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ON A PROJECTION THEOREM OF QUASI-
VARIETIES IN ELIMINATION THEORY"

WuWeNFON (WU WEN-TSUN £ S 18)"
(Dedicated to the T'enth Z_nm"uers'ary to cAM)

Abstract
It is proved that the quasi~varieties in affine space is cloged under the projectiom '
operation though it is not so for a,lgebra.icsvarieties..

§1° Statement of Theorem |

Let K bea. field of oharacterlstlo 0 fixed.in what follows Oonsuder a set PS8 of

pols P;(X Y), =1, -+, r, over K in sets of variables X =(Xy, «; X,)and Y=

Yy, oy Yon), The set Zero(PS) defines then an algebralc variety in the (n-+m)—

dimengional affine gpace A (X, Y) over K in coordinates X, V. Many problemSa

arising both from theory and practice lead to the problem of eliminating Yy o,
Y, from the equations P§=0, or Py(X, ¥)=0, ¢=1, --, r. In partioular, we may
mention the determination of geometrical loci in terms of equations involving X~
alone from geometrial constraints given by the above equations in both X and Y.
Let A4,(X) be the n-dimengional affine space over K in coordinates X alone and
Proj be the projection of A,.(X, ¥) to 4,(X) defined by

Proj: (Xy «, Xu Y, o Ya)—>(Xq, oy Xo).

Then the above elimination problem amounts to the determination of the et Proj

Zero(PS). A variety of methods dealing with such a problem will lead to a system

of polynomial equations @;(X)=0in X alone to be satisfied by points in this

projection, by -the usual method of elimination (cf. e. g. [8], [4], etc). However,
gimple examples show that Proj Zero(PS) i generally not an algebraic variely a®
all so that it cannob be rep*‘esented in the form Zero(QS) for any polset QS in X

alone. This means that the algebraio varieties in an affine space are nob cloged.
under the operation of projection to a lower dimensional affine space, On the ofher
hand, we shall prove in this paper that the projeotion operation will become closed

if we enlarge the domain of algebraic varieties t0 quasi-varieties defined as follows.
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Deﬁmtlon For any ﬁmte nmber of polsets PS; and pols Q; over K in variables
X = (Xl, ey ) the set

SUM, Zero(PS;/ Gﬁ

@s called a QUASI—VARIETY on the wﬁine space A,.(X ) o

Quagi-varieties in the affine space Ao (X Y) will be defined in ‘the same way.
Then we have the following

Theorem P The projection of & guasfb—wamety n A,,m(X Y) to 4.(X) is
guasfb—mmet(y in A,,(X ). A _ .

Ag the projection of A,, to A, may be resolved mto a deries of conseoutwe
projecliond to affine spaces lowemng dlmenswn by 1, the above theorem may be
" reduced to the following one:

Theorem P, The projection o f a qawsz—fvwmety in the (n+ 1)—d’&mens@oml wﬁine
space A,y over K on coordinates X4, +-+, X, Y to the n—d@mens@oml aﬁine spwoe A4,
over K on coordinates X 1 *vr X 8@ gawsw—wmety in A4,.

The proof of Theorem P’ 0 be given in the next sect:lon is based on our general
method of mathematios meehanlzatlon In particular the following theorem W111 be
used (of. e. g. [5] and the relavent papers of the author).

Zero Decomposrbmn Theorem (in weak form). Let us order the variables as

X1< <X

and deﬁne aso—sets, efc.’ w. 1. t. th@s ordering. Then fofr any polset PS over K n X 1
, X, we have '

Zero(PS) =SUM, Zero(ASC,/J3),

9n which each ASCy 6s an aso-set and J, Gs the product of all the @mﬁwls of pols on
ASC. ’ '

We remark that the notion of quasrvane’oy appears already in ugual treatige
" on algebraic geometry (of. e. g. [2]). However, it seems thatb this notion ig rarely
studied in the literature. The quasi-varieties are, by the very definition, oclosed
under the operations of union and mtersectlon -The theorems P and P’ show that
they are also olosed under the -operation of ‘projection. The author is ignorant of
whether thege projection theorems are already known in some disguised form or
not. In any way, our proof of the theorems is cons’sructivé in charaeter, in confragt
to the usual existential character of ‘the modern tre_atmenf of algebraic. geometry.
The proof will thus not only show that the projection of a quasi-variety ig still
such a one but will algo give the preoise form of that projectidn a8 a quagi-variety.
In thig respect one may also compare: with the corresponding theorem of germni—
algebraic sets in the real oase (cf. e. g. [1])
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§ 2. Proof of Projection Theorém

In what follows X8, X8, X&', eto. will denote polsets consisting of pols in

variables X, ---, X, alone, while PS, PS;, PS', etc. those in both varables X 1,:
., X, and Y. We shall fix the ordering of variables
X< X, <Y

in forming char-gets and ago-sets, eto. Besides, for a pol F (X, Y) we shall denote
by Deg -F its degree in Y. '

Definition. In the affine space A, (X, Y') the quasi-variety o f the fOfrm

Z=Zero(X8, F(X,Y)/G(X, Y)«H(X))

will be called @ SIMPLE QUASI-VARIETY of TYPE d=Deg F.

We shall firgt reduce the study of any quagi-variety in A, (X, Y) to that of
sunple ones, viz. :

Lemma 8. Any quasw-wmety

| . Zero(PS/G(X, YV)+H(X))

48 the union of sémple qudsir—fvwr@et'z}es each of form (1) for which H(X) is divisible
by the initial of F(X, Y). ‘

Proof By the Zero Decomposition Theorem we have

Zoro(PS) =SU My, Zero(ASO:/Jr).
In the formula each ASOj is an agc-seb which is of the form
‘ ASOR—XS;ﬁ{Fk(X Y)}.
The pol Jy is the produet of all initials of pols in ASO, ineluding in partioular the
initial of Fy(X, ¥) and is a pol in X alone. It follows that
Zoro(PS/G(X, V) +H (X)) =8UMZero(X 8y Fi(X, Y)/Q(X,Y) *HM(X)),

with Hy(X)=H(X)#*J3(X) so that each member in the SUM is a simple quasi-
_variety in 4,,(X, ¥) with Hy divisible by the initial of F(X, ¥) as o be proved.

Lot us now consider two parbicular cases of simple quasi-varieties (1) for whiok

either F or @ is lacking.
Lemma F. For a simple quasi-vairiety of type 0
'  Zo="Zero(X8/Q(X, Y)+H(X))
the projection Proj Zo is @ quasi—variety tn A,(X).
Proof Let us write G(X, ¥) asa pol in ¥ in the form
G=By(X)*Y e+ +Be(X), ¢=DegG.

Lot X8, (6=0, 1, +--,.e—1) be the polset X S enlarged by adjoining %o it the pols'

© Bu(X), :+ Bi(X). Then it is olear that =
Pro; Zo="Zero(X8/By(X)+H (X)) +SUM;(XS;/B,(X)*H(X)) |
is the union of quasi-varieties in A,(X), the SUM, running over 4=0, 1, -, e—1
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with §=4-1. -

Lemma G. For the simple quasi-varisty 7 of (1) with G lacking:

' Z'=Zero(X8, F(X, Y)/H(X)),
the projection of Z' is & quast—variety in A,(X). ‘

Proof  Let us writé F (X, ¥) as a pol in ¥ in the form

F(X Y)= AO(X) *Y"d+ +Ad(X), d=Deg F,
Set for ¢=0, 1, .-, d, -
F(X, Y) —'A,(X)*Y" (@=8) 4+ 44(X), .
X8=X 8+ [4o(X), -, 4,(X)},
in which j=4-—1, Then it is clear that -
=SUM, Zelo(XS,, Fi(X Y)/H (X)*A4,; (X)), o
in which SUM; runs over =0, 1, .-, d—1, the member correspondlng to 4= d being
empty. It'is easy 1o see that for each 4,
Proj Zero(X 8, Fi{(X, Y)/H (X)+4,(X))= Zero(XS/Hl(X})
with H,(X )=H(X)+4,(X) is a quasi-variety in 4 (X ) and the Lemma ig thus
proved, , o

We are now in a posﬁnon of proving Theorem P’

By Lemma §, it is only necessary to consider quasi-variefies Z as given in
the form (1). By Lemma I Proj Z is a quasi-varity if F ig lacking or if Z is of
type 0. We shall thus prove Theorem P’ for Z of type d=Deg F>0. By Lemmag S,
G and F' we may further restriot ourselves to the case for which the following
conditions are observed:

(a) DegG>0,

© (b) “H(X) is-divisible by initial I(X) of F (X' Y.

Let us form the remainderR(X, ¥) of G(X Y) D w. r. %, F(X Y') so that
. Toz some non-negative s we have :

[I(X)As]+[G(X, Y)Ad} Q(X Y)*F(X Y)—I—R(X Y), - (8)
with DegR <d.-Set o |
Z'=Zero(¥8/G(X, Y)*H(X)*R(X Y)) : @
Now for any zero(X', Y’) of Z the value H (X") is unequal 0 0 and hence by (b)
the value I (X’) is unequal o 0 $00. On the other hand F(X’, ¥')=0. Hence by
(8) the value R(X", ¥") is also unequal $o 0 and so (X ', ¥') belongs to Z’. There-
fore Z is contained in Z' so that - e
Proj Z — <P.LOJ Z', ' - (5)
Note that here and in what follows — < stands’ for “is contained in” Similarly we
shall use <> to stand for “is unequal $0”. | ,

~To see the inclusion relation in the reverse direction let us conmder ﬁrst the

oase for whioch R(X, Y) is 1denmca,11y 0. Then Z’ is empby so that trivially iwe -
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shall have Z’'— <Z and so . - =

: Pro; 7'-<Projz. . - (6)

Consider therefore the case R(X, Y) not. 1dentlea11y 0 and let X " be an arbitrary

zero in Proj Z’, if there are any. Then there will be some Y’ with (X "Y' helo-
nging to Z’. We have then in parficular :

R(X,YH<>0, . - (1)

G(X', 7")<>0. _ (®
"We have also H (X') <>0 so that by (b) we have
I(X)<>0

400. It follows that the degree inY of F(X', Y) 1s the same as that of F(X,7Y),
viz. d. If now any zero Y of F (X', Y") is also a zeroof G(X’, ¥) then F(X', Y)
will be a factor of G(X', ¥)*d which is non-zero by (8) so that by (8) F(X', Y)
is also a factor of R(X', Y). As degree of R(X’, Y) is less than the degree d of

F(X', V). this is only possible if R(X", ¥) is 1dentlcally 0 which is absurd owing |

40 (7). Consequently there is at. least one zero Y of F(X', Y) which is not a zero
of (X', Y). Then (X', ¥") belongs to Z so that X’ belongs to ProjZ. ThlS proves
again (6) and hogether with () we have ‘therefore

Pro; Z=Proj Z'.

By Lemma F Proj Z' isa quam—varlety in A,. Hence Proj Z is also a quam-— '

varlety in' 4, and Theorem P’ is thus proved..

§ 3. Some‘ EXamples

‘We sghall give below some. 'eiamples to illustrate the significance of introduoing
the notion’ of quasi~varieties. - : S |

Let us congider for mechanical theorem proving the followmg

Theorem of Desargues. . Let ABU, A'B'O’ be two triangles with three pairs
of corresponding sides pwmllel to each other. Then the thrree pairs of joining lénes of

corresponding vertices mu be either mterrsect in the same pomt or be pwmuel to each .

other.’ _

Suproge that AA’ and BB’ meet in a point 0. Then it i9 sufficient to prove that
00’ pagges also throngh 0. For this gake leb us take a coordinate system with A4,
BB’ ag X- and Y-axis and the ooordmates of varlous points to be:

:  A=Uy 0), » =T, 0), Bv 0, Us),
: : O= (U, Us), B 0, Xy), = (X4 X3).
Then the hypothesw oorrespondmg o the parallehsm of sxde—-pan's will be HYP=0,
or _ . _
| "H‘=-o; q;=1, 23
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will HYP= {Hl, Hz, Hs}, and
Hl’“UJ“Xl"Uz*U,s; :
Hz—U4*(X3—X1) (U5 Ua) * Xg
Hy= (Us—Us) *X3—Us¥(X,~T,).
The conolLsmn that 00" pasges through 0 ig given by. -
s CONC=0,
With . : = S
OONO U4*X3 Us*X2
Let us oonsuder the partioular configuration with valued |
Ui Us Us Uy Us Xy Xy X3
| =2 4 2°1.1 4 1 3.
g0 that A, B O are collinear. In thig case we. see that H;=0, ¢=1, 2, 8, while
CONO=2¢ >O It follows that no power of OONO oan be in the ideal (H 1, Hy Hy)
" 90 that by Hilbert Zero Theorem: - Y :
- Zero(HYP) is not contamed in Zero (GON O}
This amonnts to say that for the Desargues Theorem the hypothesis H,=0 ocannot
unconditionally imply the conclusion CONC=0. It shows also the’ inconvenience of
the notion of ideals in dealing with meohamcal theorem proving since such gibua-
tions ocour in general in elementary and other kindg of geometries.
On the other hand our general method permits us to deduce from _6he.-polget
HYP a char-set OS consigting of the pols .« ° L .
e s . . Ol—Ul*-Xl"‘Uﬂ*Usy ) .
02— (Ul*Ua— Ui#Us —UssU) # X g+ (Us— U1) *U4*X1—I— Uz*U4*U5,
_ Os=UX;3— (Us*-Us) * X g—Ugr X3,
' The initialg, i. e.'the coofficients of the 1eadmg variables X, in Oi are resp
: o A  Iy=Ty, S o
_12=U1#U3—-U1*U"—-U3*U4; o
| o IL=U.
Let J be the produot of all these initials. Then our general theory shows tha:b
Zero (HYP/ J)=Zero(O8/J) is contained in Zeto (CONOQ),- -
though Zero (HYP) is not 0. Thig shows that CONO =0 would follow from HYP=0
so far J< >0. By direct computation we have more precisely
| | I*0ONOQ=1I#05— UgtOs—T U0y,
The Desargues Theorem ig thus seen o be true under the non~degeneracy condition
L=UpsUs—UpsUs—UpTil 30.
* whioh just means that the triangle ABO should not he degenerate into a line.

The above example shows olear ly the sngmﬁcanoe of mtroducmg the notion of |

quam-V&mety, as the set Zero(HYP/J ) or Zero(08/J) in our oage,
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Ag a second example let us consider some problems arising from ‘geometrio
modelling, e.g. the problem of turning a ourve, a surface, or more genserally a
variety expresgsed in parametrie form o A

X 1—-G1 (Y) X G (Y)

with Y=Yy, +»+, Y'm) a8 parameters into usual implicit forms, The problem amo-
ants to the elimination of ¥ from these equations and is a particular case of the
problem of geometrical-looi determination. However, even in such particular 0ase
such an implioit form is usually 1mpossuble To. ba precise, let us consider the
following surface in the ordinary (Xi, X, X 8) ~Space defined parametrically by

Xy= Y1*Y2y
X,y=Y1+Y "2,

R C X,=Yi'2. . .
Let PS be the. polset congisting of the pols X;—Y1#Y,, eto. w.r. . the ordermg
X <X < X3<Y 1<.Y 3 we have then the decomposition .

Zero(PS) = Zero (PS1/_X X 2) +Zero (PSz) +Zero(PSs)

in which .- i '
PSl— {X2A2*X3— XM, Xﬂ*Yl X2, X1A2*Y2— X+Xo},

PSa={X1, X3 Y'2— Xy, ¥},

. PSs={X1, Xg, X, Yl}.

It follows that

Proj Zero(PS) = Zero(X,"Z*Xs—Xl"ll/Xl*Xa) +Zero (X4, Xg)
 ig a quasi-variety in 43(X ). However, it is not a. vamety in the proper genge and

cannot be ertten in an implicit form.
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