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+-PBIB DESIGNS
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(Dedicated to the Tenth Amz'vérsary of CAM)y '

Abstract

A new tyf)e of design, called a ~PBIB design, is introduced by combining the notion
of a t-design and the one of PBIB design, Some basic properties of a t~-PBIB design are
given, and a class of 3-PBIB designg is constructed by means of fnite vector spaces,

An incidence struocture ig a triple D=(S, B, I), where § and B are two digjoint
sets, and Ia binary relation between § and B, i. . IC8 xB. The elements of § are
called points, and thoge of B blocks. A BIB d991gn is an incidenoce’ structure D @,
B, I) satisfying S

1.1, Foran arbl’sary BcB, I sES ]sl B} is a congtant mdopendent of the
choice of B; '

_ 1.2. Foran arbltary 2-gubget {si, saf of S, I{BEBlslIB a.nd szIB}I is also a
congbant independent of the.choice of {s;, s;}. If the constants in the conditions 1.1
and 1.2 are % and A Tespectively, then D is called a (fv, %, A) BIB design, Where
o=8]. 4 :
A t-design, as a generalization of a. BIB design,” is an incidence structure D=
_(S B, I) satisfying the condition 1.1 and the condition 1.2 with “2-gubset” replaeed
by “t-subset”.” Clearly, 2-designs are BIB designs. A PBIB design ig aqo’sher
generalization of a BIB desugn For its deﬁmtlon we need the notion of an assoma,tlon
scheme, ' ' ' ' B
Let § be a set of v points, and
: 8@ = {<31, 32) [s1, $2€ 9, 31#32} :
~ Let [a, b] denote the set of integers bitween @ and 5. Let R, (e [3, m]) be m
binary relamon on §, i. e. B,CS XS, ratisfying the followmg OOndlthDS
' =, ifI<i=j<m. ‘

1 R {
2 tnRJ g’ ﬁlgg%jgm

2.3. For every 4, R; is symmetrlc i, e 1f (sl, 82) E R,, then (sa, 81) ER‘.
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2 ¢ Let g [1 m] For every sE S,
[{s'€S8| (s, 5 ERJI
is a constant independent of the choice of s.
2.8. Let ¢, 4,1 be given 1ntegers, 1<4, 3, I<m. For an arbitary (s1, S9) ER,,
l {SESI (s, 1) € Ry, (s, 8s) ERz}' '
is a congfant independent of the choice of g; and s,

Then we call § with such B, (4€ [1, m]) an association scheme with m associate
classes R1, Rs, -, R,. If the consbants in the conditions 2.4) and 2.5 are denoted
by n; and p%, reépectxvely, then v My 24 (4, j, 1€ [1, m]) are called the para,meters
of the association soheme.

Baged on assooiation sohemes we have the definition of PBIB desugns

Let 8§ with Ry, Ry, -+, R, be an association scheme and D= (8, B, I) an inci-
dence structure. D is ca,lled a PBIB desugn Wl‘bh m assoelatlon classes if it satisfieg
the following condmons

3.1 Foran a.rbltary Be B

| {s€8|sIB} l
is a oonstant independent of the choice of B,
3.2, Letsc [1 m]. For an arbitary 2-gubset {31, Sa} with (sl, sz) € R,
[{BEB|s, IB and s, IB}|
ig also a congtant: independent of the choice of s; and s,,

If the constants in condmons 3.1'and 3.2 are % and A, reSpectlvely, then the
numbers .

v, 1y p,z, By A (3, §, TE[1, m])

~ are called the parameters of the PBIB design,

As everyone knows that t—degigns, eSpeomly BIB designs, and .PBIB designg
have been studied extensively and frultfully (see, o. g.,[1-8]). In this paper we will
generalize t~desugns and PBIB designs and introduce the notion of t-PBIB designs,
prove some basio properties of a t-PBIB desngn and construet a class of 3-PBIB
designs by means of finite vector spaces. '

We first give the deﬁnltlon of a -PBIB. desugn

- Let § be a set of v points, and -

8P ={(s1, 83 *>-, &) |8E S, sty (I<iRj<)}.
Let Bis (1<té<m) be m t-ary relations: on 8, and they - satlsfy the followmg

~ eonditiong,

=0, f1<i#j<m.

SA . L ¢

4.1, RgnR,

4.2, s(”—U R,

R TR
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4. 3. Every RB; (1€ [1, m]) is totally symmetrio, i.e., if (s;, sg,+++,8;) ER,, then
) (Sin Siay **2y s!t) EBn

‘where ji, ja **- gt is an arbitary permutatmn of 1,2, «ee, 8,

4. 4. Let ¢€ [1, m]. For every (s;, sy, ++, 8;.1) €8¢ 1’,
’ HSE_SI (81, Say **y S-1, s)ERi}l
is & constant independent of the choice of S1, Sa, ***y Sp-1. .
4.5, Let d, §1, Ja, -, §:€[1, m]. For an arbitary (s, s, *»+, s,) € R,
‘ [ {s€8] (s1, ++, ity Sy Shazy oo st) € R, for all A€ [1, t]}l |
ig also a constant independent of the chome of &, 83 - and s,. ,

Then § with such Rls(G€ [1, m]) is called a t-asgociation scheme with ¢-
assooiate olasses R, By, +++, Rp. If the constants in conditions (4. 4) and (4, 5) are
denoted by n, p%,,,..,. (4, §1, +--, §.€ [1 m]) respectively, then |

v, m, Dssamss
are called the parameters of the ¢-association schems. A
Let D= (S, B, I) be an incidence strueture § with Ry, Ry, <, R be a ¢~

 agdociation soheme, and the following two condltlons hold,

65.1. Foran arbltary BEB,
' | {s€8|sIB}|

19 a constant independent of the ehome of B.

5.2. For an arbitary (s, s+ - ) ER%,
| |{BEB|3IB forall j€ [1, ]}
is aldo a constant independent of the choice of (81, 83,++,85). :
Then D ig called a ¢~PBIB design with m agsoociate classes. If the constants in

‘conditions 5.1 and 5.2 are denoted by % and A, ‘then

‘ ) ]‘7 Ay, Z)Mz-"h ,@’r .71’ .72; % .7t€ [1) m]) ’ | : (1) '
are called the parameters of D, o

Clearly, ~PBIB designs with {=2 are PBIB desugns, and {~PBIB designs with
one agsociate class are t-designs,

We now prove some properties of a t—PBIB desngn They are. 91m.11ar 0 these

- of a PBIB degign or of s t—desugn

Theorem 1. Let D be @ t-PBIB design fw'z;th the pamfnwtea's m (D). Then we have

V= 2 n-+t—1, - 2
. ’ﬂl . [y
pngs"'ié #p}au)ic(n"'!;m fO’I' any peo"mumt%on O'Of 17 2! vy b and ’5) jl;"') jfe [17 m]y
S ®
phh g { ’ . L. . ’ . (4)
e "fe=1 ng,  Of 1<ji#£6<im,

ninpuj;"‘“ix'Z’#i“‘h’ é} jl)""jte [17 m]v . . o (5> .



174 ‘ " CHIN. ANN. OF MATH. . : © Vol.11 Ser. B

Proof _4_F01"_a given (81, 8z,++,. 8;3) EC¥D, there are v~ (t~1) (s, 85, *++, Si_z,
5) €8®, On the other hand, by conditions 4.2 and 4.4 these v— (t—1) elements of
- 8® can be partitioned into m groups with n, elemeh’us isn the ¢ th group, This proves
(2). As for (3), it i very clear by condition 4.8. For a given (s;, s, o=, 5,) € R,
there are m;—1 elements &' of § different from s, such that (¢, sy ++-8;) €R,. On
the other hand, thess m;—1 ¢~tuple (s, sy -+, §;) of R; can be partitioned into
m!~* groups with pi,.,, ¢~ —~tuples in the .(jg, »-+, 4:)th group (4, + ,‘ 5:€ 1, m]).
‘This proves the firgt relation in (4). The second one is-then clear by the "same
argument, To prove (5), we count the get’ ’
(81, 89, *++, $) ER,; and .
(sl, 8) ES® [ (s, v+ Sy, §, s,,’+1,- oo st) ER;,
for all A€ [1,:£] '
for a given (Sy, S -, 8) €S D, The number of elements of W oan be counted in

" two ways. There are n; ways of choosing s; € S such that (sy, 85 -, ;) € By, and for -

«each such s, there are pt,,,. ;. ways of choosing €S such that (sy, *=+, -1, S, Spess
*++, 8) € Ry, for all hE[1, ¢]. So '

. |WI = zpam wigh ' (6)
‘On the o’ohel hand, there are m; Ways of choosmg sefS such that
(S, S, *-, st) ERi.- ‘ - B (7)

For each such s there are p,..5, ways of chooging s, such that
. (84, Sg **+, &) ER,,

(8 8o, ***) Sty S1, Snety *o0y ) ER;; for all he [2, f. ) ®
‘The latter is o - | .
(s 83y oty Sneny S, Spen, ooy ) ER;, for all AE[2, t] SR ()]
Qlearly, (7)— (9) are all defining conditions for W, Therefore we have
|W | =napi,. “for " : (10)

Combining (6) ‘and (10) wo get (5). This complétes the proof, -
Theorem 2. A {-PBIB design D= (S, B, I) with the parameters given n (1)
43 also @ BIB (4—1)-design with the parameéters v, & cmd

| L A= En,?\.;/(l'o t+1), I (11)
which are éndc;pehdemf_ of p},j,...,,. '
Proof Let (s1,, 85, +++, 8;-1) €SV, and
DT ={{sy 8 o0y Seeny S} SHES for all i€ [1 t—11}.
Then | 7| =v—t+1. We can caleulate
e (481 w0y Simty S}ET |
u=|3({ss 88 -, s,-l, s}, B) sIB and s,IB (@6 [1 t—11),
. I BEB
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in the following two ways. Let
| ¥ ={BEB|sIBGE [1, t—1])}.
For each BE& ¥, there are k—¢+1 t—subsets € .7, So-

u=(b—t+1) |v]. (12)

On the other hand, by the definition of n; we know that there are n; isubsets {81,

S3 ***y 8.1, S} in J" guch that (s, Sy, -+-, Sy, §) ER;, 50 these n; f-subsets are

included exactly mA; times in the bloeks of D (@E [1, m]). Hence
‘M 2 T A{ o . (13)\

=1

Combining (12) and (18) gives

1 ¢
V=g &

which is a constant independent of the choice of (s;, sy, - ,ist 1) ES®D, Then D ig a.

(t—1)-design, and |77 is the value of A, Olearly, the value of |#7|.is mdependent-
of p},44us, This completes the proof.. :
From thig theorem and some known. results on ¢-designs, we k_'now th,aﬁ.

<x‘1>/<tfi>,

<>/<>

blo =97,

Fmally, we construot a class of 3—assocla,t10n schemes ‘and 3—PBIB designg by
asing the finite veotor spaees -
Let ¢ be a prime power, F, the ﬁmte ﬁeld with q elements and ¥V, (Fq) the n—
dimensional vector space over F,. Let S be ishe set of 1~dlmensmna1 subspace of
Va (Fq) , and | | |
| U Ry={Gsy s 8) €8O I'dim(slUSaUss) -3},
. Ba={(s1, S5, 85) €E8®[dim (s, UssUss) = 2}, .
where $1UsaUss denotes the subgpace spanned by 81, Sa and Ss. Olearly,
R, and R, a,re tota.lly symmetrio ternary relatlons on 8.
»S"‘"”—-RlURz, R:LﬂRz*-Q, Rﬁégy Rﬁﬁ#@y
Lot (sy, 83, 83), (8} s%, 85) € Ry, Tnen weé: ocan find two (n— 3)Xn matrices P, p*
over Fg such that . . - | |

ISy (st
‘ S RPN A
, and |-

‘are both mongingular; -~ © oL i T
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Put |
s\ "1/ st
s*
p=[®] | ®
83 $3
P P*
Then T €GL, (Fy), the hnear group of order n over F, and
31 81
Sa P Si
83 83
P pP*

So .
sT=s!, 1<4<8,
which mean tha,t GL, (F,,) trangitively acts on By,

Let (sy, s s3) (s, 5, 83) € Ry. Then s;cTs U ss, s3cs Uss, and after suitably
ohoosing the vectors that represent the 1- dlmensuonal subgpaces s1, S5, §1 and s; if
‘ necessary, we have the veotor equations
' S3==8; 1Sy, $=§+$ O®4

*

Noting that both < > and ( ) are 2><n matrices with rank 2, we can find (n-—
S

Sa
2) X n matrices Q and @* over F, such that
S1 S1
83| and | 83
Q. Q/
are nongingular matrices of order n. Therefore, -there exists T'€ GL,(F,) such that
- 8T =sj, ssT'=s3. Thus by (14) we have s;T' =s3, which means that G'L,(F,) ti'a,nsi-
tively acts on Ry, Since GL,(F,) transitively acts on R, (4=1, 2), it follows that
Phiaia's (18, J1, Ja .Js<2) are all constants. And olearly, n;, and n, are both |
congtantg. So we certaihly obtain"a 8-aggociatoon scheme with two associate olasses..
‘We now calculate its parameters ‘ o :
By Theoreem 1, we only need to calculate the values of v, 'n1, pm, Z’nz, Do
and piss, from which the other parametels are determined. Olearly

v= N(i fn.)- f:LL’

| m=N (1, -V, D=L g’_f £=Z,

where N (m, n) denotes the number of m-dlmensmnal subspaces of V,(F, )‘5J Let
(s1, 9y 83) ERy, Ty be the set of 1-dimengional ‘subspaces s of V, (Fq) such that
sUssUss, ssUsUss and s;UsaU's are all 3-dimensional subspaces, and T be the set

of 1-dimengional subgpaces s’ of V,(F,) such that s'Us;Uss, s,Us'Uss are 3-
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dimengional subspaces and s; Us,Us’ is a 9-dimensional subspaces. Then

' Py = ],]f“ll, th:.lf?z,-
1 can be partitioned into 7y, and 7, wheae fii consisty of the 1-dimengional
subspaces in .77 that are not inocluded in s; Us. Uss, and .7y, congists of thogse that
are included in s; UsaUss. Then | Ty, [ =N 1, n) ~N(1, 3). For an arbitary element
s of T, we have s= asl+bsz+css with a, b, ¢e€ F, and abec+0, Then

(F1al = % DN —(q 1)2
Therefore _
pm-N(l n) N(1 8) + (g—1)2= 99 ¢’ £ (g 1)2 . o
And ¢ Eﬂ},]fand only if s= “314‘582 with @, 8€ Fg and ab+0. Then

2 .
p112 .L%.__];)._—q 1

For (s, sy 83) € Ry, if s i9 a 1-dimensional subspace of V.(F,) with dlm(SU82U33) ,

=2=dim(s; UsUs,), then sCs,U s, sCs; Uss, and s0 s (saU 85) N (51U 85) =s5. Thus,
dim(s; UsaUs) =82, Therefore, , '
. P222 =0,

Now leb (s, sa, 83) ER, and s be a 1-dimensional subspaoe of V, (Fy. Then
dim (s UsaUss) =dim(s; UsUss) =dimi(sy Us,U s) =2 if and only if

SCsaUss, s Uss, sUsiUsy, 8#8y, 8y Sa
Therefore, ‘ i
p222~N(1 2) —3=¢-2,
Thus we have proved

Theorem 8. Taking as tfrewtments the 1-dimensional subspwces 0 f Vo(F), and
defining three distinet reatments to be the first (resp. second) assoctates o f they span
8-dimenstonal (resp. 2~dimensional) subspace, we obtain & S-association scheme with

~ bwo assoctate classes and with the following pwfmmeters.

_ -1 _q q
V= Ny =
g—1"’ q-
q

+(g-1)% P112=q 1 | 18

i .
ply=1 s
Ph22=0, Pm——q-—-? .

Baged on the assoclatmn scheme in Theorem 3 we -6an cons’sruot a olagg of
3-PBIB designs. ' .

Theorem 4. Let 3<u<n—1. Adopt tke wssocwtwn scfwme in Theorem 3. Toke
as blocks the u-dimensional subspaces of V., (Fy), and define a treatment to be arranged
in @ block 4 f the latter dncludes the former both as subspaces. Then we obtain & 3~P.BI. B

deswgn with two 3-associate clwsses and with the pwmmetefrs in (15) wnd on the Sollowing:
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b=N(s, u),
E=N(, u), r=N7(1, ),
?\.1——-NT<3 u), 7\.2-——N (2 u),

wherée N7 (x, u) denotes the number of u-dimensional subspwces malud@ng @ ﬁa:ed x-
dirmensional subspwce bn V (F,)™, : .

[1]
£z]
€3l
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£5]
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