HOLOMORPHIC VECTOR FIELDS AND CHARACTERISTIC FORMS ON A HERMITIAN MANIFOLD

MEI XIANGMING (梅向明)*

(Dedicated to the Tenth Anniversary of CAM)

Abstract

Let M be a compact Hermtian manifold, $\dim_{\mathcal{O}} M = m$, Ω be the curvature form of the Hermitian connection. F is a U(m)-invariant polynomial of degree k < m defined on the Lie algebra u(m), $F(\Omega)$ is a characteristic form of M defined by F. Let σ be arbitrary closed (2m-2k)-form M. In this paper, the author gives the integral formula

$$\int_{M} F(\Omega) \wedge \sigma = \sum_{i} \int_{N_{i}} \left\{ \text{The coefficient of } t^{\nu_{i}} \text{ of the Taylor expansion} \right.$$

of the expression $\frac{F(t\widetilde{\Omega}+A_v)}{E(t\widetilde{\Omega}^{\perp}+A^{\perp}_v)} \Big\} \wedge \sigma'$,

where N_i are the connected components of the singular set N of (m-k+1) involutive holomorphic vector fields $\{v_k, v_{k+1}, \dots v_m\}$, defined on M, dim $N_i = 2m - 2k + v_i$.

§ 1. Introduction

Let M be a compact Hermitian manifold, $\dim_{\mathcal{C}} M = m$, the Hermitian metric be H. There exists unique connection ∇ associated to H, the corresponding connection form is $\omega = \partial H \cdot H^{-1}$, it is a form of (1, 0)-type; the corresponding curvature form is $\Omega = d\omega - \omega \wedge \omega = \overline{\partial}\omega$, it is a form of (1, 1)-type. The structure group of the tangent bundle T(M) of M is complex linear group $\operatorname{GL}(m, C)$, the corresponding Lie algebra $\operatorname{gl}(m, C)$ is the algebra of complex $(m \times m)$ -matrices. Let F be the $\operatorname{GL}(m, C)$ -invariant complex valued polynomial of degree k defined on $\operatorname{gl}(m, C)$, $F(\Omega)$ be global closed 2k-form of M, called the characteristic form of the tangent bundle T(M) defined by F. The purpose of this paper is to calculate the integral

$$\int_{M}F(\Omega)\wedge\sigma,$$

where σ is any arbitrary closed (2m-2k)-form of M.

When deg F = m, this problem was solved by R. Bott^[1], but his method was failed to the case deg F < m. In this paper, we hope to generalize Bott's result to the case deg F < m, and give an integral formula.

Manuscript received March 13, 1989. Revised July 4, 1989.

^{*} Department of Mathematics, Beijing Teacher's College, Beijing, China.

§ 2. Complex Vector Fields on the Hermitian Manifold

Given (m-k+1) complex vector fields $\{u_k, u_{k+1}, \dots, u_m\}$ on the Hermitian manifold M. Let S be the set of the singular points of $\{u_{k+1}, \dots, u_m\}$:

 $S = \{x \in M : \text{ the vectors } u_{k+1}(x), \dots, u_m(x) \text{ are linearly dependent}\},$ S be the support of the dual cycle DC_{k+1} of the Chern class C_{k+1} on M ([2, p. 411-413]).

$$\dim S \geqslant \dim C_{k+1} = 2(m-k-1)$$
.

We assume that the vector fields $\{u_{k+1}, \dots, u_m\}$ are situated in general position. Then

$$\dim S = 2(m-k-1)$$
.

Let $S(\varepsilon)$ be the ε -tubular neighbourhood of S in M. On $M \setminus S(\varepsilon)$, the vector fields $\{u_{k+1}, \dots, u_m\}$ are linearly independent.

Lemma 1. There exists another closed (2m-2k)-form σ' of M and sufficient small ε such that $\sigma - \sigma' = d\theta$ for some (2m-2k-1)-form θ of M and $\sigma' \mid \overline{S(\varepsilon)} = 0$.

Proof See [3, Lemma 1].

Corollary.
$$\int_{\mathcal{M}} F(\Omega) \wedge \sigma = \int_{\mathcal{M}} F(\Omega) \wedge \sigma' = \int_{\mathcal{M} \setminus S(\Omega)} F(\Omega) \wedge \sigma'.$$

Proof Since M is compact, $\partial M = \emptyset$, so that

$$\int_{M} F(\Omega) \wedge d\theta = \int_{M} d(F(\Omega) \wedge \theta) = \int_{\partial M} F(\Omega) \wedge \theta = 0.$$

Let N be the set of the singular points of $\{u_k, u_{k+1}, \dots, u_m\}$ on $M\setminus S(s)$,

$$\dim N \geqslant 2m-2k$$

 $N = U_i N_i$, where N_i are the connected components of N. dim $N_i = 2m - 2k + \nu_i$, where ν_i are non-negative integers.

Now we suppose $\{u_k, u_{k+1}, \dots, u_m\}$ to be involutive holomorphic vector fields, where "involutive" means that on any open set of $M\backslash S(\varepsilon)$, $[u_k, u_\mu]$ ($\lambda, \mu=k, k+1, \dots, m$) are linear combinations of $\{u_k, u_{k+1}, \dots, u_m\}$ with holomorphic coefficients. On the singular set N, the vector fields $\{u_{k+1}, \dots, u_m\}$ are involutive, the well-known theorem of Frobenius assers that, at every point $p \in N$, there exists a coordinate chart U with holomorphic coordinate system (z^1, \dots, z^m) such that $u_{\mathbf{c}}(\alpha=k+1, \dots, m)$ are linear combinations of $\{\frac{\partial}{\partial z^{k+1}}, \dots, \frac{\partial}{\partial z^m}\}$ with holomorphic coefficients, or

$$dz^{\alpha}(u_{\alpha})=0, \quad (\alpha=1, \cdots, k; \alpha=k+1, \cdots, m).$$

Consider another coordinate chart V with holomorphic coordinate system (z'1, ...,

$$z'^{m}$$
), $dz^{a} = 0 = dz'^{a} = 0$ ($a = 1, \dots, k$), so that

$$\frac{\partial z'^{\alpha}}{\partial z^{\alpha}} = 0, \quad (\alpha = 1, \dots, k; \alpha = k+1, \dots, m).$$

It means that on $U \cap V$, $z'^a(a=1, \dots, k)$ are holomorphic functions of (z^1, \dots, z^k) . So there exists a subbundle E of T(M) on $N(\varepsilon)$, whose fibres are spanned by $\left\{\frac{\partial}{\partial z^1}, \dots, \frac{\partial}{\partial z^k}\right\}$ with transition functions $\left(\frac{\partial z'^a}{\partial z^0}\right)(a, b=1, \dots, k)$. E is a holomorphic vector bundle of complex dimension k.

Restricting the connection of T(M) to E, we get the connection ∇^E of E as follows:

$$\nabla^{E}_{e_a} = \sum_{b=1}^{k} \omega_{ab} e_b \quad (\alpha = 1, \dots, k),$$

where $e_a = \frac{\partial}{\partial z^a} (a=1, \dots, k)$. Extending this connection to T(M), we get the connection ∇^E of T(M) on N(s):

$$\nabla^{E}_{e_a} = \sum_{b=1}^{k} \omega_{ab} e_b \quad (a=1, \dots, k),$$

$$\nabla_{u_{\alpha}}^{E}=0, \quad (\alpha=k+1, \dots, m).$$

We can extend this connection ∇^E to the tangent bundle T(M) on $M\backslash S(\varepsilon)$ as follows:

$$\nabla_{e_{\alpha}}^{E} = \nabla_{e_{\alpha}}, \text{ (mod. } u_{k}, u_{k+1}, \dots, u_{m}) \quad (\alpha = 1, \dots, k),$$

$$\nabla^{E} u_{\alpha} = 0, \quad (\alpha = k+1, \dots, m).$$

Note that, on N, mod. u_k , u_{k+1} , ..., u_m reduces to mod. u_{k+1} , ..., u_m , then this connection ∇^E becomes the connection of the bundle E.

Let the connection form of ∇^E be ω^E , it is still the form of the (1, 0)-type, the corresponding curvature form being $\nabla^E = \overline{\partial} \omega^E$. Constructing the homotopy between the connections ∇ and ∇^E of the tangent bundle T(M) on $M \setminus S(\varepsilon)$, we have

Lemma 2. There exists a (2k-1)-form τ on $M\backslash S(\varepsilon)$ such that

$$F(\Omega) - F(\Omega^E) = d\tau$$
.

Proof Let $u = \omega - \omega^E$, $\omega_t = \omega^E + tu$,

$$\Omega_t = d\omega_t = d\omega_t - \omega_t \wedge \omega_t.$$

According to the Weil Lemma [4, p. 39, (B)], we get

$$\tau = k \int_0^1 F(u, \Omega_t, \dots, \Omega_t) dt.$$

Corollary.

$$\int_{M} F(\Omega) \wedge \sigma = \int_{M} F(\Omega^{E}) \wedge \sigma'.$$

Define an operator \mathcal{I}_X of T(M) associated to the vector field X. For any $Y \in \Gamma(T(M))$,

$$\widetilde{L}_X = [X, Y] \pmod{u_k, u_{k+1}, u_m}$$
.

Then define the third connection $\widetilde{\triangledown}$ of T(M) on $M \setminus S(s)$ such that

$$\begin{split} \widetilde{\nabla}_{e_a} &= \nabla^E_{e_a}, \quad (a = 1, \ \cdots, \ k), \\ \widetilde{\nabla}_{u_a} &= \widetilde{L}_{u_a}, \quad (\alpha = k + 1, \ \cdots, \ m). \end{split}$$

Let the connection form of $\widetilde{\nabla}$ be $\widetilde{\omega}$, it is a form of (1, 0)-type, and $\widetilde{\omega}(u_{\alpha})$ ($\alpha = k+1, \dots m$) are holomorphic functions. The corresponding curvature form be $\widetilde{\Omega} = \widetilde{\Omega}_1 + \widetilde{\Omega}_2$, where $\widetilde{\Omega}_1 = \partial \widetilde{\omega} - \widetilde{\omega} \wedge \widetilde{\omega}$ is the form of (2, 0)-type, and $\widetilde{\Omega}_2 = \overline{\partial} \widetilde{\omega}$ is the form of (1,1)-type.

Constructing the homotopy of the connections ∇^E and $\widetilde{\nabla}$ of the bundle T(M) on $M\backslash S(\varepsilon)$, we have

Lemma 3.

$$\int_{M} F(\Omega^{E}) \wedge \sigma' = \int_{M} F(\widetilde{\Omega}) \wedge \sigma'.$$

§ 3. The Vanishing Theorem

Define the fourth connection ∇' of T(M) on $(M \setminus S(\varepsilon)) \setminus N$ as follws:

$$\nabla'_{e_a} = \widetilde{\nabla}_{e_a} = \nabla^E_{e_a} = \nabla_{e_a} \pmod{u_k, u_{k+1}, \dots, u_m} \quad (a = 1, \dots, k),$$

$$\nabla'_{u_k} = \widetilde{L}_{u_k},$$

$$\nabla'_{u_a} = \widetilde{\nabla}_{u_a} = \widetilde{L}_{u_a}, \quad (\alpha = k+1, \dots, m).$$

Let the connection form of ∇' be ω' , it is also a form of (1, 0)-type, and $\omega'(u_{\lambda})$ ($\lambda = k, k+1, \dots, m$) are holomorphic functions. The curvature form is $\Omega' = \Omega'_1 + \Omega'_2$, where $\Omega'_1 = \partial \omega' - \omega' \wedge \omega'$ and $\Omega'_2 = \overline{\partial} \omega'$ are the forms of (2, 0)- and (1, 1)-type respectively.

Lemma 4.

$$\Omega'(u_{\lambda}, u_{\mu}) = 0$$
. $(\lambda, \mu = k, k+1, \dots, m)$.

For any vector field \overline{X} of (0, 1)-type,

$$\Omega'(u_{\lambda}, \overline{X}) = 0.$$
 $(\lambda = k, k+1, \dots, m).$

Proof Let R'(X, Y)Z, $\forall X, Y, Z \in \Gamma(T(M))$, be the curvature tensor of the connection ∇' . We have

$$R'(X, Y)e_{a} = \sum_{b=1}^{k} \Omega_{ab}(X, Y)e_{b}, \quad (a=1, \dots, k),$$

$$R'(u_{\lambda}, u_{\mu}) = e_{a} = \nabla_{u_{\lambda}}^{l} \nabla_{u_{\mu}}^{l} e_{a} - \nabla_{u_{\mu}}^{l} \nabla_{u_{\lambda}}^{l} e_{a} - \nabla_{[u_{\lambda}, u_{\mu}]}^{l} e_{a}$$

$$= \widetilde{L}_{u_{\lambda}}, \quad \widetilde{L}_{u_{\mu}} e_{a} - \widetilde{L}_{u_{\mu}} \widetilde{L}_{u_{\lambda}} e_{a} - \nabla_{[u_{\lambda}, u_{\mu}]}^{l} e_{a}$$

$$= ([u_{\lambda}, [u_{\mu}, e_{a}] \pmod{u_{k}, \dots, u_{m}}]$$

$$- [u_{\mu}, [u_{\lambda}, e_{a}] \pmod{u_{k}, \dots, u_{m}}]) \pmod{u_{k}, \dots, u_{m}}$$

$$- \nabla_{[u_{\lambda}, u_{\mu}]}^{l} e_{a}.$$

Since the holomorphic vector fields $\{u_k, u_{k+1}, \dots, u_m\}$ are involutive

$$[u_{\lambda}, [u_{\mu}, e_{a}] \pmod{u_{k}, \dots, u_{m}}] \pmod{u_{k}, \dots, u_{m}}$$

$$= [u_{\lambda}, [u_{\mu}, e_{a}]) \pmod{u_{k}, \dots, u_{m}}, u_{m}), u_{m}$$

$$[u_{\mu}, [u_{\lambda}, e_{a}] \pmod{u_{k}, \dots, u_{m}}] \pmod{u_{k}, \dots, u_{m}}$$

$$= [u_{\mu}, [u_{\lambda}, e_{a}]] \pmod{u_{k}, \dots, u_{m}},$$

$$\nabla'_{[u_{\lambda}, u_{\mu}]} e_{a} = \widetilde{L}_{[u_{\lambda}, u_{\mu}]} e_{a} = [[u_{\lambda}, u_{\mu}], e_{a}] \pmod{u_{k}, \dots, u_{m}}.$$

According to the Jacobi's identity,

$$R'(u_{\lambda}, u_{\mu})e_{a} = ([u_{\lambda}, [u_{\mu}, e_{a}]] - [u_{\mu}, [u_{\lambda}, e_{a}]] - [(u_{\lambda}, u_{\mu}], e_{a}]) \pmod{u_{k}, \dots, u_{m}}$$

$$= ([u_{\lambda}, [u_{\mu}, e_{a}]] + [u_{\mu}, [e_{a}, u_{\lambda}]] + [e_{a}, [u_{\lambda}, u_{\mu}]]) \pmod{u_{k}, \dots, u_{m}}$$

$$= 0.$$

$$R'(u_{\lambda}, u_{\mu}) = 0, \quad \Omega'_{ab}(u_{\lambda}, u_{\mu}) = 0.$$

$$\Omega'(u_{\lambda}, \overline{X}) = \Omega'(u_{\lambda}, \overline{X}) = \dot{\mathfrak{o}}(u_{\lambda})\overline{\partial}\omega'(\overline{X}) = -\overline{\partial}(\dot{\mathfrak{o}}(u_{\lambda})\omega'(\overline{X}) = 0.$$

The Lemma is proved.

Theorem 1 (Vanishing Theorem). On $(M \setminus S(s)) \setminus N$, we have F(Q') = 0

Proof
$$F(\Omega') = F(\Omega'_1 + \Omega'_2) = \sum_{p=0}^k C_k^p F(\Omega'_1, \dots, \Omega'_1, \Omega'_2, \dots, \Omega'_2)$$
.

Let $X_i(i=1, \dots, m)$ and $\overline{Y}_i(i=1, \dots, m)$ be vector fields of (1, 0) – and (0, 1) – types on $(M \setminus S(\varepsilon)) \setminus N$ respectively.

$$F\left(\Omega_{2}^{\prime}, \dots, \Omega_{2}^{\prime}\right)\left(X_{1}, \dots, X_{k}; \overline{Y}_{1}, \dots, \overline{Y}_{k}\right) = F\left(\Omega_{2}^{\prime}\left(X_{1}, \overline{Y}_{1}\right), \dots, \Omega_{2}^{\prime}\left(X_{k}, \overline{Y}_{k}\right)\right).$$

Take $X_a = e_a(a = 1, \dots, k)$. Since u_k , u_{k+1} , \dots , u_m are linearly independent, e_k should be linearly dependent to e_1 , \dots , e_{k-1} , u_k , u_{k+1} , \dots , u_m , so that one of the $\Omega'_2(X_a, \overline{Y}_a)$ should be $\Omega'_2(u_k, \overline{Y}_a) = 9$. Then

$$F(\Omega'_2, \underbrace{\cdots, \Omega'_2}_{k}) = 0.$$

$$F(\Omega'_{1}, \dots, \Omega'_{1}, \Omega'_{2}, \dots, \Omega'_{2})(X_{1}, \dots, X_{2k-p}, \overline{Y}_{1}, \dots, \overline{Y}_{p})$$

$$=F(\Omega_2'(X_1, \overline{Y}_1), \cdots, \Omega_2'(X_p, \overline{Y}_p), \Omega_1'(X_{p+1}, X_{p+2}), \cdots, \Omega_1'(X_{2k-p-1}, X_{2k-p})).$$

Take $X_a = e_a$ $(a = 1, \dots, p)$. Then at most (k-p) of the remaining X's are e_b $(b = p + 1, \dots, k)$, so that at least one of the $\Omega'_1(X_i, X_j)$ is $\Omega'_1(e_k, u_k) = 0$ or $\Omega'_1(u_k, u_\mu) = 0$, $(\lambda, \mu = k, \dots, m)$. We have also

$$F(\Omega'_1, \dots, \Omega'_1, \Omega'_2, \dots, \Omega'_2) = 0.$$

The theorem is proved.

Corollary. There exists a
$$(2k-1)$$
-form η on $(M \setminus S(s)) \setminus N$ such that $F(\Omega) = -d\eta$.

Proof Construct the homotopy of the connections $\widetilde{\nabla}$ and ∇' of the tangent bundle T(M) on $(M\backslash S(s))\backslash N$. Let $u'=\omega'-\widetilde{\omega}$,

$$\omega_t' = \widetilde{\omega} + t \iota \iota',$$

$$\Omega_t' = d\omega_t' - \omega_t' \wedge \omega_t'.$$

Then

$$-F(\widetilde{\Omega}) = F(\Omega') - F'(\widetilde{\Omega}) = d\eta.$$

§ 4. The Transgressive Form

On $N(s) \setminus N$, the tangent bundle T(M) is the direct sum of the bundle E and E_1 , where E_1 is the subbundle of T(M) whose fibres are spanned by $\{u_{k+1}, \dots, u_m\}$, it is a holomorphic vector bundle of complex dimension m-k. Let H^E and H^{E_1} be the restrictions of the Hermitian metric H to the subbundles E and E_1 respectively, Define another Hermitian metric H' of T(M) on $N(s) \setminus N$ as follows

$$H' = H^E + H^{E_1}.$$

On a coordinate chart U of N(s),

$$u_k = \sum_{a=1}^k v^a \frac{\partial}{\partial z^a} + \sum_{\alpha=k+1}^m v^{\alpha} u_{\alpha},$$

where v^a and v^a are holomorphic functions of U. Let

$$v = \sum_{a=1}^{k} v^{a} e_{a} = u_{k} - \sum_{\alpha=k+1}^{m} v^{\alpha} u_{\alpha},$$

where v is a vector field on $N(\varepsilon)$. Since $\{u_k, u_{k+1}, \dots, u_m\}$ are linearly dependent on N, v=0 on N, i.e. N is the set of zero points of v, so that $v^a=0$ $(a=1, \dots, k)$ on N. With respect to the new Hermitian metric H', we have

$$H'(v, v_{\alpha}) = 0, \quad (\alpha = k+1, \dots, m).$$

Choose a frame $\{v_1, \dots, v_{k-1}, v\}$ of the bundle E such that

$$H'(v, v_a) = 0, (a=1, \dots, k-1).$$

Then the definition of the connection $\widetilde{\nabla}$ of T(M) on V(s) can be rewritten in the following form:

$$egin{aligned} \widetilde{
abla}_{v_a} = & \nabla^E_{v_a}, & (a=1, \ \cdots, \ k-1), \ & \widetilde{
abla}_v = & \nabla^E_v, \ & \widetilde{
abla}_{u_a} = & \widetilde{L}_{u_a}, & (\alpha = k+1, \ \cdots, \ m), \end{aligned}$$

because v is the linear combination of $\{e_1, \dots, e_k\}$ and $v_a(a=1, \dots, k-1)$ is the linear combinations of $\{e_1, \dots, e_{k-1}, v\}$.

Similarly, the definition of the connection ∇' of T(M) on $N(\varepsilon)\backslash N$ can be rewritten in the following form:

$$\begin{split} \nabla'_{v_a} &= \widetilde{\nabla}_{v_a} \quad (a = 1, \ \cdots, \ k - 1), \\ \nabla'_v &= \widetilde{L}_v, \\ \nabla'_{u_a} &= \widetilde{\nabla}_{u_a} = \widetilde{L}_{u_a} \quad (\alpha = k + 1, \ \cdots, \ m), \end{split}$$

because

$$u'_{v} = \nabla'_{u_{k} - \sum_{\alpha} v^{\alpha} u_{\alpha}} = \nabla'_{u_{k}} - \sum_{\alpha} v^{\sharp} \nabla'_{u_{\alpha}} = \widetilde{L}_{u_{k}} - \sum_{\alpha} v^{\alpha} \widetilde{L}_{u_{\alpha}} = \widetilde{L}_{u_{k} - \sum_{\alpha} v^{\alpha} u_{\alpha}} = \widetilde{L}_{v}.$$

Now we shall give an explicite expression of the transgressive form η on $N(s)\setminus N$. Define a 1-form π on $N(s)\setminus N$ such that

$$\pi(X) = \frac{H'(X, v)}{H'(v, v)}, \quad \forall X \in \Gamma(T(M)).$$

Then define another operator of the tangent bundle T(M) as follows:

$$A_{v} = \widetilde{L}_{v} - \widetilde{\nabla}_{v}.$$

Lemma 5. On $N(\varepsilon)\backslash N$, we have

$$u' = \pi \otimes A_n$$

Proof

$$\pi(v) \otimes A_{v} = A_{v} = \widetilde{L}_{v} - \widetilde{\nabla}_{v} = \omega'(v) - \widetilde{\omega}(v) = u'(v).$$

$$\pi(v_{o}) \otimes A_{v} = 0 = \widetilde{\nabla}_{v_{o}} - \widetilde{\nabla}_{v_{o}} = \nabla'_{v_{o}} - \widetilde{\nabla}_{v_{o}} = \omega'(v_{o}) - \widetilde{\omega}(v_{o}) = u'(v_{o}).$$

$$\pi(u_{o}) \otimes A_{v} = 0 = \widetilde{\nabla}_{u_{o}} - \widetilde{\nabla}_{u_{o}} = \nabla'_{u_{o}} - \widetilde{\nabla}_{u_{o}} = \omega'(v_{o}) - \widetilde{\omega}(u_{o}) = u'(u_{o}).$$

Then

$$u' = \pi \otimes A_v$$
.

Corollary. On $N(\varepsilon) \setminus N$,

 $\eta = The \ coefficient \ of \ t^{k-1} \ in \ the \ Taylor \ expansion \ of \ the$ $expression \ F(t\widetilde{\Omega} + A_v) \ \frac{\pi}{1 - t d\pi}.$

Proof

$$\omega'_{t} = d\omega'_{t} - \omega'_{t} \wedge \omega'_{t} = d(\widetilde{\omega} + tu) - (\widetilde{\omega} + tu) (\widetilde{\omega} + tu)$$

$$= d(\widetilde{\omega} + t\pi \otimes A_{v}) - (\widetilde{\omega} + t\pi \otimes A_{v}) \wedge (\widetilde{\omega} + t\pi \otimes A_{v})$$

$$= \widetilde{\Omega} + td\pi \otimes A_{v} - 2\widetilde{\omega} \wedge \pi \otimes A_{v}.$$

$$\eta = k \int_{0}^{1} F(u', \Omega'_{t}, \dots, \Omega'_{t}) dt$$

$$= k \int_{0}^{1} F(\pi \otimes A_{v}, \widetilde{\Omega} + t d\pi \otimes A_{v} - 2\widetilde{\omega} \wedge \pi \otimes A_{v}), \dots dt$$

$$= k \int_{0}^{1} F(\pi \otimes A_{v}, \widetilde{\Omega} + t d\pi \otimes A_{v}, \dots, \widetilde{\Omega} + tr\pi \otimes A_{v}) dt$$

$$= k \sum_{p=0}^{k-1} C_{k-1}^{p} F(\widetilde{\Omega}, \dots, \widetilde{\Omega}, A_{v}, \dots, A_{v}) \pi \wedge (d\pi)^{k-p-1} \int_{0}^{1} t^{k-p-1} dt$$

$$= \sum_{p=0}^{k} C_{k}^{p} F(\widetilde{\Omega}, \dots, \widetilde{\Omega}, A_{v}, \dots, A_{v}) \cdot \pi \wedge (d\pi)^{k-p-1}$$

$$= \text{The coefficient of } t^{k-1} \text{ in the Taylor expansion of the expression } F(t\widetilde{\Omega} + A_{v}) \cdot \frac{\pi}{1 - td\pi}.$$

§ 5. The Integral Formula of Characteristic Forms

$$\int_{\mathcal{M}} F(\Omega) \wedge \sigma = \int_{\mathcal{M}} F(\Omega^{E}) \wedge \sigma' = \int_{\mathcal{M}} F(\widetilde{\Omega}) \wedge \sigma' = \lim_{\epsilon \to 0} \int_{\mathcal{M} \setminus N(\epsilon)} F(\widetilde{\Omega}) \wedge \sigma'$$

$$= \lim_{\epsilon \to 0} \int_{\mathcal{M} \setminus N(\epsilon)} -d(\eta \wedge \sigma') = \lim_{\epsilon \to 0} \int_{\partial N(\epsilon)} \eta \wedge \sigma'.$$

So we need only to consider the transgressive form η in N(s). We have just given the explicite expression of η , so that we are in the position to give the integral formula of characteristic forms.

Let N_i be the connected components of the singular set N, $\dim N_i = 2m - 2k + 2\nu_i$, $(\nu_i \geqslant 0)$. They are in fact the sets of zeros of the holomorphic vector field v in N(s). We suppose that N_i are non-degenerated zero sets. It means that: First, N_i are complex submanifolds of M, since they are closed sets, they are also compact and finite in number; Second, every tangent space T_xM , $x \in N_i$, splits into two parts: T_xN_i and $(T_xN_i)^{\perp}$, where $(T_xN_i)^{\perp}$ is the orthogonal complement of T_xN_i in T_xM with respect to the Hermitian metric H'. "Non-degenerated" requires that T_xN_i should be just the kernel of the operator $A_v = \tilde{L}_v(\text{since } v = 0 \text{ on } N_i, \tilde{\nabla}_v = 0)$. Because $\{u_{k+1}, \dots, u_m\} \subset \ker \tilde{L}_v, E_{1x} \subset T_xN_i$ and $E_x \supset (T_xN_i)^{\perp}$. Let $T^{\perp}N_i$ be the bundle on N_i with the fibres $(T_xN_i)^{\perp}$, $x \in N_i$; it is a holomorphic vector bundle of complex dimension $2k-2\nu_i$, $T^{\perp}N_i \subset E$. Denote the restriction of A_v to $T^{\perp}N_i$ by A_v^{\perp} , and the restriction of the curvature form $\tilde{\Omega}$ be $\tilde{\Omega}^{\perp}$. We can prove:

Lemma 6. Let $S^{\perp}(s)$ be the sphere with radius s in the fibres of the holomorphic vector bundle $T^{\perp}N_i$. Then we have

$$\lim_{\epsilon \to 0} \int_{S^{\star}(\epsilon)} \frac{\pi}{1 - t d\pi} = \frac{\widetilde{t}^{k - \nu_{i} - 1}}{E(t\widetilde{\Omega}^{\perp} + A_{v}^{\perp})'},$$

where E is the Euler characteristic form of the bundle $T^{\perp}N_{i}$.

Proof See Kobayashi [5, p. 120—121].

Theorem 2.

$$\int_{L} F(\Omega) \wedge \sigma = \sum_{i} \int_{N_{i}} \{ \text{The coefficient of $t^{\nu_{i}}$ in the Taylor} \\ expansion of the expression $\frac{F(t\widetilde{\Omega} + A_{v})}{E(t\widetilde{\Omega}^{\perp} + A_{v}^{\perp})} \} \wedge \sigma'.$$$

Proof

$$\begin{split} \int_{\mathbb{M}} F(\Omega) \wedge \sigma &= \lim_{\varepsilon \to 0} \int_{\partial N(\varepsilon)} \eta \wedge \sigma' = \sum_{i} \lim_{\varepsilon \to 0} \int_{\partial N_{i}(\varepsilon)} \eta \wedge \sigma' \\ &= \sum_{i} \lim_{\varepsilon \to 0} \int_{\partial N_{i}(\varepsilon)} \{ \text{The coefficient of } t^{k-1} \text{ of the} \\ &= \exp \text{ression } F(t\widetilde{\Omega} + A_{v}) \frac{\pi}{1 - t \, d\pi} \} \wedge \sigma'. \end{split}$$

Note that $\partial N_i(s)$ can be considered as a bundle on N_i with the fibres $S^{\perp}(s)$. When $s \to 0$, the factor $F(t\tilde{\Omega} + A_v)$ becomes the form of the base space N_i , so that

$$\int_{M} F(\Omega) \wedge \sigma = \sum_{i} \int_{N_{i}} \{ \text{The coefficient of } t^{k-1} \text{ in the Taylor expansion of the} \\ = \exp \operatorname{ression} F(t\widetilde{\Omega} + A_{v}) \cdot \lim_{\epsilon \to 0} \int_{S^{1}(\epsilon)} \frac{\pi}{1 - t \, d\pi} \} \wedge \sigma'.$$

 $=\sum_{i}\int_{N_{i}}$ The coefficient of $t^{\nu_{i}}$ in the Taylor expansion of

the expression
$$rac{F(t\widetilde{\Omega}+A_v)}{E(t\widehat{\Omega}^\perp+A_v^\perp)}\Big\}\!\wedge\!\sigma'.$$

The theorem is proved.

When deg F=m, there exists only one holomorphic vector field v. The zero set of v is $N=U_iN_i$, where N_i are the connected components of N. Let $\dim N_i=2\nu_i(\nu_i < m)$. We get the result of Bott [1] from Theorem 2:

$$\int_{\mathcal{M}} F(\Omega) = \sum_{i} \int_{N_{i}} \{ \text{The coefficient of } t^{\nu_{i}} \text{ in the Taylor expansion}$$
 of the expression $\frac{F(t\widetilde{\Omega} + A_{v})}{E(t\widetilde{\Omega}^{i} + A_{v}^{i})} \}.$

References

- [1] Bott, R., A residue formula for holomorphic vector fields, J. Diff. Geometry., 1(1967), 311-330.
- [2] Griffiths P. & Harris, J., Principles of Algebraic Geometry, John Wiley & Sons, Inc. New York (1978).
- [3] Chen, K. T., Degeneracy indices and Chern classes, Adv. in Math., 45(1982), 73-91.
- [4] Chern, S. S., Complex manifolds without potential theory, D. Van Nostrand Company, Inc. Princeton (1967)
- [5] Kobayashi, S, Transformation groups in Differential Geometry, Springer-Verlag, New York-Berlin (1972).