t-PBIB DESIGNS

WEI WANDI (魏万迪)* YANG BENFU (阳本傅) ***

(Dedicated to the Tenth Anniversary of CAM)

Abstract

A new type of design, called a t-PBIB design, is introduced by combining the notion of a t-design and the one of PBIB design. Some basic properties of a t-PBIB design are given, and a class of 3-PBIB designs is constructed by means of finite vector spaces.

An incidence structure is a triple D = (S, B, I), where S and B are two disjoint sets, and I a binary relation between S and B, i. e. $I \subseteq S \times B$. The elements of S are called points, and those of B blocks. A BIB design is an incidence structure D = (S, B, I) satisfying

- **1.1.** For an arbitary $B \in \mathbb{B}$, $|\{s \in S | sIB\}|$ is a constant independent of the choice of B;
- 1. 2. For an arbitary 2-subset $\{s_1, s_2\}$ of S, $|\{B \in \mathbf{B} | s_1 IB \text{ and } s_2 IB\}|$ is also a constant independent of the choice of $\{s_1, s_2\}$. If the constants in the conditions 1.1 and 1.2 are k and λ respectively, then **D** is called a (v, k, λ) BIB design, where v = |S|.

A t-design, as a generalization of a BIB design, is an incidence structure $\mathbf{D} = (S, \mathbf{B}, I)$ satisfying the condition 1.1 and the condition 1.2 with "2-subset" replaced by "t-subset". Clearly, 2-designs are BIB designs. A PBIB design is another generalization of a BIB design. For its definition we need the notion of an association scheme.

Let S be a set of v points, and

$$S^{(2)} = \{ (s_1, s_2) \mid s_1, s_2 \in S, s_1 \neq s_2 \}.$$

Let [a, b] denote the set of integers between a and b. Let R_i $(i \in [1, m])$ be m binary relation on S, i. e. $R_i \subseteq S \times S$, satisfying the following conditions.

2. 1.
$$R_i \cap R_j \begin{cases} \neq \emptyset, & \text{if } 1 \leq i = j \leq m. \\ = \emptyset, & \text{if } 1 \leq i \neq j \leq m. \end{cases}$$

2. 2.
$$S^{(2)} = \bigcup_{i=1}^{m} R_{i}$$
.

2. 3. For every i, R_i is symmetric, i. e. if $(s_1, s_2) \in R_i$, then $(s_2, s_1) \in R_i$.

Manuscript received May 5, 1989.

- * Department of Mathematics, Sichuan University, Chengdu, Sichuan, China.
- ** Department of Mathematics, Teacher-Training College of Chengdu, Chengdu, Sichuan, China.

2. 4. Let $i \in [1, m]$. For every $s \in S$,

$$|\{s' \in S \mid (s', s) \in R_i\}|$$

is a constant independent of the choice of s.

2. 5. Let i, j, l be given integers, $1 \le i, j, l \le m$. For an arbitary $(s_1, s_2) \in R_i$, $|\{s \in S \mid (s, s_1) \in R_i, (s, s_2) \in R_i\}|$

is a constant independent of the choice of s_1 and s_2 .

Then we call S with such R_i ($i \in [1, m]$) an association scheme with m associated classes R_1, R_2, \dots, R_m . If the constants in the conditions 2.4) and 2.5 are denoted by n_i and p_{jl}^i respectively, then v, n_i, p_{jl}^i ($i, j, l \in [1, m]$) are called the parameters of the association scheme.

Based on association schemes we have the definition of PBIB designs.

Let S with R_1 , R_2 , ..., R_m be an association scheme and $\mathbf{D} = (S, \mathbf{B}, I)$ an incidence structure. \mathbf{D} is called a PBIB design with m association classes if it satisfies the following conditions.

3. 1. For an arbitary $B \in \mathbf{B}$,

$$|\{s \in S | sIB\}|$$

is a constant independent of the choice of B.

3. 2. Let $i \in [1, m]$. For an arbitary 2-subset $\{s_1, s_2\}$ with $(s_1, s_2) \in R_i$ $|\{B \in \mathbf{B} | s_1 \mid B \text{ and } s_2 \mid B\}|$

is also a constant independent of the choice of s_1 and s_2 .

If the constants in conditions 3.1 and 3.2 are k and λ_i respectively, then the numbers

$$v, n_i, p_{jl}^i, k, \lambda_i (i, j, l \in [1, m])$$

are called the parameters of the PBIB design.

As everyone knows that t-designs, especially BIB designs, and PBIB designs have been studied extensively and fruitfully (see, e. g., [1-5]). In this paper we will generalize t-designs and PBIB designs and introduce the notion of t-PBIB designs, prove some basic properties of a t-PBIB design and construct a class of 3-PBIB designs by means of finite vector spaces.

We first give the definition of a t-PBIB design.

Let S be a set of v points, and

$$S^{(t)} = \{ (s_1, s_2, \dots, s_t) \mid s_i \in S, s_i \neq s_j \quad (1 \leq i \neq j \leq t) \}.$$

Let R_i 's $(1 \le i \le m)$ be m t-ary relations on S, and they satisfy the following conditions.

4. 1.
$$R_i \cap R_j \begin{cases} \neq \emptyset, & \text{if } 1 \leqslant i = j \leqslant m, \\ = \emptyset, & \text{if } 1 \leqslant i \neq j \leqslant m. \end{cases}$$

4. 2.
$$s^{(t)} = \bigcup_{i=1}^{m} R_{i}$$
.

4. 3. Every R_i $(i \in [1, m])$ is totally symmetric, i.e., if $(s_1, s_2, \dots, s_t) \in R_i$, then $(s_j, s_j, \dots, s_t) \in R_i$,

where j_1, j_2, \dots, j_t is an arbitary permutation of 1, 2, ..., t.

4. 4. Let $i \in [1, m]$. For every $(s_1, s_2, \dots, s_{t-1}) \in s^{(t-1)}$,

$$|\{s \in S \mid (s_1, s_2, \dots, s_{t-1}, s) \in R_i\}|$$

is a constant independent of the choice of s_1, s_2, \dots, s_{t-1} .

4. 5. Let $i, j_1, j_2, \dots, j_t \in [1, m]$. For an arbitary $(s_1, s_2, \dots, s_t) \in R_i$, $|\{s \in S \mid (s_1, \dots, s_{h-1}, s, s_{h+1}, \dots, s_t) \in R_i$ for all $h \in [1, t]\}|$

is also a constant independent of the choice of $s_1,\ s_2,\ \cdots$ and $s_r.$

Then S with such $R_i's(i \in [1, m])$ is called a t-association scheme with t-associate classes R_1 , R_2 , ..., R_m . If the constants in conditions (4.4) and (4.5) are denoted by n_i , $p_{j_1j_2...j_t}^i$ $(i, j_1, ..., j_t \in [1 m])$ respectively, then

$$v, n_i, p_{j_1 j_2 \cdots j_t}^i$$

are called the parameters of the t-association scheme.

Let $\mathbf{D} = (S, \mathbf{B}, I)$ be an incidence structure, S with R_1, R_2, \dots, R_m be a t-association scheme, and the following two conditions hold.

5.1. For an arbitary $B \in \mathbf{B}$,

$$|\{s \in S \mid s \mid IB\}|$$

is a constant independent of the choice of B.

5.2. For an arbitary $(s_1, s_2, \dots, s_t) \in R_i$

$$|\{B \in \mathbf{B} | s_i IB \text{ for all } j \in [1, t]\}|$$

is also a constant independent of the choice of (s_1, s_2, \dots, s_t) .

Then **D** is called a t-PBIB design with m associate classes. If the constants in conditions 5.1 and 5.2 are denoted by k and λ_i , then

$$v, k, \lambda_i, n_i, p_{j_1 j_2 \cdots j_t}^i \quad (i, j_1, j_2, \cdots, j_t \in [1, m])$$
 (1)

are called the parameters of D.

Clearly, t-PBIB designs with t=2 are PBIB designs, and t-PBIB designs with one associate class are t-designs.

We now prove some properties of a t-PBIB design. They are similar to these of a PBIB design or of a t-design.

Theorem 1. Let D be a t-PBIB design with the parameters in (1). Then we have

$$v = \sum_{i=1}^{m} n_i + t - 1, \tag{2}$$

 $p^i_{j_1j_2\cdots j_t} = p^i_{j_{\sigma(1)}j_{\sigma(2)}\cdots j_{\sigma(t)}}, \quad \text{for any permutation } \sigma \text{ of } 1, \ 2, \ \cdots, \ t, \ \text{and } i, \ j_1, \cdots, \ j_t \in [1, \ m],$

· (3)

$$\sum_{j_1,\dots,j_r=1}^{m} p_{j_1j_1\dots j_r}^i = \begin{cases} n_i - 1, & \text{if } 1 \leqslant j_1 = i \leqslant m, \\ n_i, & \text{if } 1 \leqslant j_1 \neq i \leqslant m, \end{cases}$$
(4)

$$n_i p_{j_1 \cdots j_t}^i = n_h \cdot p_{ij_1 \cdots j_s}^{j_1}, \quad \dot{s}, \ \dot{j}_1, \cdots, \dot{j}_t \in [1, \ m].$$
 (5)

Proof For a given $(s_1, s_2, \dots, s_{t-1}) \in S^{(t-1)}$, there are v - (t-1) $(s_1, s_2, \dots, s_{t-1}, s) \in S^{(t)}$. On the other hand, by conditions 4.2 and 4.4 these v - (t-1) elements of $S^{(t)}$ can be partitioned into m groups with n_i elements is the i th group. This proves (2). As for (3), it is very clear by condition 4.3. For a given $(s_1, s_2, \dots, s_t) \in R_i$, there are $n_i - 1$ elements s' of S different from s_1 such that $(s', s_2, \dots, s_t) \in R_i$. On the other hand, these $n_i - 1$ t-tuple (s', s_2, \dots, s_t) of R_i can be partitioned into m^{t-1} groups with $p_{ij_1\dots j_t}^t$ t-tuples in the (j_2, \dots, j_t) th group $(j_2, \dots, j_t \in [1, m])$. This proves the first relation in (4). The second one is then clear by the same argument. To prove (5), we count the set

$$W = \left\{ (s_1, s) \in S^{(2)} \middle| \begin{array}{l} (s_1, s_2, \cdots, s_t) \in R_i \text{ and} \\ (s, \cdots, s_{h-1}, s, s_{h+1}, \cdots, s_t) \in R_{j_h} \\ \text{for all } h \in [1, t] \end{array} \right\}$$

for a given $(s_2, s_3, \dots, s_t) \in S^{(t-1)}$. The number of elements of W can be counted in two ways. There are n_i ways of choosing $s_1 \in S$ such that $(s_1, s_2, \dots, s_t) \in R_1$, and for each such s_1 there are $p_{j_1j_2\dots j_t}^t$ ways of choosing $s \in S$ such that $(s_1, \dots, s_{h-1}, s, s_{h+1}, \dots, s_t) \in R_{j_h}$ for all $h \in [1, t]$. So

$$|W| = n_i p_{j_1 j_2 \cdots j_t}^i. \tag{6}$$

On the other hand, there are n_h ways of choosing $s \in S$ such that

$$(s, s_2, \cdots, s_t) \in R_{j, \cdot} \tag{7}$$

For each such s there are $p_{ij_2...j_t}^{j_1}$ ways of choosing s_1 such that

$$(s_1, s_2, \dots, s_t) \in R_t,$$

$$(s, s_2, \dots, s_{h-1}, s_1, s_{h+1}, \dots, s_t) \in R_{j_2} \text{ for all } h \in [2, t].$$
(8)

The latter is

$$(s_1, s_2, \dots, s_{h-1}, s, s_{h+1}, \dots, s_t) \in R_{i_h}$$
 for all $h \in [2, t]$. (9)

Clearly, (7)—(9) are all defining conditions for W. Therefore, we have

$$|W| = n_{j_1} p_{ij_2\cdots j_t}^{j_1}. \tag{10}$$

Combining (6) and (10) we get (5). This completes the proof.

Theorem 2. A t-PBIB design $\mathbf{D} = (S, \mathbf{B}, I)$ with the parameters given in (1) is also a BIB (t-1)-design with the parameters v, k and

$$\lambda = \sum_{i=1}^{m} n_i \lambda_i / (k - t + 1), \tag{11}$$

which are independent of pinjamin.

Proof Let $(s_1,, s_2, \dots, s_{t-1}) \in S^{(t-1)}$, and

$$\mathscr{T} = \{\{s_1, s_2, \dots, s_{t-1}, s\} \mid s \neq s_i \text{ for all } i \in [1, t-1]\}.$$

Then $|\mathcal{F}| = v - t + 1$. We can calculate

$$u = \left| \left\{ (\{s_1, s_2, \dots, s_{t-1}, s\}, B) \middle| \begin{array}{l} \{s_1, \dots, s_{t-1}, s\} \in \mathscr{T} \\ sIB \text{ and } s_iIB \ (i \in [1, t-1]), \\ B \in \mathbf{B} \end{array} \right. \right|$$

in the following two ways. Let

$$\mathcal{V} = \{B \in \mathbf{B} | s_i IB(i \in [1, t-1])\}.$$

For each $B \in \mathcal{V}$, there are k-t+1 t-subsets $\in \mathcal{T}$. So

$$u = (k - t + 1) |v|. (12)$$

On the other hand, by the definition of n_i we know that there are n_i t-subsets $\{s_1, s_2, \dots, s_{t-1}, s\}$ in \mathcal{T} such that $(s_1, s_2, \dots, s_{t-1}, s) \in R_i$, so these n_i t-subsets are included exactly $n_i \lambda_i$ times in the blocks of \mathbf{D} $(i \in [1, m])$. Hence

$$u = \sum_{i=1}^{m} n_i \lambda_i. \tag{13}$$

Combining (12) and (13) gives

$$|\mathscr{V}| = \frac{1}{k-t+1} \sum_{i=1}^{m} n_i \lambda_i,$$

which is a constant independent of the choice of $(s_1, s_2, \dots, s_{t-1}) \in S^{(t-1)}$. Then **D** is a (t-1)-design, and $|\mathscr{V}|$ is the value of λ . Clearly, the value of $|\mathscr{V}|$ is independent of p_{j,j_2,\dots,j_t}^i . This completes the proof.

From this theorem and some known results on t-designs, we know that

$$b = |\mathbf{B}| = \lambda \binom{v}{t-1} / \binom{k}{t-1},$$

$$r = |\{B \in \mathbf{B} | s | B\}| = \lambda \binom{v}{t-2} / \binom{k}{t-2} \quad \text{for any } s \in S,$$

$$bk = vc$$

Finally, we construct a class of 3-association schemes and 3-PBIB designs by using the finite vector spaces.

Let q be a prime power, F_q the finite field with q elements, and $V_n(F_q)$ the n-dimensional vector space over F_q . Let S be the set of 1-dimensional subspace of $V_n(F_q)$, and

$$R_1 = \{ (s_1, s_2, s_3) \in S^{(3)} | \dim(s_1 \cup s_2 \cup s_3) = 3 \},$$

$$R_2 = \{ (s_1, s_2, s_3) \in S^{(3)} | \dim(s_1 \cup s_2 \cup s_3) = 2 \},$$

where $s_1 \cup s_2 \cup s_3$ denotes the subspace spanned by s_1 , s_2 and s_3 . Clearly,

 R_1 and R_2 are totally symmetric ternary relations on S.

$$S^{(3)} = R_1 \cup R_2, \ R_1 \cap R_2 = \emptyset, \ R_1 \neq \emptyset, \ R_2 \neq \emptyset,$$

Let (s_1, s_2, s_3) , $(s_2^*, s_2^*, s_3^*) \in R_1$. Then we can find two $(n-3) \times n$ matrices P, P^* over F_q such that

$$egin{pmatrix} egin{pmatrix} egi$$

are both nonsingular.

Put

$$T = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ P \end{pmatrix}^{-1} \begin{pmatrix} s_1^* \\ s_2^* \\ s_3^* \\ P^* \end{pmatrix}.$$

Then $T \in GL_n(F_q)$, the linear group of order n over F_q , and

$$egin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \\ P \end{pmatrix} T = egin{pmatrix} \mathbf{s}_1^* \\ \mathbf{s}_2^* \\ \mathbf{s}_3^* \\ P^* \end{pmatrix}.$$

So

$$\mathbf{s}_{i}T = \mathbf{s}_{i}^{*}, \quad 1 \leq i \leq 3.$$

which mean that $GL_n(F_q)$ transitively acts on R_1 .

Let (s_1, s_2, s_3) , $(s_0^*, s_2^*, s_3^*) \in R_2$. Then $s_3 \subset s_1 \cup s_2$, $s_3^* \subset s^* \cup s_2^*$, and after suitably choosing the vectors that represent the 1-dimensional subspaces s_1 , s_2 , s_1^* and s_2^* if necessary, we have the vector equations

$$s_3 = s_1 + s_2, \quad s_3^* = s_1^* + s_2^*.$$
 (14)

Noting that both $\binom{s_1}{s_2}$ and $\binom{s_1^*}{s_2^*}$ are $2 \times n$ matrices with rank 2, we can find (n-1)

2) $\times n$ matrices Q and Q^* over F_q such that

$$egin{pmatrix} egin{pmatrix} egi$$

are nonsingular matrices of order n. Therefore, there exists $T \in GL_n(F_q)$ such that $s_1T = s_1^*$, $s_2T = s_2^*$. Thus by (14) we have $s_3T = s_3^*$, which means that $GL_n(F_q)$ transitively acts on R_i (i=1, 2), it follows that $p_{j_1j_2j_3}$'s ($1 \le i$, j_1 , j_2 , $j_3 \le 2$) are all constants. And clearly, n_1 and n_2 are both constants. So we certainly obtain a 3-association scheme with two associate classes. We now calculate its parameters.

By Theoreem 1, we only need to calculate the values of v, n_1 , p_{111}^1 , p_{112}^1 , p_{222}^1 and p_{222}^2 , from which the other parameters are determined. Clearly

$$v = N(1, n) = \frac{q^{n} - 1}{q - 1},$$

$$n_{1} = N(1, n) - N(1, 2) = \frac{q^{n} - 1}{q - 1} - \frac{q^{2} - 1}{q - 1} = \frac{q^{n} - q^{2}}{q - 1},$$

where N(m, n) denotes the number of m-dimensional subspaces of $V_n(F_q)^{[5]}$. Let $(s_1, s_2, s_3) \in R_1$, \mathcal{T}_1 be the set of 1-dimensional subspaces s of $V_n(F_q)$ such that $s \cup s_2 \cup s_3$, $s_1 \cup s \cup s_3$ and $s_1 \cup s_2 \cup s$ are all 3-dimensional subspaces, and \mathcal{T}_2 be the set of 1-dimensional subspaces s' of $V_n(F_q)$ such that $s' \cup s_2 \cup s_3$, $s_1 \cup s' \cup s_3$ are 3-

dimensional subspaces and $s_1 \cup s_2 \cup s'$ is a 2-dimensional subspaces. Then

$$p_{111}^1 = |\mathscr{T}_1|, \quad p_{112}^1 = |\mathscr{T}_2|.$$

 \mathcal{F}_1 can be partitioned into \mathcal{F}_{11} and \mathcal{F}_{22} , where \mathcal{F}_{11} consists of the 1-dimensional subspaces in \mathcal{F}_1 that are not included in $s_1 \cup s_2 \cup s_3$, and \mathcal{F}_{12} consists of those that are included in $s_1 \cup s_2 \cup s_3$. Then $|\mathcal{F}_{11}| = N(1, n) - N(1, 3)$. For an arbitary element s of \mathcal{F}_{12} , we have $s = as_1 + bs_2 + cs_3$ with a, b, $c \in \mathcal{F}_q$ and $abc \neq 0$. Then

$$|\mathscr{T}_{12}| = \frac{(q-1)^3}{q-1} = (q-1)^2.$$

Therefore

$$p_{111}^1 = N(1, n) - N(1, 3) + (q-1)^2 = \frac{q^n - q^3}{q-1} + (q-1)^2.$$

And $s' \in \mathcal{F}_2$ if and only if $s = as_1 + bs_2$ with $a, b \in F_q$ and $ab \neq 0$. Then

$$p_{112}^1 = \frac{(q-1)^2}{q-1} = q-1.$$

For $(s_1, s_2, s_3) \in R_1$, if s is a 1-dimensional subspace of $V_s(F_q)$ with $\dim(s \cup s_2 \cup s_3) = 2 = \dim(s_1 \cup s \cup s_3)$, then $s \subset s_2 \cup s_3$, $s \subset s_1 \cup s_3$, and so $s \subseteq (s_2 \cup s_3) \cap (s_1 \cup s_3) = s_3$. Thus, $\dim(s_1 \cup s_2 \cup s) = 3 \neq 2$. Therefore,

$$p_{222}^1 = 0$$

Now let $(s_1, s_2, s_3) \in R_2$, and s be a 1-dimensional subspace of $V_n(F_q)$. Then $\dim(s \cup s_2 \cup s_3) = \dim(s_1 \cup s \cup s_3) = \dim(s_1 \cup s \cup s_3) = 2$ if and only if

$$s \subset s_2 \cup s_3$$
, $s \subset s_1 \cup s_3$, $s \cup s_1 \cup s_2$, $s \neq s_1$, s_2 , s_3 .

Therefore,

$$p_{222}^2 = N(1, 2) - 3 = q - 2.$$

Thus we have proved

Theorem 3. Taking as treatments the 1-dimensional subspaces of $V_n(F_q)$, and defining three distinct treatments to be the first (resp. second) associates if they span a 3-dimensional (resp. 2-dimensional) subspace, we obtain a 3-association scheme with two associate classes and with the following parameters:

$$v = \frac{q^{n} - 1}{q - 1}, \quad n_{1} = \frac{q^{n} - q^{2}}{q - 1},$$

$$p_{111}^{1} = \frac{q^{n} - q^{3}}{q - 1} + (q - 1)^{2}, \quad p_{112}^{1} = q - 1,$$

$$p_{222}^{1} = 0, \quad p_{222}^{2} = q - 2.$$
(15)

Based on the association scheme in Theorem 3, we can construct a class of 3-PBIB designs.

Theorem 4. Let $3 \le u \le n-1$. Adopt the association scheme in Theorem 3. Take as blocks the u-dimensional subspaces of $V_n(F_q)$, and define a treatment to be arranged in a block if the latter includes the former both as subspaces. Then we obtain a 3-PBIB design with two 3-associate classes and with the parameters in (15) and in the following:

$$b = N(s, u),$$

 $k = N(1, u), \quad r = N^{T}(1, u),$
 $\lambda_{1} = N^{T}(3, u), \quad \lambda_{2} = N^{T}(2, u),$

where $N^{T}(x, u)$ denotes the number of u-dimensional subspaces including a fixed x-dimensional subspace in $V_{n}(F_{q})^{[5]}$.

References

- [1] Ban Cheng, PBIB designs (in Chinese), Advances in Math., 7 (1964), 240-281.
- [2] Beth, T., Jungnickel, D. & Lenz, H., Design Theory, B. I.-Wissenschaftsverlag, 1985.
- [3] Bose, R. C. & Nair, K. R., Partially balanced incomplete block designs, Sankhya, 4(1939), 337-372.
- [4] John, P. W. M., Incomplete Block Designs, Marcel Dekker Inc., New York, 1980.
- [5] Wan Zhexian, Dai Zongduo, Feng Xuning & Yang Benfu, Some studies on finite geometries and incomplete block designs, Science Press, Beijing, 1966.

หระบับความกรุง จำกุริหาการโทยเกรายใน เป็นการเหตินเริ่มใช้เป็นสู่