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Abstract

Consider a functional f(®, v)= (4%, 3)/2+G(x,v), defined on a product space Hx V7,
where H is a Hilbert space and V is a compact manifold. Suppose that the linear part
(4w, %) is at resonance, In this. -paper, the strong resonance problem is studied in the
variational approach, the existence of at least, cuplength ¥ 4-1 eritical points of f is
proved. The abstract theorems are then applied to the existence problems of solutions for
‘elliptic boundary value problems and Ha.mlltonla,n systems,

§0. Int'rodﬁction'

A boundary value problem with the linear part at resonance wag firgtly studied

. by Landesman-—Lazer in 1970. They considered the boundary value problem-

Y +y=go(y) +h(s), € (0, w) .
y(0) =y(m) =0, . . (0. 1)
where e (R) ig bounded Under the condition that the function G-(gy) = =G (y)

+h(t)y, Go(y) —J 9o (@) dw, sa.tlsﬁes ‘
J G(asint)dt—>+o00 (or —o0) as || —> o0, ' 0.2)

0.1) posgesses a solublon .

Since then a vast literature extended and mproved their results to varioas
types of problems. '

Because the ]mea.r part is at resonance, in general, there ig nelther a priori
bound for solutions nor Palais-Smale condition for the variational approach.
Roughly speakmg, the difficulty lies in the lack of oonpactness However, the
esgence of the Landesman—Lazer condl’olon is t0 provide such a compactness
condition. _ '

"Of course, other kindg of resomance are of interest ag well. The gtrong regonance

9(y)—>0 and Go(y)~ B, a const. ag |y|—>00 ~ (0.3)
or more generally, ‘ ' '
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go, G are bounded and uniformly continuous | (0.3)

wag posed by Bartolo-Benoci-Furtodato™. Bus, they assumed Go(y)—> B<0, and

made many oxtra conditions, which onforced a compactness condition upon (0.1).
A main gfep in studying the lack of oompaotness problem in thig dlreotJon

was due to Ward™s?, He studled the cage: go(y) = smy, and f k() sint d¢=0. The.

study was followed by Sollmlmm’ Lupo-Solimini“” and Mawhin™,
In this paper, the strong resonance problem ijs studied in the variational
approach by a quite different method. The new ingredients are ag follows:

(1) Although the Palais-Smale condition does not hold for some values, we-
could oompactlfy our space by adding some infinity points, and extend our funetlonal :

onto the new space.

(2) Deformations, and then the crltlcal pomt theory are extended to the

enlarged space.
(8) We distinguigh the genuine and the fake critical points.

(4). Multiple solutions are . obtained 'by’ the - richness of the topology of the:

compactified space along with the oritical groups of isolated oritical points.™

~ Our ‘work ig set up in the funetional analytic framework. The main resulty are.
Theorems 2.6, 2.8, and 3.3. In the applications to difierential equations, Theorem -

2.6 implies the results due to Ward, Sohmini, Lupo-Soliimini, as special ocases.
Theorem 2.8 improves these results to obtain a nontrivial solution if there is &
~trivial solution with certain restrictions on its Morse index (of. Theorem 4.1.).

And Theorem 3.3 extends the Landesmann-Lazer type problem about the mulsiple:

periodic solutiong for the Hamiltonian systems with periodic nonlinearities, studied
in Chang™, and Liu'™, to the strong resonance cage. ’

The paper is organized as follows: We compactify the Spaoe axldo set up the.

deformation lemma in § 1. § 2 is devoted to the study of the existence and the

_multiplicity of solutions for semi-definite functionals. § 3 extinds the results in § 2

t0. indefinite functionals via the (arlekin method, And §4 deals with the

apphoamons t0 semi~linear elliptic boundary value problems and periodio SOlIllilODS:

of Hamiltonian. gysterns.

§ 1. Deformation Lemma

Let H be a Hilbert spaoe and A be a bounded self—a,tljoint ‘operatoi' on H,
which splits H into H,+H_+H, according to its spectral decomposition, We
denote by P, and P the orthogonal projections onto the positive/negative spectrum
space H and the kernel of 4, H, reépectively’. Set Q=P,+P_, The following
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assumptions are made:
(A1) The restriction AIH is invertible, ie.,: A[H has a bounded inverse
on H,. ’ : '
(A2) -m_:=dim H_, my:=dim H, are finite, .
(@) Let G: H— R be a O*~function and have:a bounded, compact gradient
dG. We assume that G(z)—>0, dG‘(a;)—>0 a8 | Po|—> oo, umformly in bounded Qw
sets.
We are concerned with the exigtence of oritical points of the funotion

f@=tde re@ @

which is related to the asymptotically linear operator equation with strong resonance
at infinity: Ao+dG(2) =6. This problem has been attacked by many authors, bus
our approach is quite different from theirs and easﬂy extended to the 020 of
function with periodic nonlinearity. '

Let us recall the (P.S), condition:

We say a function f defined on a Hilbert space H gatisfies (P. S)G eondltlon for

. 6E R, if any sequence z, along which f (w,)—>¢ and d f (w,,)——> @ possesses a convergent
- subgequence,

The function defined by (1.1) falls to satisfy (P, S)o condition at the level ¢=0.
In fact any sequence g, of Hy, for which |4,| —> o0, satisfieg f (@) —>0, df (w,)—>6 and
can -have no convergent subsequence But f does Sadnsfy (P. S)o condltlon for ¢+0,
Namely we have the following lemma. "

Lemma 1.1. Under the assumptions (41), (A2) and (@) the function f satfbsﬁes
(P.8). condition for ¢0. Moreover f f(w,)—>0, df (@,) =8 for a sequence a,, then we
can select a subsequence (still denoted by wﬂ) with the propeo"ty that e@thea" Ty cowvefrges or
| Qt,| =0 and | Pa,|— oo, @s n—> oo, T ‘

Pfroof Suppose that - .
f(w)——(Awm 2,) + @ (a,) >0, - (1.2)

df(a;_,,)-—_—-Aa;,,+dG(w,,)f—>O asm—>o0, . . (1.8)

Decompose w, into o +; +af, where o =P ., w,, - Pz, Then - | '
| (4at, o) | = | (day, @) | = | (@S (@) ~ dG‘(m,,), 22) | <O|at|. (1.4)
Since 4 is positively/negatively definite on H,, (1.4) implies the boundness of .
If ) is bounded too, then @, has a Weakly- convergent subgequence. By the
compactness of dG and the finite-dimengional condition on' Hy we geb a. strongly
convergent subsequence. Now suppose that | Pa,| tends o infinity. Then G(s,)—>0,
d6 (z,)=> 0. From (1.8), ..fv,f—->0; Finally (1.2) implies thab f(a,)—>0, that is, =0,
The remainder of this section is ‘devoted to proving a deformation: fheorem,
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which ig essential in min-max theory.

Lemma 1.2. Lot 5 be.the set {e€ H|df (w) #6}. Thefre is @ locally Lipschite

continuous mapping V: H —> H (the so-called pseudo gradient (p.g.) vector field) with
a form V (x) = Az+h(w), satisfying

O [ @), df @) |>5|f @)]"

@ |V (@)|<2]df @],
(8) |h(2)|>0, as |Po|—> o0, uriformly én bounded Qu sets.
Proof Let u€H. Then Au+d@(u) is a p.g. vector for f at u W11;h gtrict
1nequahty in (1) and (2). By the cont'nuity of df :

2(v) =Ado+dGu) 4 (1.5)
ig a p. g. vector for f for all v in an open neighborhood ‘N (u) of u. The set of all
such neighborhoods covers H. Therefore there existy a locally finite refinement
(N (2y), 4€ A), where A is an index set. Let p:(%) denote the digtance from o to the
complement of N (s;). Then p, is Lipsohitz continuous and . vanishes outside N (z,).
Set ' s ' ’

[
B =t
Sinoce (N (@) is a locally finite covering, for each weﬁ the denoncunator of Bi(z)

isonly a ﬁmte sum, Finally let
| V(@) =3 @) = 2 Bu() (Aw+da<w¢>> Lo+h(),
- where 2, ig defined by (1 5) for u=ug; ’
z;(a;) Am+dG(w‘)
and "
h(w) 2,34(“’)@6‘(“&) .
For each sc H, V is a convex combmatlon of p.g. veotors for f and hence is a p. g.
veotor. Moreover V is locally Lipsohitz continuous, It remeins to verify the
condition (3). Of course we can assume the diameters of the neighborhoods N (v) to
be less than 1. Suppose that |Qu| is bounded, say |Qo|<0O. For a given >0, take
M 50 large that |d@(v) | <e for any » such thai (Qu|<O+1 and |Pz|>M—1. Now
if [Qu|>0+1 or [Pax|<M-1, then dist(s, a:,)>1 and B;(@) =0; otherwise
'[dG(an) l<s by the chome of M. Therefore

|7 () |<EB¢(£0) ldG‘(w-) |

_ _ <ZBi(w)g=s.

"The proof is complete : , :
Now we compaoctify Hy, the kernel of 4, by addmg an infinity poin. Namely st

D= =HyU{co}=8™ and H=H'x 3, where Hl—H++H Along with the funotion:

Ji we define its extengion ¥ ‘to the space B by
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F(a)=F(u, s) = {f(u’ 9, o) CH X Hy
: J (W), u€H* s=oo,
where f(u, 8)=f(z) and J(u)= 1/2(Au, w). Since G(u, s)—>0 ag s—>o0, the
funoction F iy continuous on K. Though F ig not dlﬁ’erentlable in general, we can
still work out the necessary deformation theorem.
Theorem 1. 3. If o€ R\{0} and N é5 any neéghborhood of K,={«€ H |f () =o,
df () =6}, then there ewist n@, ) €O([0, 1] x B, E) amol constants e >8>0 such that
(1) 90, 2) =a for all x€ B, - )
(2) n@t, @) =afor all g F1[c—3, o+2] and dll tE [0, 11,
) 5@, «) isa homeomophism of B for oll t€ [0, 1],
(4) F(nQ, »)) is decreasing in & Sfor all wEH, te [0, 1], -
(5) ")(1 Fo+s\N)CFc—s; N | -' _ | »
) if K=, n(t, Fo)Fory. — ©
Proof The idea is to construot two flows on H and Hx {co} regpectively, and
then glue them: By (P. 8), condition, K, ig compact. Hence for 0<§ sufficiently
small, N (8)——{mldlst(a; K,) <8}CN 80 i sufﬁces t0 prove (5) of (1 6) with IV |
replaeed by N (). :
There are constants b, >0 such that " : S
|df (@) | =5, for 3€ fous\ (f,,_auN(‘o‘/S)) @

4w.
S ’

(1.6)

Since (1.7) remaing valid if & is deoreased, we can assume P
0<z<min (55%/4, 8b/8) . o (1.8)
Let e€ (0, &/2), and define. a smooth funetion P: R—>[0, 1] by
” Q, $=c+¢e or s<<e—g,

(s) 1, o—e<s<ots,
. _ ‘between 0 and 1, otherwige.

Let A=H-—N(5/4), B=N(8/8). Define another funection g (@) =digt (a: B)/
[dist (@, A)+dist (=, B)]. g is Lipschitz continuous with g= 0-on Band g= 1 on A4.
Next define g (s) =1 if s€ [0, 1], ¢(s) =1/s if s>1. Finally define

X (@) ==-g@p(f @) gV &) HV (),
where ¥V (z) ig the p.g. vector field for f as shown in Lemma 1,2, Then X 19 a
locally Lipsohibz continuous vector field with | X () |<1. A
Consider the ordmary dlfferentzal equation

L E=X©), £O v)=0foroCH. (1.9)

Since X ig bounded, Lipsohitz oontinubus by the hagic exigtence theorem for such
equations, for all s€ H there existy a umque solu’mon £ (f, #) defined on the whole
line tE (-—-oo +°°) N o : -

- It follows in partlcular that £ (¢, a:) €0 ([0 11xH; H ) and satlsﬁes (1)—(4) of
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(1.6) with H replaced by H. It remaing to check (5). Since f ig decreaging along a
trajectory, (B) needs only to be verified for &€ foue\ (fous UN(8)). The procsdure is
now very standard. We shall prove that f(£(85/4, @))<<¢—s. If it is not, for ¢<<
33/4, c—e<<f(£ (¢, 2)) <o+s, and p(f(£(¢, o)) =1. Because | X |<1, we have
€@ o) -£(0, w)l<t '
hence for ¢<35/4,
d(¢ ¢, o), N(3/4)) :
=00, ©), N(3/H) = £ 2)—£(0, o) |
>30/4—38/4=0, '
and g(£@¢, o)) =1. Now '

FFEEN=(35EE ), 5 €6 o))
=—¢(IV @ 9 D@ EG 9), VEG 9))
. <-3 ¢V EG DD EE )] (1.10)
It for somo ¢, |V (¢ @) | <1, ¢(|V(¢(4 #)) ) =1, by (1.10), (L.7).

L FEG 0)<—£af €6 2) P<—b/2, @11y

while i |V (¢(, 0)) |51, q<|V<§<t N D=1V € )|, and by (1.10) and (2)
of Lemma 1.2

—d?f(E('t, w))<-—~'2—ldf(§(t,w)IziV(f(t, @)) l'1

<-L1arE6 o) | <-t/a. . an
Combining (1.11) and (1. 12) produces A

f(f(t z)) < —min(b?/2, 6/4) ' (1.18)
So : - : '
F€6/2, B)<FEQ, w))—%mn@ﬂ/z, b/4>
<o+e— %smn(bz/z, b/4) <o—s,

which ig a contradiction.
At the same time- we construch another flow { on H* X {0} by ’nhe ordinary
differential equation: )

_gt_g'__.w(g), £(0, w) =u for u€ H*, (1-145 |
Vw_here W(u‘)i= -—p(J(u))Q(IAuI)Au, J () =—%—(Au,‘ ). We have
' |de (w) | >5, for o€ J;+§\Jo-3~

Repeating the above a,rgliment» we do for the"solﬁtio,ns. of equation (1.9), we get a
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flow (€O ([0 1] x HL, HY) satigfying (1) ~—(B) of (1.6) with B replaced by H L
Now deﬁne for 1€ [0, 1]
@t u, 9), (u, ) € Hix H,,
_ L# w), o), u€HY, s=co
which ig the desired mapping. It iy clear that this mapping satisfies all the conditiong
of (1.6), provided we can prove itg continuity at pom’us o= (4, ), u€ H. We gtate
it in the following two lemmas.

Lemma 1. 4. For o= (4, s) € Hx H,, sot R(w) X () — W(u) Then R(fv)-—>0
as | Pz|—> oo, ungformly on bounded Qu sefs.

Proof Firgt of all, g(w) =1 ag |e| ig large enough hence

- X@)=—p(f(@)g([V () YV (o).

Suppose Qo is bounded. Then Az ig bounded, G(z) and h(w) tend to zero ag | Pa|
tonds to infinity. Hence

9y, s)={

1@ =T @) [ = @) | =o(®),
| [V (@) ~ Au[ = |h(z) | =o(1).
It follows that :
[PCF @) =P (T () | <O (@) ~ T () | =o(L),
|2(1V @) ) ~g (| 4u]) [<O[V (@) — du| =o(1),
and finally R(z) =X (&) ~W (u) =0(1). The above symbol 0(1). denotes quantitiey
which teud to zero as l Pa;[ tendg to mﬁmty uniformly on bounded Qu sets.
Lemma 1. 5, Suppose that 4, ~>t, Uy, §,—> 00, where 1, [0, 11, u, EH s, &
H,. Thefrb
P¢ Gyt $0)—> 00, Q¢ (t Uy, s”)—~>C(t u)
Proof Qonsider the equation.
d/dtE =X (£), £(0, t, 8) = (i, s,).
Since IX|<1, €ty 80) —£(0, u, )| <1, hence |Q¢(t, u, s,)|<]|u, l+1<0

lP§(t Uny 82) | = |8,] —1-> 00, and by Lemma 1.4 R(g(t Un §,)) tends to zero ag

n—>co, We have
L1 - Qe 5|

<IWQE w) -QX ¢, u, sn))l
SIWEE W) =W QEC, un s)) | +[QREE, u 5)) |
<O|{{t w) - Q¢ ¢, u, s,.)l+0(1)
- By Gronwall inequality, :
126 w08 v 5] =
<O[L(0, w)-QE(0, u, W [+o()
, _ -——O[u Un | +o0(1).: :
But
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[£G, th 8 w) — & Gy U ) [ < [E—14],
g0
12, 6) Q€ (bt ) | <Olu—i] +]t—t| +0(D).
The proof of Lemma 1.5, hence of Theorem 1.3, is complete.

Notiocing that the constant ¢ depends on b and & only, we can rewrite Theorem
1.8 ag the following corollary, which ig very useful later.

Corollary 1. 8. Lot N.and N’ be two bounded subsets of H such that N'C N and
dist (N’, ON) =>'78/8. Suppose that there ewist. constants b and & such that

|df (@) | =, for @€ fous\ (fo-s UN'),
0<g<min (8b%/4, 8b/8).
Then for 0<s<8/2, there exists n(t, ) EO([0, 11X K, E) satisfying (1)—(6) of
Theorem 1.3. _ |

Now we turn to the case of ¢=0. The point o= (§, ) plays a role of oritical
pointy in gome gense. We should exolude'a neighborhood of thig point, But first we
give a few notations, Seb '

D(3) ={u€ H*, |u|<3}, L(R) {s€ H,, |s|>R},
M (3, R)=D(®) x L(R), M (3)=D(d) x{eo},
N@)={zC H, dist(s, Ko)<8}.
‘We have the following theorem. : »

Theorem 1. 7. Assume that the oritical set Ko ds bounded. For any netghborhood
N of K, U {6, o)} ?Jrn H, the conclusion of Theorem 1.3 st@ll holds, that is, there exist .
n (%, @) €o([0, 1] % E B) and constants e>&>0 which satisfy (1.6).

Proof We can assume- that N =N @UM®G, RYUM®B) and R is sufﬁclently
large that N ) n M (5, R)=(. Again we construct two flows £, { on H1x H, and
H-* respectively. By Lemma 1.1 there are constants b and &>0 guch that

@@ |>b, for o€Fi\ (FsUN (3/8) UM/, R+1)),
for otherwise there exist sequences b,~>0, &,—>0 and g, belongs to Fa\(f-:,U
N(1/88) U M (5/8, R)) with ldf (@,) | <b,. By Lemma 1.1 either @, converges 60 a
point @, satisfying f(2)=0 df(s)=0 and sEN(3/ 8) ; or Qu,—0 and Pg,—> o,
hence. w, belsngs to M (8/8, R+1) eventually In both cases wo arrive at a contradio-
tion. . '

Let - T

A=H\(N(8/4)yUM(5/4, (R+1)/2)),
B=N(5/8)UM(5/8, R+1), |
g(w) =dist(s, B)/[dist(a, A)+dist(z, B)],
X (@) = = 9@)p(f @)g([V IV @),
=H*'\D(3/4), B,=D(3/8),
- 9.(u) =dist (e, B,)/[dist(w, 4,,)+dist(w, B.)],
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W () = - g (w)p(J (u)) ¢ (| Au[) Au.
Again we congider equations (1.9) and (1.14). Everybhing remaing the, same,
provided we can prove the conolusion of Lemma 1.4, that is, R(w) = X (&) — W (u)—>0
ag |Pa;|——> oo, uniformly in u=Qw being in bounded sets, But it is clear that ag Qu
is bounded and Pz tends to infinity, dist(z, 4)=dist(u, 4.) and dist(w, B) =dist(x,
B..); henoe g(#)=g.,(v). As in Lemma 1.4 we get IR (@) | =0(1). The proof is
complete.
In parallel with Oorollary 1.6 the following corollary holds
Corollary 1. 8. Let N, N’ be. two bounded subsets of H such that N'CN and
dist(N’, aN) =75/8. Suppose that there ewist constants b, R and ¢ such that
|47 @) |, for 0€F\(f- UN'UM(3/8, R+1)),
0<e<min(3b%/4, 5b/8). .
Then for 0<s<3 there ewists n(t, #) €O([0, 1]1x B, H). satisfying (1.6) with N
replaced by N UM (8, R) U M(5). | - o
More generally, one may extend the above discussion to the following problem.
Let 7 be a finite dimensional compaot 0% Riemannian manifold without boundary,
Let H and A be deﬁned above, and les -G H X V—-)Ri be a O function satlsfymg
the assumption:
" (Gv) G hasa bounded compact gradlent d@ suoh that G(z, v)—>0 and d@ (a, rv) —>
8 as- | Pw|—> o0 unlformly in (@, v), where v &V and Qu are bounded.
We are looking for erltlcal points of the funetional

f (e, v) =——2-(Am, @) +G(a, v), (o, v)éHXV.’ ' .(1.15)
Similarly, we introduce a new functional on_the spaée B=H'x2 XV
' Flu s, 0) (u s, 'IJ)GH-LXHOXV

FO=F s, Q))={ (Au u) (u, v)EHle §=o0,

(2.168)
Then Theorems 1.3 and 1.7 extend to the following

Theorem 1. 9. Lot N and N be two bounded subsets of H X V such that N'CN-
and dish (N ', N)=>178/8. Suppose that there ewist positive constants b R, and & such that

NG (1.17)

for L€ for \(fou UNUT), where U=, %fc#O and U = M(8/8 R+1) XV, ife=0;
and .- : _ ,
O<st1n(Sb2/4 87)/8) L (118)
Then fOfr any O<s<s, there exists nE o(fo, 1] X H, E} swtfbsfy@ng

(1) 7(0, +)=id, | g

(@ @, D=L, Vi€ (o, 1], Viéﬁ"i[c &, 0+F],

(8) n(, «) s @ homeomorphism of H, Vi€ [0, 1],
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4) F(n(t L)) bs noninereasing in t, V{ E K,
®) n@, Forc\N)F,_,, if ¢#0, and

(L FANNUMG, RYUMG))XV))cF., ife=0,
(6) If 00 and Ko=), then n(1, Fops) CFo,.

§ 2. Existence and Multiplicity

~ 'We want to study the existence and multiplicity of oritical points of the function
f via-its extension F defined in (1.16). Noticing that the function F is not
differentizble at points on the set {(u, oo, v) |u€ HL, »EV}, it is necessary to single
out some specified points of F, which play the role of oritical points in some sense. .
- Let K denote the crifiical set of f, we call the sob k= K U ((8, o) xV) the fake
ermca,l set of F. Baoh point { € K is called a fake oritical point. A point, which is
not a fake oritical point, is,called a fake regular point. '
We denote K,= 1?' NF(c). In case R,+J@, ¢ is called a fake omtlca,l value,
Otherwise, ¢ ig ealled a fake regular value.
Tt is easily seen that K,= K, if ¢#0, and ?O—KOU (0, o0) X V.
Theorem 1.9 now turns out 0 be the follow ing - :
Theorem 2. 1. Assume that Ko 6s bounded. Then Ve Ry v nefoghbowrhood N of
R, 35>0 such that v 0<s<6<8 there ewlsts @ dofoo‘mwmorz, nE O( [0, 11x H, H),
Satisfyimg :
1 (0, ) =id,
@) 2, D=L V¢ D ELO, 11x (B\F*[c—s, o+e]),
(8) F(n(t, +)) is nonincreasing in £,
(4) n(, ») s a homeomorphism of H, Vi€ [0, 1],
®) 71, Fou\N)SF,.,
(6) If Ro=@, then n(1, For)C Foey.
Lemma 2. 2. Lot a€ H,(F,, F,) be a nontrivial singular relative homology
class, fwhofre.a<"b are two fake regular wluos. Then |

c¢=inf sup F (o)

€ w€E 2|

is @ fake critical value of F, with a<<o<b.

Proof A standard Minimax Prmclple can be applied, provided by the conoclu-
sions (1) (8), and (6). _

" Definition 2. 3. Let X be a topologoowl space, Y <X, and let oy, 0 & H (X )
be two nontmowl séngular homology olasses We say that ay bs subordinated to o, and
denoted by oy <Lcg, Of there ewists W€ HYX ), 'woth dim: w>0 such - that oy =031 o,
~awhere N s the cap product. ' : S
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- Lemma 2. 4. Lot ay <oy be tuo nonitrivial singular homology classes in H,(F,,
Fo) with o= 05 @, where a<d are Sfake regular values of F. And let

—mfsupF(w), =1, 2.

2€uy w€ (2|
Assume that there ewists o netghbourhood N’ of K, and a singular cochain &€ e such
that supp w NN’ =&, Then ¢, <<cs. : :

Proof By dofinition, Ye>0, Ja singular relatwe closed chain 2,& @y such that
|23] © Fopps. We choose a neighbourhood N of K, such that NN <N, and subdivide
2y into 25 +25 sueh that |25 | N’ and- |25| < Forys\N. By the assumption, we have
_ 21=2ND=2N&,

which implies |2, |c F0,+8\N
Since ¢1<<cy are fake oritical values of ', we have a<¢, and c;<d. We chooge
0<e<M1n(oZ Cy 61—a), and 0<s<g, According to Theorem 2. 1, there exists n€
O([0, 1] X B, B) satisfying (1)— —(6), which imply that »(1, Fors\NYC F,,_. and
n(1, «)=id, in (F,; F,). Therefore 77(1, |24 ) cl?'c,‘_8 However, n(1, #) Coy. It
- follows that ¢; <<c,— s < ey, . :
Lemma 2.4 is an exbension of a result due 1o Chang™
The following corollary emphasizes the fact thai the posﬂnve lower hound of ’ﬁhe
- difference ¢,—e¢; depends only upon the constants: b, 9, &, and a.

- Corollary 2. 5. Let ccR, d>0 and <0, Suppose that Ko is bounded. Let a, o,
4=1, 2, be defined as in Lemma 2.4. Suppose that theve ewist nesghbourhoods N N’ o f
K, and constants - b, & 8>0, satisfying dist (N’ ON)=T75/8, |df()|=b>0, VL€

Fos\ (Fos UNT) wnd O<8<M1n(86/4 862/8 d/2). Then ¥ e€ (0, 8), 6,<c—&/3
whenewer ca<c+s/3. e
The proof is the same as above , '
Theorem 2 6. T f Ko is bounded then thefre emst at Zewst CU plength (V) +1
eritical pomts of the function f.’ '

Proof One chooses d and = large enough which aro fake regular. By the samé

| argument applied in the proof of Theorem 8.3 in Chang [2], we obtain
Hy(Fy FyzH, n(ExV),
and T ,
HY(Fy) = H* (3% V). |
The later equivalence is in the sange of ring isomorphism. Assume that ourlength
(V) =p; this means that Jwy, -+, w, € H*(V) with din w;>0, 6=1, 'ty by such that
@1Uos U+ Yo, #0. | R -
- Since X=_8"™, there is w EH*(E), with dlmw =m;. Let my: ExV—»Z‘ and oy

ZXV >V be the two projections, We have ovga)l, Wawy, +++, Wi, and wio* € H* (3 x
V). Thus '
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: wiw* U wywy |+ Uwhwy+0.
In the followmg we shall not distinguish the cohomology classes between H* Ex7)
and H*(F4) in notations. Accordingly, there exists op.1 € H,(F4 F;) such that
[otps1, wie* Umgey U« Umsw,] #0.

Let .
ai=ai+1nw‘i) 7’=17 27 oy Dy

and let
| | of=0;Nw* ¢=1, 2 -, p+1,
Then we define SR :

¢;=inf sup: F (z), 2.1)
2€x wE|2| . .
and :
o gt =inf * sup F(m), . ' , (2.2)
. ¥€as @€l : o . :

b= 1 2 see, p+1 . R

Because of the special ohowe of o, it followt from Lemma 2, 4, that i <e¢, 4=
1, 2 5 p+L Moreover, by deﬁm’olon, we have

C1<0a<S  SCpiyy
and . - e _
: , c,<c2< < Oppa :

We conclude that there must be at leagt p-+1 nonzero values among these 2( p+
1) values, In fact, if 0<e}, then 0<e;, therefore all ¢; j=1, 2, -, p—!__—i are
positive, and if ¢j,1<<0, then all ¢}, j=1, 2, vus, p-+1, are negative. Otherwise, there
9~xists JE], 2], such that ¢j <0<cj,1. As we have shown'above, it follows that

0<0541<Cjsa< - SOpaa.
Agam we obtain p+1 nonzero values, .

Provided by Lemma 2.4, if f has only. 1sola’sed oritical pomts Wlth noNnzero
orifical values then f has at least p+1 critical points, Othermse the proof is
through ‘ : _

Under addmonal condltlons, we may obtam one more solu’slon Let us define
two index sets. Set - S e
={geZ|g=;21dimw¢, j=1 2 =, }
and set T

B c I.=m.+1,  I,=m. g+ 1.

" Lemma-2. 7. ‘Suppose that 6<0 (or >0) is @ oritical ‘value o f f obtained by the
'Mmzmaw Pmncq,ple via @ nontrivial singular homology class o=oy- (or of frespeotweby)
fer some % & Theoa’em 2.6. Assumé thwt f has only 'zxsolwted cmtwwl pomts, then JwEK o
wmlqél “(or I+fresp)suchthwt S e :

O, (w0, ) #0,
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where Oy (wo; f). 48 the. erétical.group of xo L :

Proof We only prove it for ¢<0. Set 0<s<M1n(oZ —¢, ¢~ a), ‘where".d. and @
are large enough fake regular values., If the conolusion:.is not true, then V w€ K o
and V g€ I, Oy, f)=0. Since now K,=R, o have H,(Fo., F,.)=0 for
sufficiently small ¢ € (0, ). On the other hand, there is a relafive. singular cloged
ohain 2 € & with support |z|c Foy.. Let ’y—éaz be the! boundary of . Then fy|c F,c=
oo and then o= [y] € H, 4 (F,z) is nontrivial; provided by the definition of 'o In
fact, if ¢ is trivial in H ¢-1(Fo-s), then Ja singular g —ehain v such that. [7 c:Fo-,,
and 97 =0, whioh implies that =€ a. In. this cage, .

¢=in¥ sup F(w) <Sup F(z)<c—s.

Z€a :aelzl

This is a contradlotion Nomomg the exaob saquenoe

—> H,(F o8 —s)~'—) H —J.(Fo—s)“‘) Hq 1(F0+s)*“>
- where 4: F,,_B—->Fc+s is the 1nJeo’mon and 4,(0)=0,1. 6, oCker ¢, we have BE
Hq(Fc+,, FG,B) such that 9 »B=c. This i a contradiotion. -. - B

A similar result for homology link was obtamed by Lluf‘”

‘f Theorem 2. 8 Suppose that - the fwrwtwn f, deﬁned in. (1 15), _sat@s fies the
assmnptfbons (Al) (Az), and (Go) Moreowfr assume: thwt (wo, fvo) is am tsolated ca*f&twwl
point of f. Then f has at Zewst cuplength (V) +2 oritical points, of ewthefr

| 1) f(wo, fvo) 0, or L

- (@), f(wo; o) <0, . and O, ((%y o), f) 0 V QEI—, or

(3) f(wo, v0) >0, wndO o( (@0, 20), f) =0, V.ged,. . .
ThlS ig a direot oonsequenoe of Theorem 2.6 and Lemma 2.7. In ’ohe argument of
the proof of Theorem 2.6, if the condifion that f hag only. isolated. orltloal points is
dropped out, then our result may be 1mproved as follows '

Theorem 2. 9. Suppose that o>0 (or ¢<0) 43 a cfr@twal pomt of f obtamed by -

the Miniman Princt ple via, a nontrivial. singular relative. homology clwss a=a (or ai)
Jor some ¢ in (2.1) (or (2. 2) resp. ) If eisof mwltoplw@ty k+1, é.e., Ela,, ity ) Oty

(Ofr 0y Oy ***y Of 41 'resp) such, that _ _
C=0;= iy = """ =Cipp, (orc =G = =0l o”esp.),
then ’ ' ' '
cat(Kc)>k+1

Proof We may choose neighbourhoods N'c N cN " of K, with cat(N'")=
cat(K,), constants 0<é<g, and 7 H—>H eoninnuous such that n l 7. E—odm - n(Fm\
NYcF,_, and yid, pr0V1ded by Theorem 1.8. L

If the conclusion is not true, i. e., cat(K,)<k, then 3 k oontraotlble sets B;, -

g=1, ¢+1, +, 4-+k—1, covering N"”. We choose 2€ t;yy_s, with support |z|c Fo,,.
Smce dim w;>0, one may choose cochams &;€ w; with . supports I @il N Bj=J, §=1i,
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¢+1, «o, 4+k—1, Subdividing =z into.z=zo+z‘+m+z,-+k_1, guch that lzolc:Fc;,,\N

and |#]c By, §=4,4+1, -, 4+k—1, one hag
z2=20 (o JwsaU+* ‘ o U Bpgre1) =20 (@i UBiea Usee Ui 1)
Hence |2'|C Fop\N and 2" =n(z") CF,_.. However ?' is a smgular chain in «;, one
obtains ¢;<e—&. This is a contradiction.
Similarly, we prove for ¢>0.
| Corollary 2. 10. Let N'c N be defined in Theorem 1.8, such that (1.17) and
(1.18) hold. If either :
C— eSO Ko etg, or
C— B G ooo ey <0+ 8, '

- then cat(N'"")=j—i-+1, for any bounded set N'' containing the closure N,

§38. Indefinite Functions

If we want to apply the abstract théorems obtained in the previous seckion to
general Hamiltonian systems, the restriotion on the dimension of H._ should be
drOpped i e, we shall extend our absract theoréms $o the case of indefinte functlons
the Galerkin apprommatlon method will be apphed (Of Li and Liu [9]) ‘Instead of
(A2), we assume =

(A2)’ H_ is seperate, and dim Hy<co.

Let H” be a sequence of finite-dimensional subspaces on H_. Denote by P~ the
orthogonal projection from H 0 H". The following assumption on the a pproximation
scheme is made, ' ‘ _

(I H~is invariant under the aotion of A. P* strongly converges to P_.

Tt is clear that (I) ig fulfilled, if A=P,—P_ and a suitable sequence of
subxsrpaoes is ohosen. '

Now let us list ‘the notations to be used in the sequel:

(1) Space. ' ‘

H, a Hilbert space as in the section 1,
‘ V, a manifold as in the section 1, ,
H H,+H_+H, H=H,+H_, E=H'x3xV,
H —H,+H"+Hy H-t=H,+H", E,=Hix3xV,
| - d=H ol <°°>) '
Q',,=P,+~I—P’i, the orthogonal prOJectic;n onto Hi,
P,=Q,+ P, the orthogonal projection onto H,,
D={u€H_, |u|<B}, §=0D={u€ H._, |u|=R},
D,={uc HZ; lul <R}, 8,=0D,={uc HZ, lul =R}, "
' D,=DNH,, 8,=8SNH,. - |
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(2) Funoctions. _ - .
f (@, v) =1/2(4s, 2) +G (s, v), (&, v) €A XV, |
flw s, 0), (u s V) EHX Hy XV,
F (@) =F (u, s, ’D):{J(u)’ (@ 0 EHLXT, smoo, -
fo=f|H,XV, the restriction of fto H, XV,
F,=F|E,, the restriction of F to H,
a= sup F(2), B= inf F(z), y= sup F(a),

) TEGXINRY TEHXIXY T E€DXIX
Clearly B<<7y. Also we have a< 8 for R large enough. -
(8) Oohomology and homology cl'a'sé;s. . _
oo 0k @ vy 0y, € HAHEXIXT),

orUoraUs Unpat0,

dim w;,>0, w} corresponds to H (@), -
Gps1n€ H (HEX IXT, §,xEXT),
[0pit,m 00 U, Jop,n] %0,

O o= Giy1,n () @iy =1, P,

a}‘,n='a,-,,,hco:, G=1, -, p, p+1,

(4) Oritical values, _ ] _

© Oh,=inf sup F(2), 4=1, ey P,

€Y, vE 2

Qin= inf sup F(z), i=1, -, p+1,
Lo z€aly z€lzl T ~
0;=}Li_)r£ Cim Ozﬁii_)% Cim 6=1, oo, p+1,

Since A | o - |

| B<Oi’m<‘"’"<.ap+1m<%
BLOL W< <Ch1,n<y, .
the ex.stence of 0; and O} ig ensured at leasﬁ‘fo'r'a‘ s'ubséquénoe.'

2.9, : : .

Lemma 8. 1. Under the dssumptéms '(Al),' (42), (G.v) and (') the Junctéon
[ satisfies (P.8)¥ for ¢#0. More precisely aﬁg/ seé_/u'ence (@ V), such that (w, V) €
H,xV, f(w,, V)6, d fo(@, v,)—>0, posses’sés"w 'subseéuence (stsll denoted, by (@ v,))
with the pa"opeo'ty that etther (a;,., Vn) strongly oonfvea'geé to @ critical point of f ém H x
V or ¢c=0 and Qu,—0, [Pa;,,]—)oo and v,—>vEV. .

Proof (Compare with Lemma 1.1.) Firstof all we can assume that v, con-
o verges to v, since V' is compaot. Supposé that

It turns out that these O; and Of enjoy the properties stated in Theorems 2 .6,

i . -df'(wm 'Un) = (Am,,+P,;d¢G (,.wm 'Un); dvG<mm ?),,))-“)0'. o (3‘2) |
.From the boundness of dG it follows that Aa, is bounded; therefore Qu, is bounded,
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If Pa, is bounded too, then x, has a weakly convergent subsequence. By the com-
pactness of d& and the finite dimension condition on Hj, this subsequence strongly
converges in H . Since P, strongly converges o the indentity mapping, the limit of
this subsequence is a eritical point. Now suppOse IPm,,]—»oo, then dG(z,, v,)— O.
From (38.2), Qu,—0. Finally from (8.2), f (@, ,)—>0. .

Proposition 3. 8. Assume: thwt ‘the " conditions (Al) (42), (G.2) and (I") are
satisfied. E : -

Q) If 0;+0 for some &, then et is a critical valug of f Moreoveo" 0f Q=+ =0j=
O+#0, 1<6 <g<p+1, then Oat(K)>g i+1. o

(2) If0;+0 foo some 4, then .48 @ cmtwal wlue of f. Moreower 4f Cf=
Qj=0+0, 1<6<j<p+1, then Oat(Ko)>j e+1

(8) Supposs that K, is @ compwct,subset of H xV. .’l_’hefre 4s @ constant & such that
O0<e implies Of<—8.

Proof (1) Choose a nelghborhoods N " of K o N" N (28) Cat(N") =Cat(K,).
Algo so5 N=N(3), N'= (8/8) ‘N,=N{ (H ><V) N”—-N" (H.XV), N,=N'
(H,xV). Then N!DN, DN DN;, dJsb(N ' 6N,,) >7/88 There must be constants
b, ¢ and an integer mo mdependent of n and samsfymg _

C|d f(w,,) | >, for @,€ fuoss= fuos—Nh, for n=>ng
O<3<mm(81)2/4 5b//8).
For othermse, there isa sequence @, such that @,€ H,x V, f(z)—>0, df,(z,)—~>0

~and 2,EN’. ’ By Lemma 3.1, 3 a subsequence of #, converges o o with f{() = O

df (v) =8 and € N', a contradiction. Take n large enough so that
C— 8<0¢,,.\ <05 n<0+8 '
By Corollary 2.10, Oaty .y (N') > g —G+1. For a subset of H, XV is contraetlble in
HxV, if and only if it is contraoinble in H,x V. Hence. _ |
' Oat(K, )= =Cat (N”) >Oa’o(N”) Oatgnxv(N") >g '7,+1
(2) can be proved in the same way.
(3) Choose R large enough so that M (3/8, B+1) x ¥ N N" = . Seb
wo=M (5/8, R+1)><Vﬂ (H XxV) o
={(w, v) € H,xV, lQa,| <8/8 IPa;] >R+1}
There oxistan, mLeger no and constants b, ¢, independent of n and satlsfymg
U |af(x) | b, for @€ fa A\ (fusUNLUML,
| ~ 0<E<min(35%/4, 3/8). o
For o’nhervvlse, hhere ig a sequence (m,., Vp)- such that (a, ) EH ><V f (@ rv,,)—>0

. @ fo(@n v,)—>60 and (@, v,) EN,UM,. By Lemma. 8.1, turnmg f0 a subgequence,

either (z, v,) converges to (z, v) with f (@, v)=0, df (, v) =6 and (w, ¥) E N'; or
-‘j.Qd;;.:]-»O, | Pa,| > 00, v;—>v, and (z;, V) ‘belong 10 M, eventually. In both cagses
Jwe arrive at a contradiotion. Take n.large enough so that @,,,<se, for one given s>1.
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Aoccording o0 Corollary 2.5, Cin<S — s, henee Of=1lim o\, "< —8.

Theorem 3. 3. ;S’uppose that the opemtorr A and the 'functfbon G satis Ty the
conddtions (A1), (42)" and (Gv). Then the’ functfz,on f has at Zewst cu plengtk (V) +1_
oritical poinis.

Proof We firsgt prove’th'e theorem upde‘r the addi’ﬁional oo'nditio_n (T ). Supposa-
01 <O =0< i1 < -+ < Cpase
By Proposition 3.2 (1), f hag at least p- @+1 oritical points oorreSpondlng t@
positive critical values. We can assume: that' K is a eompae’s sot, othermse woé are
done. By Proposition 3.2 (8), 0i<.+-<0;<0;=0. Finally by Proposmon 3.2 ©), f
has at least ¢ eritical points corresponding. to. necraiuve critical values., Altogether
we obtain ab least p+1 eritical points, A ) S
Next we are going to drop the restrlotlon (F) Deﬁne a new funcblon g(y, fv) =

(Alg/, y) —G.(y, v), where Al——P —P_ and :G4(y, v) =G(A7Y*P y+(—A_ )‘1/2

P"y+Py, v) A4, and G4 saiusfy the agsumptions (Al) (Az)’ (G‘@) ‘and (F), henee
have at least p+-1 eritioal points (y,, @,), b=1, 2 o AL Sot

@ = +1/2P+(’/i+<“A-—) 1/2P—?/i+P?/i° G e
. (1136, ’Ui); 'i/=1; 2, AR p+1,are o.ritioal pOintS’ Of _f,lThe__pro,of_iS complete. DR

§ 4 Apphcatlons

‘ In the lash SBG‘blOIl we apply the abbtrac’s theorems t0 some problems in. dlﬁ’er-'
ential equations. . . o
1. Sermhnear elliptle boundary Value problems ‘ . S
Let QR® be ‘a bounded domain with smooth boundary 39 We study "hhex
following Dirichlet BVP, with strong TesonmAnce... . . . |
‘ . —Au(w) }\.u(fv) —!—qS(w, u(w)) +h(m), A wE.Q
(4.1)
ru,l?a -—O b
It is assumed that A‘ \ ‘. R
(Hy)) Aisan eigenvalue of — A w1th mr, multlphelty, .
(Hy) h€ILA(Q), with hEker( 4— 7\,1) : : Ce
Let ¢ (a0, {): 2% Ri—->R1 be 2 Oaratheodory functlon and let @(zv, Z) be a prlmltlve
of g w.r. ¢ . o ' :
(H,) VZ,ER’”" ]§i|-—>oo Vu5—>u in Hl([)) and vaEH (), we have

lim j ¢><w, u,<w>+2 C,e‘(w))v(w)dm—o

énd

\.‘: - K
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lim [ B(s, w(@) +3] Cjo(@))v(@)da=0,

where {eé(w)}’{"“' is an orthonormal basis of the eigenspace ker (— 4— Al ), and ;= ({3,
& . |

There are several sufficient conditions ensuring (Hg). Namely,

(A) ¢(z,2)— 0, and D(w, {)—>0ag |{|—>o0. or
(B) ¢ and @, which depend on Z only, are bounded and uniformly continuous
on R* '
(see for instance Ward [13] and Mawhin [11]),

Le’o ug deﬁne a functional on H (Q).

G0 =, 2@, v(@) +in(w))da,

where uo (a;) is a solubion of the equation:
T — g (@) =Ko (@) +h(x) in Q,
(@) |50=0.
Equatlon (4 1) turns out o be
~ do() = M(w)-l—q,’)(:v v (@) +uo(m)) in Q, :
(4.2)
v(2) | 29=0,
with 4=wv-+u,.

However, (4.2) ig of the form (1.1), satisfying the assumptlons (Al) (A;) and
(@). According o Theorem 2.6, in which V' ={f#}, we proved that (4.2) possesses
at least one golution.

The results due to Ward (n 1, )» 7\4), Solimini (n=1, A=2,), L'llpO—SOllIILInl

“are all inoluded as special cages of the above conclugion.

In addition, if u=0 is a trivial golution, and if some conditions are 1mposed on
the Morse index at u=0, we ma.y improve the above conclution o obtam a nontrivial
solution. o

We eonsider the followmg problem:

— du(z) = Mu(w) +<[>(u(w)), € Q,
u(2) |50=0, ‘
where we assume that @€ C? (RY), and ¢ =&, satisfying
@ (8)—0, qS(C)-—>0 as |{|—> o0, and qS(O) O
The assocla,ted funo’monal reads as follows

f(u) f ([Vul2 Mu”)dw—f @(u)dm. |

Hence

f (9) Q(O)meaS(Q), f’(a) g,
and

£ (o) =Id— (x,v+’¢'(0)). (=4) -_1. |
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I5 follows thab ,
0y(0, f) =8¢ if A<M+¢(0) <A,
=0  if g¢ [m, m] and M+ (0) =1,
where A<<X is a pazr of conseoutive eigenvalues of — 4, and
m= 3 dimker(—A4=~2; Id), m=m-+demker(—4—% Id).

pyra )

Set ting m_= 2 dim ker(— 4—)Id) and mo—-dlmker( 4—-21d), we have

i<t
On. (8, f)=0 if ¢'(0) <—N+N_y o1 ¢'(0)>0,
On.ime(8, f) =0 if ¢'(0) <0 or & (0) > M1 — A
| -Theorem 4. 1. FHquation (4.3) possesses @ nondrivial sobution provided etther
(1) B(0)=0, or
- {(2) @(0)<0, and qS'(O)GE[ — A Ags, 0], or
(3) @(0)>0, and ¢'(0) & [0, Ayyz— sl
Proof This is an application of Theorem 2.8.
For the special ocase @ (u) =aexp{—u’}, if either @<C—Ay+Ag_y OF > Appg1 — A,
‘$hen equatlon (4 3) possesses a nontrivial solution, Similarly, the equamon
: u' (o) +k”u(w) =asinu(@), € (0, w),
u(0) =u(w)=0
possesses a nontrlwal solution provided a¢ [—2F +1, 2k+1]
2. Periodio solutions of Hamiltonian systems.
Let H=H(, p, ¢): B'xR*XR"—>RE' be a O function, We .partition the
- variables (p, ¢) € R*x R* into several groups as follows: | |
' p=(py, P =, B), (=(g1, gn o ),
=Pz, - ), §T=(qur, =, @),
= (Pia LI Py 0=(gus, = @),
and . C
B=@uess v 2)y  F= (g, -, @),
1< F<h<n. ' -
Assume that o
(HS 1) H is periodio in the variables: ¢, p, ¢, 5 and g,
(HS2) H andgrad. H= (3311'1: 361;[> tend to zero as |p|+|q|+ 3|+ |B|—
o, umformly int p, g, pandq. -
- Theorem 4. 2. The Hamfletom?wn system

H . -
P = (tr D, g)’

éé— (t p,q)

possesses at Zewst p+k+1 pemodfw sth@ons
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. 0o I, |
Proof Let us denote 2= (p, ¢), J =[ 7 'OJ ’ﬁhe Sobolev space H= H1/2(Si

R*"). Define a hounded self-adjoint operator 4 on ‘samsfymg
dn 5= [ = OHOL AR FTLACE B,

where (-, .) is the soalar produot of the Spa.oe H We have kor A Rz" Aecordlng
10 the assumptlon (HS 1Y, the funotional N ‘

f(z) 1/2(de, )~ f H, z(t))dt

is well definsd on H +O H- @R””"’““’ X T%* where H * i the posﬂuve / negative inva-
riant subSpaoe aeeordlng to the speotral decompomtmn of A. Set Ho= Rt and
H=H*©H ®H,. It is easy to verify the -conditions (A, (Az) and (Gfu) Aoeord-
ing to Theorem 3.3 there exist ab least cuplength (T"“)—l—l =k+i+1 pel'10d1(5
solutions.

i

‘3. Other applications, : v _

Theorems 2.6, 2.8 and 3.3 may be- apphed to a Vameby of semlhnear problems
with strong resona,nee for ingtance, the semlhnaar elliptio systems (of, Chang™?),
the semilinear forced oseillation of strings (ef ‘Rabinowitz [R]), the- sezmlmear
beam oscillation equations (of. Ohang—Sanohezm and Liu™") as well as the semilinear

spherical wave equations, (of, Ohang—Hong“‘“)
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