Theorem 2 1. By poimtwise- multzplwwmon and pointwise comvergence topology R
48 @ commuitative. first countable tapological sem%g')’oup with unity, and is the ‘elosed sub~
'semflzgfroup of the real sequences semigroup R™ s T is the hereditary sub—smnfbgq'oup of
Z, it is also @ commutative first countable topological semwgfroup with . umty In this
section-we use L= (1, 1, ++++++) to denote the unity of %.

. Lemia 2.3. The Semagroup F* is associats, the set Of ¢ assocwtes of unity o (1)
Gsalll the @m‘egml power seguences v(op, c) {c"} for c>0 M ewnfwfwle each element of
'.saf(l)ws 4. d. and . t. de. : :

- Proof We need only to prove & (1) - {w (o0, c) c>0} Since ’ohe rest faof,s'
are evident, :
' The faot v(oo, c)v(oo 1) =1 (all 0>0) implies {v(co, 0): c>0};;4a7(§.).
Oonversely, let ug 2/(1), that means, there exists v€ Z* such that uv=1 then
by the facts that u, € uy_atts, V:2>Vu 101, Up= fv,ﬁ(all n), One can deduce that w,=u7
(Vn) by’ mathemagical 1nduct10n, 90 uE {v (oo, ¢): ¢>0},

Lemma 2.4, For uc #+ ots set of associates o/ (u)=us/(1) amd is closed in
égﬁ .
| Po’oof EVldently uv(oo 0) ~u(V0>O) Oonversely, let VEM (u), then there
 exigh w, s€ #* such that v=uw and u= SV, So u= (SW)u Since ev1denb1y the
semlgroup Z+ i3 cancellative, therefore sw=1 i, e, W& (1) Hence, vE&
u/(1). Evidently 27 (1) ig cloged, sinoce if v(oo c,,) >vER*, then neccegsarily e,
- = ¢>0 and v=v(c0, 0) €&/ (1), which shows that all o7/ (u).=u.s/(1) are cloged,

- From Lemma 2.4 and [9], one can eagily deduoce '
Lemma 2.5, Bg/ the relation of asscedates, 9?“ can foa"m the factorr semwgroup
’ 42*/ ~, awhboh Gs first cozmtwble. e ' '
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For further studiés of the properties of the factor gemigroup Z*/~, we
mention that in each .7 (u), there existy one and only one € .o7(u), such that Uy
=1, Consider the sub-gemigroup A={uec G w;=1} of Z*. If we establish 1-1
correspondence hetween UEH and o (w)e )~ then we can prove the
- topological isomorphism between #! and A/~ (algebraio igomorphism and

topological homeomorphism). So we can- uge the simpler in construetlon gemi~
group #* ingbeod of F+/~ .
Lemma 2. 8. Zisq first countable topologioal semi~group and foq' ecwh uE .9?1
the set of factors in 921 F (u) {ve .921 v]u} gs compact, .
Pfroof Ewdently F (u)c {1} % [1, ug] % [1 Ug] X +ooig eompact, so F (u) .IS also
- compact since it ig cloged. .
By the above lemmag we obtaip s
Theorem 2.2, @’* is @ Hungarian semigioup.
Corollary. For G+, Theorem 1.8, holds. .
We can further deduce that for .%’* Theorem 1.1, Theorem 1 2 also hold
Theorem 2.3, For Z*, Theorrem 1.1 holds, ,
Pfroof We need. to. prove that for 28, Theorem 1.1 holds In faoct if ue .%’1
1. d. it can be decomposed as triangular ¢ array {u (70 .7) 69?1 b= 1,2, s J=1, _2,
-, k} in which ‘

u(lc 4) -—uf -1 (oo umformly for §).
Therefore u ig i. t. d. So for each uEgZ‘" which iy i, d, gince eaeh element of

&) igi. d., uv(eo, ur) € Zt ig also i. d. and gines’ v (oo, ul) 131 b.d., s0o do u=

(uv(eo, ug)) «v (oo, uy). . L :
In order to prove Theorem 1.2, by Theorem 1. 5 we need only to prove that
T+ has weak central hmrt property. He Yuanjlang U4 afforded a very well
criterior for the central limit property by introdueing theso called “countable ho-
momorphism” and succeeded in solving “the complicative problem In abstract
‘semigroups, to find sufficient conditions for the erlterlor of central lmit property
withou} introducing the homomorphism geems not easy Here we. shall follow the
 “direct meshod” of D, G. Kendall ¥,
‘Lemma 2. 7. ucZ*isi. d. iff uisa Kaluza sequence™,”
Theorem 2.4. If ucZ#'iss.t. d., thenuesed L
Proof Singe uEg?i ig i. 5. d., it can be decomposed as tmangular array
{u(k .7)69?1 :’é 1, 2' s =1 2 -,'n;,,} and satlsﬁes ' ‘ -
S h.mll(k, y) 1 (unlformly in J) o (. 3)

, Denote the f—sequences of u(]c ) by f (&, 9 ) Wlth fl(lc 3)) 1 and llm f” (k, 3)) 0

(umermly in. §) for n=2. We have
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s _ {1+Atk, URs AUEISCDN
e il T8 5 ’

in \ﬁhi@h
Ak, §)= S35 Cb, oy ) /s 9,
Bh 3= S 11Chd) s (b, ) - 5

From (2.3) we know thaj
) ]Jm Un (b, §y=1  (uniformly for 1<m<n and 1<j<my),

(n=>3)

hmf,. (&, y) —O (umformly for a<gr<n and 1<g <nk)
8o

’lolm Ak, 3) —-llm B(k, §)=0 (umformly for 1< y <’)’bk)
Uging the 1nequa11ty | S e . ’
-2 <10g(1+z)'<z ' (O<z<1/'2)

log u,.un-z >§l{ fn(kk.” +(A<]g j) B(]G j)) (A(k; 9>+M>2} :

Un—1 Un—2.\ 1) ) _ v NN
{ Falk.3). 1 1
B LGl (vt ) otk ) sl )

-5 o
[ Salh i) (D) 1)Ll teall o))

]

f”l ”_1(]{7 .7) un—l(k 9) Un-1<]‘7 .7) Mn—ﬂ(k .7)
< ﬂ(k .
>§{H—2<un<k -1 }

Smce e* 1<<a? (for 1<w<2), we have

2(%(70 - 1)<210g Hun # §)= 210gun<oo
and 4 _
§1<u,.<k,‘:i>—1>2'—so, (h=o0).
= . .
log _%‘i:bo,' i. e, -“%2’5:;—2>1
v SobyLemmaZ 711191(1
Corollary 1. ue%’*w t. d. =>q, d.
Corollary Q. For &, Theorem 1.2 holds

By the above Theorems 2.2, 2. 3 and 2 4 we know thah .‘%*‘ possesms the.
fundamental properties of Delphm semlgroup In the fo]lowmg we oonﬁmue o

| disouss the further arithmetio proper’mes of 9? * Flrst we ha.ve

* Theorem 2.5. Io(Z*)=o/ (). | o
- This result was firs} obtained by Ohen:: Zaifu ™, He Yuanjiang ®%; by
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using the result of renewal sequénces in [b], gave a simpler proof of this fact. Im
the following we turn to the oriterior of the prlme olass. In [10] Liang Zhishun
~ and Huang Zhirui obtained

- Lemma, 2.8. I f ue .%* then theae emsts lfmmt ( ﬁmte o1 dmfinite)

c=hmu,,, - (2.4)

wnd u,,<o" (Yn).

Definition 2.2, J.‘f’oa~ uE./f* when the Z@mzt o< oo fm (2 4) we eall it “tame
otherr'fwzse we call 4 “wdld”. ' : '
Lemma 2.9. if ucZ* is “twme”, thén~uv(oo, ¢ e %*, where ¢ 48 the; l’z'»mfz}ﬁ
in (2.4). I

It can be proved by Lemma 2.1,

Let us denote the olass of tame posﬂnve generahzed renewal sequenoe by

T((.%’*) and write
-{ueéz*+' lim uF =1},

Lemma 2. 10, T (.%’*) is the keo'ed@tafry subsam@ga‘oup of T+ and K is that of
R+, and mor eover, the factor semigroup T (Z+) / ~ 48 topologically ésomorphic to X*.

Theorem 2 6. Let uET(%*) and lim u,, —c ' thin = uv(oo 0‘1) 69?1 and u

. ﬂ“)°°

" 4s préme on 7+ q,ff ! @spwme n 92’*

By this theorem, the oriterior for the prime in renewal sequence t5,167. can be.
applied to the tame generahzed renewal. sequences As for the wild sequenoes we
can glve out many examples of i, d but i 1sn % known yeob Whether “there are.
pmme

§3 The Arlthmetlc of Standard Seml—p—Functlons

Deﬁnltlon 3 1 Each frewl fumtwn p {p(t) €R: t>0} on., (O o) ooa*a'espondsj

@ fwm@ly of funct@ons ) _ ,
‘For(tl)”' Tny 29) = 2 <?‘_1)s—1
(n=1,'2, ") 5, by, +s, £) >0). Tt-6§ called the family of F-functions of p 030,

2

0= 7Go<’01< <k3=7t.1 =1 <i"k,—-1+ )

Deﬁmtlon 3 2 Let p bea aewl fmwt@on deﬁrneol on (0 %), I f wt swt@s ﬁes ﬁw

me_quwlfbtws et

4t 48 called sam%—p—funct@on, fz,f 23 sa,t'z/sﬁes fua"thea* the @nequal@t%s '

i . 2 Fk(im
m‘ 48 called P fumt@on When

(é.i)-

Fulhy b D)0 (VST t, - t>0) (32)
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lim j2) =1,

we call them smndcwd in both oases. ,

In this paper we congider only the standard p—functlons and seml—p—functlons
As usual we denote by P and P the ‘olass of p-funotions and semi-p-funotions
respectively.

The concept of semi-p-funotion  was ﬁrst mtroduced by ngmanEGJ and the
following fundamental properties were obtained. .

Lemma 3.1. peg’ﬁ PEZ and p(t) <1, (Vi>0).

Lemma 3.2 pEW@for each v>0, there are p,E? A ER, suoh that

| pO) =po()o (VO<i<7). - @4

Lemma 8.3. If PEZP, then p(t)>0(V>0) and eists limit
—oo )= ljm -%— log p (%) <ioo o ‘(3 .B)
and , _ - o .
pH)<e® (Vix0). - (3.6)

.Lemﬁma 3.4. -peﬁ & P ds contbnuous on (0, oo), -_ltin% p®) =1, and

up, hy={p(nh): n=1}6 X (Vh>0).
Definition 3.3.. pc P is called “tame” w’f the limit A<oo in (8.5), otherwise it

- 4s ealled “rwleld” and dendte the two classes by ’I‘(W) and, W(@) frespect@fvely

In [13] and [11] wo have studied some of the propertws of seml—p-funcmons
there we obiained: ) _

Theorem 31. By pomt-fw@se mult@plwatzon amd pomt—fw@se comeo’genco
topology, F forms @ commutative topologfwal semigroup with unity 1={p@) =1: t>

0}. It is assocwtrz/ve, the sot of associates of ungty (1) ={p: p(t) =e¥, —oco<LN<Loo}

s closed, each element there is ¢. d. and ¢. t. d.. Forr ecwh PE @, its set of associates 48
A (p).=p L 1) vnd is closed (in P). ' ‘ :
Py oof The first conclusion can be seen in [13, 11]. Let us go to prove the

associate properties. Evidently each p={¢; t>0} € L), since p‘l—- {e""‘ >0}

and pp~=1. Conversely, let p€.«/(1), there must exists qeﬁ?’ such thas pq=1.
Therefore q=p~* and sumu]f,aneously wo have p{-+s)=p{)p(s), p(t+s)>
P71 (®)p~1(s). So p satisfies the funoctional equation p(s+¢)=p(s)p() (Vs, ¢>0). So
pis oonﬁnudus and positive. From [11] we know that it must be an exponential
function, that is, there exists real number A, such that p={¢*: ¢>0}. Evidently
4 (1) is olosed, with elements all being i. d. and 1. t. d. By a 51mlar mébhod one
easﬂy proves that o7 (p) = p.szi (1) and o/ (p) is closed. . : .

Theorem 3.2. T(W) fas the hereditary sub—sem@group of 9’, wnd is an open
subset of it. Therefore T(@’) is & commutative topologwwl semigroup with umty, ‘the
set of assoctatas of its elements is the same as that im P and is closecl (bn T(ﬂ))
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Prroof Evidently T(W) ig the sub—semlgroup of .W, and has wunity, /A1) =

T(W) So for each pET(W) it set of associates in T(W) is the same as that in 9’

namely t.27(1). Letb us provethe hereditary. property. Let pET(W), pP=qr, q, r<.

Z, Denote their limits in (8.5) by Ay A, A, respectively, we have the relation
v Agtdr=hy <00 =5 Ay<oo and." Ay <oo,

which meang that q re’rl (9”) Let us prove that T(@) is open in 9” that i,
W(@) is closed in &.We take {P.} as a net of - W(ﬁ”) that converges in- P, Letb 1 28

-hm P-< .@, we must -have pEW(Q”) Sinee if pE T(W), and its limit in (3. B5) ig

A,,,<oo then for a certain s>0, there must exists a certain ‘o, such that Ao, <7\,p+s,'

* which would show that paET(W) conﬁradlots the fact p.,EW(gf’) ‘Since T(W) is
open in Z, and for each pET(W}, sz (p) i9 ologed in P, o (p) CT(W) and must
be closed in T(g’) :
Denote A - . .
‘@1= { pe fﬁ 'Kp:lzeim -—::—-logp(t) =0},
and call p€ P! fundamental p-funotion. From Leiama 3.3 and Lemma 8.1 ‘one oan
easily see that PP, that is, all fundamental p-functions are standard.

Lemma 8.5. % is the hereditar y sub—-semiégroup of P, and by the poimtwise: .

come¢gence topology it bs first countable. -

Py oof  The former conclusion. ig evident. Use the results of Davidson in [5],
we know that the pointwise convergence topology of & ig equivalent to “the topology
of uniform convergenoce in finite interval, and ig first countable and so does Z. .

Corollary 1. ' By the pointwise conver gence topology, T (g’) bs first countable.

Proof Map #'xR to T(ﬁ) by o(p, A)={p(¥)e}, it is a homeomorphic
mapping, the conolugion follows from the fact that %* and R are firgt countable. .

Corollary 2. T(ga) [/~ s first - countable and topolog@callg/ fbsomoq"phw to P
(algebraically isemorphic and topolog@cally homeomoa‘phw) '

Corollary 8. For each pE P, its sot of factors in P is compact.

" This can be easily seen by the hereditary property. of #* in '@

From Theorem 3.2 and Lemma 3.5 we deduce immediately L

* Theorem 3.8.° T(W) s @ Hungwmwn senga‘oup (by po'mt'w'bse multzplwwt'wn and;
pointwise comvergence topology). ' S _— :

Corollary 1.: For the sem@group T(Qz’), Thearem 1 3 holds..

Corollary 2. PET (.@) 4s prime; ‘compositeor wntwpmme of - amds only of P~p

and PE Plis prime, composzteoa antiprime respectively n .@1
Corollary 8. 1If pEI(g’) 48 6. d.; then. P~ and PE Pt is 6. 3. in P,
- Theorem 3. 4 - For T(Q’), Theorem 1.2 holds..- :

Pfroof From the heredltary propertios of #* in 93, We know that PE '@1 "
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antiprime in #* if and only if it is antiprime in . Bince £ iy a Delphio

gemigroup and, satisfies Theorem 1.2, so doss &*. From Theorem 3.1, each
element of .o/ (1) is i. d. so for T (?/’7) Theorem 1.2 holds,

Theorem 3. 5. For T (9”) Theorem 1.1 holds. . :

Proof From the hereditary property of #* in &, and & sabigfies Theorem 1 1
s0 does %, Since each pC . (1) is i. t. d. go for T(%) Theorem 1.1 holds.

From Theorem 3 .3, Theorem .3.4 and Theorem 8.5 we have deduce that
semigroup T(@’) posesges the three fundamental propertieg of Delphic semigroups..
So ks clags of a,ntiprinie is aquivalent to the olass Io (that ig the olags of i, d. ele-
menty which have no prime factors). |

Theorem 3. 8. The class I, of T(@) s tn fcwv Jzi (1), that is the olcoss of au
ewponentwl Sunztons {P: p(t) =e™, (£>0), —oo>A> +oo}.

Proof From the result of Vaamoncrri™, the olags Iy of & i the olags of all
bounded exponential functions {p: p(t)=e™®, (t>0), A=>0}. By the hereditary
property of #* in & we obtain T, (1) = {1}, therefore the olags I, ig really o7 (1)..

Theorem 3. 7. P 4s prime in T (@) & p~p and PE P is prime in P.

Po*oof The necessity is evident. To prove the sufficiency, suppose “pe P is
prime in &1 From the hereditary property, p ig prime in #*, Therefore all p~§
are prime in T (: ?) : |

In Theorem 3.6 we obtained the full desoription of the clags I, of T(ﬁz’)
Theorem 3.7 shows that the key of criterior of prime elements in _T(@) ig the
oriterion of prime elements in &. From this, by using the results of Davidson™,
Qian Shixian™ and He Qimei™® in recognition of prime elements in & and the
?J:’Ql]owing' lemma we deduce that it need only to recognize the prime elements in
P 3 | | |
Lemma 8.8. pE P and is prime in P < PEP* and o5 prime tn P,
Proof Neocessity. Since P is prime in &, we must have p&€#*. If not so, the
corres ponding limit A in (3 .5) must be legs than zero, p muss have in & a factory
q={¢": >0} and s0 it ig not ‘prime in &, Moreover sinee it hag no effective
factor in &, so does in. &, ‘ :

Sufficiency. Since £ ig hereditary in &P, that P has no eﬁ‘eoblve faotor in F*
implies that it has no effective factor in Z* too. _ _

In order to study completely the arithmetic proper’ules of the semigroup ﬁ i

~remaing only t0 make clear the construction of W(W),
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