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THE REGULARITY OF SOLUTIONS FOR
NONLINEAR DEGENERATE ELLIPTIC
BOUNDARY VALUE PROBLEM

Hone JraxiNg GRESLH*

Abstract

Thls paper is devoted to the study of: regula,nty of solutions for Dmchlet probelm of
nonlinear degenerate elliptic equations in two dimensional cage. A sufficient condition for
. their solutions in 03+%(L) to be certainly in C’”(Q) is given..

§1. Introduction

Recently, the study of regmlarity of solutions for nonlinear equatbions . hag
attracted much attention of many mathematioians. There are two ways to deal with
sueh problems One is a direct way whmh as Nn'enberg in [5, 1] carried out for
elliptio equations, i based on the schauder's estimates for linear equation. Another
One ig mioro-local analysis,. Whloh as done in [2, 6], is based on the teohmques of
the harmonie analysis and pS'-‘udodlﬁ'erentlal opera,tors It seems that the former 1s
more suitable for elliptic equations and the latter is more powerful for hyperbolio
equatbions. . The present. paper is devoted to the reqularity of solutions to boundary
value problems of degenerated elliptic nonlinear equations. There are Seyeral pa,pers
concerning such problems, [7, 8] for the interior regularity of soluiuons to nonlinear-
operators satisfying Hormander 9 square-sam oondﬂuon, and [3] for the regulam’oy
up to the boundary.

Our result is ag fo]lows Let F(a, u, u;, u,,) F(cv, &"u) be a smooth funotlon of

itg arguments . Denote u‘—-aw/a:v‘, u,;—@”u/aw‘ ow; and Fg 3F/3u,, F;,——@F/auw. |

Suppose that Q< R? i a smooth bounded domain.
Theorem, ILegt u(w) € 0°**(Q) with a>>0 be a solution of Problom:
' F(w, *u(w)) =01in Q2 (1.1)
woth
' % (@) =g (x) on Q. | 1.2
Assume that F &s elliptic in Q for the solution u(z) and
det (Fy(a, 04 (2))) =0 and d(det (Fy(z, #u(2)))) #0, on 89,  (1.3)

Mantscfipt received Sé_ptex_nber 10, 1987.
# Institute of Mathematics, Fudan University, Shanghai, China.




No. 8 A Hong, J. X. REGULARITY OF SOLUTIONS FOR NDE BVP . 831

and that OQ i3 noncharacteristics for the Uinearized bpeo'wtor of F in _u(aé) '..VTken
u€ 0~ (2) if g is smooth. M. oreover, the result s still irue if u(w) € 0% (D) with a>
Oand (1.1) 43 a quasilinear equation.

§ 2. Several Lemmas

According to[2], we shall use the standard decomposition of spectrum on R, Sef

0’5={§€Rilzik—1<l§,<2!+1,]G} '(j'_——O, wee), | |
where % i9 a constant>1. There are two funotions (€], o( €D eos( RY) satisying

| Supp $< (-1, 1) and supp g0y (2.1)
and AR C : :
UED+E e@ e =1 toran g€ R, @2
‘Define, for any u€ 0,(RY), | | | - ] o ' |
- 4= Dyu=F"(p(27|¢|)i(g)). ) (2.3)

We shall list the well known propérties for u without proof, For details ges [1].
Proposit;ign 21 Ifuc O"g‘(R?), a€RL\Z, then
L o lwl<om 2
where constant O s independent of j. Oomversely, if (2.4) is valid for any j, them u
€0 and [ula<Ci0 for another constaré Oy. Some Bohavior of the Airy function
A (s) =A(s), which is a solution of (
M —sAE) =0, s>0and 4(0) =1, (2.5)
should be mentioned for the needs of Vater discussion, The indegral eapression in [4]

A(s) =08/ oxp(—25"/%cosh 1/3)cash (+/3) d, 10

=s'2K 1/5(25%/2/8) | o ST (2.8)

is very useful. From (2.6) and g slight computation, i follows that
O<AS)<O,(1+8)™, for any n€ 2+ -~ = 2.7
(M(@8)/A (b)) < (a/8) " exp( - 2 (a2 32 #1)if a>b>0.  (2.8)

Lemma 2.2. Lt o positive function f(t) €O0*(RLY approach to 26ro as t—>-+oco

and let £ () >0 on the zero poinis of f'(&). Then f'(2) <0 for all t>0. -
- Proof ~'If the assertion is not true, it follows that f*(s*) =0 for some ¢*>0, By
the assumption of thig lemma, we have f(¢) >f (t*:’) >0 if ¢ is in some interyal (2%, ¢

+9). In view of the fact that f(t)—0 as t—>-+ 00, one can conclude that f (£) attaing

148 maxima over the interval (£, +o0).ab some point ¢* where ' (") =0 and f7 (%)
<0. This contradicts the assumption of the present lemma, The proof is completed,
- Using a similar argument, we also have . i



332 _ ’ CHIN. ANN. OF MATI3. Vol. 11 Ser. B

Corollary 2.2 Lot a positive function f(f) €O*(R1) appreach to 00 g8 $>-+o00
and let £ (1) <0 4f £'(8) =0. Then f'(t) >0 if 6>>0.

Lemma 2.3. The following functions:

@ Als),

@ —NG),

(3) A(as)/A(bs) with a=>b>0,

@ NEAE |
are monotona-cleco‘ewsmg for all s€ R}

Proof We only need o prove that the funotions mentioned in this lemma,
gabisfy the conditions of Lemma 2.1. From (2.7) and (2. 5) it follows that A" (s) is
always positive and A(s)—>0 as s—>+oo. So A'(s) is monotone. An application of
Lemma, 2.2 to A(s) gives A'<<0. (2.8) implies h=A{(as)/A(bs) approaches to zero as
$—>+oo if w>b>0 Assume, now, that _

=h[aN (as)/A(as) —bN (bs)/A(bs)] =0 at some point s. (2.9)
' Therefore, at ’ohls poin} _ N
' hes=hs (@ —b3)>0 . L (2.10)
In gettmg (2.10), we have used (2.5). This proves the mono’oomclty of h. Let us
congider the lagt one. From (2.6) if f_ollow.s that

—N($)/Ms)>s"2 - ls*lfﬂ,“ | (2.11)

whmh means —A’(s)/A(s)=>+ o0, if s—»-+oo. Assume, similarly, thab
(NG /M) = —s-+ (7\.’ (s)/?\,(s))2-—0 at some points.
Then a,t these points
(=N (s)/A(s))" = —1<0.
Using Corollary 2.2 we can obtain the asserfion expected. This proves the present
lemma, : - : : : : :
Lemma 2.4 There enists a pos@twe constant py such that s ((A(as)A(bs) /A2 (cs))’
18 negative and monotone—increasing for all s€ Ry if @ and b are bigger then o. Here py
is independent of a, b and c.
Proof Sebting h=A(as)A(bs) /A? (cs), we have
hy=h[ (@)’ (as) /A(as)) + (BN (bs) /A(Ds)) —2(cA (o) /A(e8)) ] =huw
and o o ' : ; '
(s™hy)! =hs~ D[+ H (as) +H (bs) —2H (es)], (2.12)
where o : S | o
1 H (o) =0°=0*(M(0) /A(6))* = poo} (0) /A (o).
The remainder of the proof is to prove that there exisls a constant ‘po such that H (o)
ig monotone-increasing in RY. Indeed; with g= —A'(0) /A(c) o¥? we find
| H'(6) =a*[3—2¢"+20%3G(1—¢) +pu(go¥D'a™2]. - (2.13)
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Asymptotic behavior of A'(o) and A(s) should be studied. Leb us first congider the
integral with {>0,

J oxp ( —2{ cosh t)cosh (t/3)dt= --f exp(—C(u+u))u2du

— Fexp(~20) | exp(~ L (utu—2) o,

By means of $he method of stational phage we ocan get its asymptotic expansmn for
big { of the form

——oxp(~ W [1+<u-2/3uw>"/4c1w HOCD]  (2.18)

where w=(u—1) /. Similarly,
Jwexp (—2C cosh £) cosh (¢/8) cosh ¢ dt o

=G AN T Lok [ 4218 ol +0E D). (2.15)

Combining (2.14) (2 15) and (2.6) we ha.ve _
T g = (1+4'1s‘3/2+0(s'3) e (2.16)
Insertmg (2.16). into (2.18) yields : R '
"H'(o) >ar/2[‘(§. ‘po—o) +0(o)]
for some constant 0. This implies that H (0') is. monotone—mcreasmg if po=>C and
o >0, for some suﬁielently large consbant oy, Lemma 2.3 (4) shows that (ga®/?)’
over [0, ¢°] has a lower bound away from zero. So far we have derived the monoton——

1o1ty in R} of s‘P" h if pg is chosen big enough This oompletes the proof.
Oonsuder the followmg problem

—yu=—1, y>0
| {“ e U | @.17)
=0 a3 y=0, lim u =0 ag y—>-+oo,
It is not difficult to geb its solubion of the from : -
. ¥ oo .
wtu@=[l#[ are MO (2.18)

Moreover, we have
Lemma 8.5. These inequalities ‘ s :
lu@ <Oy, W'@)| and - [n"@) <Oy for all y>0  (2.19)

are valid. : o -
Proof Obviously, it only needs to prove (2.19) is valid for all y=>2. Let ug

‘now verify the first part of (2.19). (2.18) may be split into two parts as follows

b @ =30 [+, 120 1@t ZORZON
Applymg (2 7), (2 8) to the deeond mtegral we oan get o S
 m@<00] exp(- 2<y3/”—t3/“>/3>dt3/2<o' L @)
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p2(y) =A(9) f: +f:/2x-2 ©)dt f " (o) do

<ON () + [exp(~ (- 3)ap
<Oy "+exp(—y¥2/3), (2.21)
(2.20), (2.21) give u(y) <Oy if y>2. Now we study its derivative. Since
W () = (o) /M@))do+¥ () /M),

from a similar argument it follows that the first berm is controlled by Oy~/2, The
seo ond term, Wl'bh the aid of (2.16), approaches to zero if y—>+o0. 8o, u'(y) is the
solution of

{u —yu=p(y), y>0,
u=0as y=0, hmu==0 as y—->+oo
(2.22) has a umque solution which can be expressed in the form

W @) =A@ ©) 1) 420 Mo (0)der

Repeatmg the same argtinent as in (2.20)and (2. 21) and using the resuled estimates
1{01‘ /,b(y), we oan immediately derive the seeond part of (2.19). This lemma is proved,

§8. A Priori Estifné;tés for 'L'i_n'ear”Eqiiatio'n

This section is devoted 10 a pr10r1 éstimates for solution of lmeor degenera,ted
elliptic equation. In order to do so we now congider two families of mtegral operators
The first one is defined as follows. For any j=0, 1, '

Byg(w, y) =I_wg:(2)dzf_j(l§ I”’“y)X @ |¢Dexpi(a—n)gdg,” (3.1
where g,=go(2'—fD)g and X (¢) is the charaoterietic fanotion of Set 00, 'ne,ﬁlely, X (t)

=1if ¢ isin 0y and X (¢) =0 outside of Cj. Obvmusly, B; ig a mappmg of OF (Rl) '

into O(R}, 0°(RY)). Furthermore we have ‘
Lemma 8.1, For any g in O (RY), the inequalities -

|yBig| <O|g|a2- i+ . aE (3.2)
|0°Byg/0%y| <O |g|a277*-4/3), (3.3
|Big|<Olgla2®- - 0 (3.5)

laB;g/0y|<0|yl 2"‘“'”"" O (3.6)

Po oof From the fa,ct X (0) ==O and the mtegra,hon by pa,rbs i 'foll'owé‘ that
With ) pf =k, p, = 12’ and p, =2, i |

(2.922).
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— 4 —
ng—- -‘—le zl<2-st Jlm zl>2-3(g!(z) ) gi(w>)dz

J’i’: ;\‘1@52/3) 5-—1/3 y 9in (o — z)f 'df,

(w—2) -
+2|” (00~ g,<m>>—s-12i”?—z7>&—x<y<pf>2/3>dz
=TI+ I+ 1. | .. 3D

From the properties of s and Proposmon 2 1, 1t ig easﬂy seen tha.# for some O<B\a

| L] <O| g5 5278 | Ay (21)*%) — Ay (p7) %) | <O'| glaye2-"ei®  (3.8)
for any nonnegative p. In getting (3. 8) we have used Lemma 2.3(2) and -estimate
A(s) <O,,s“P, p=0." An apphcatlon of Abel and Dirichlet test to the mtegral in £ of
I, gives at once ' ~

LI <O )™ | 29y g j @) |

<O [glayepy s, 530, - 3.9)
Here the property [A'(s) | <0577, p>0 hag been uiuhzed 100, '
Let ud consider I. Obvmusly

[Is| = 27\-@(1’ )2/3 U 9() ma(wz)z)pfdz_wg!(m)” (3.10)

It remaing to evaluate the mtegra,l in (3 10) By Parseval formula,, the integral in
(3.10) equals . :

f:ﬁ © (P& F(E/pt) oxp (@5) .z'__g,A | (3.11)
where : L . 2N |

F@© =] exp(-is)) Gins/e)de
SFlEmE)-mE-n). 0 ey

Note that p(p&*®) F(¢/pf) ---(1 ;l:l)(p( p£#3) . Therefore, msertmg it mto(3 11)

" and later into (3.10) we can get

| 1 Ts| KON (21) %) sl
8o far (3 2) and (3 B) have been. proved if wo take .p’li_f:t and p=0,
' Note that Byg satisfies the followmg equation .

(Big)wty(Big)es=0. y>0, : (3.13)
Thus (3.3) is the trivial oonsequenoe of (3.2). '
At last we prweed to prove (3 4) and (3 6) Fxrsbly, we ha.ve

oBy/ay=4" (0s)—gia))de [ Gn@=2)¢/o—) <K1+Ka>ds

£ (y(p) ) mwsj " @,@ ~ (@) (s (o—2)pt/ (o—0))de.

=L+L+&,
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where
K;=N@)¢ ™ and Ky=Mu)¢y 5 2.

Comparing I, with I and I, without difficulty we can sumllarly get the followmg
esbimates : '
| 1,| Oy=*| g | upy @2~/ 5=, | (3.15)
Comparing Is with Is, and by means of the same argument ag in (3.11) and (8.12),
we can deduce that I, is controlled by the right hand side of (3.15).
Oonsider now I; which may be split into two barts

Is__—J’lc-zkz J+jl¢ sl>a- ’(g,(z) —95(®))de 'J: Mu ey %ﬁ— dg
=I51+Iss. '
By means of the argument gimilar to that in getting (3.8), ib is ea,suly seen bhat
lI51l <0lgl yﬂ—ﬂxp~((a—2)+2m/3), P1>O
or - .
<O|gloyrp;e-rm pm_g -~ (8.16)
In order to estsmate Iy, we need to evaluate o -

[, Mogrerin@-sees |
| whleh from the Dirichet and Abel tesh, is bounded above from

Ay (7)Y max |[[ ¢ sin (a-2)g¢]

pj<é<p}

<O'y*|o—z| Ay (27)¥*)p;.

From this, we can get '
| Tas| <Olglag-sprere-m, g3, (310

The proof of Lemma 3. 1 is completed if we take p=0or 1/2 in (3.15) (8.16) and

(3 1.
~ Now we turn to the second family of integral operators. Define, for each j=
0,1,

~ where
T,=Ma"gm)x@s%‘/s}/v(ts”/“)
and T R
| fr=p@D)f. e
Evidently, (8. 18) deﬁnes a mappmg of 0°°(R ) into O(R 0~(R*)). Indeed we
have . : S
Lemma 3. 2 For any fe 0°°(R ), the mguaht@es

yTif | <O o271, - (3.19)‘

|&°T,f/@y| <O\ fla27# v v (3.20)

T,f (@, y)=2 J: dt L“ do J-:"f, (2, a)dz Ty, o, ¢, g)cqs(m-—z) gag, (8. 18)
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|y'72eT; f/8y| <O| f |27+, ' (8.21)
| T, Fl<0| f| (2 i@+4/9) - (3.22)
|8Tsf /8y | <O| f|a27i@**/®, (3.23)

where 0<a€ R*\Z and C is independent of f and §, are valid,

Here and later the norm |f|a refers to the a-Hilder norm only with frespect to w,
namely

| lem 2 suplols |+ smp | @ @th, 1)~ (o, /0],

Proof 'The idea of the proof we shall be following i gimilar $0 what ‘we used in
proving Lemma 8.1, Integration by parts, splithing the result, yields

T’f=éjz dt J:oda J‘la—zl<2-4+,l‘|¢—ﬂ>2 JTJ(f’ <z’ 0') ;fj (w’ G) )dz

x2fat (a0 [~ <f,<z D=5 a>>ﬂE@-—%>—?if- Ty(p}, o, 4, y)dz

I1+12+I3v . | : (324)
_f r1 T,(,, o~,t y)Sln(m z)é’/(w——z)dé'

In getting (8. 24) we have used the property X (0) 0. Repeatmg the same argument
a8 in proving (3.11), (8.12), we find ' .

| L <O\fapre[ @t [ Ty}, 6, 4 9)do =017 |apru(y (1)) (01) 4%,
From (2.18), (2.19) and wx(0) =0 the inequality,

| 13| <O| f|ay~e p5@+/3+2/3 for all p in [ 1, 17, (3.25)
comes at Once Lemma 2.4 gualan’uees

; JPJ

.Ingerting (3.26) into I; and in the same Way as in (3.8) we:find
| 1] <O| flapi 2] (/)&% |¢=s5-
In view of (2.19) it is not difficult to geb

[Ili<O|f]ag/‘ﬁp“‘“+4/3*3‘°/"’) for all p in [ -1, 1] (3.27)
Now we shall estimabte I,. An application of Dirichlet and Mbel test to the |
integral in ¢ of I, provides |

j o T 0 b pens(o z>§d5{

* where

'35 T, a,t y)|d§< 0= ag - Ty(p5, &, t, ¢)p;. (3.26)

S O 3§ Tf(pﬂ (IR ?/) <P!>_p°ma'xj gﬂ“cos(m—-z)fdg

py<é<oy” T

<- aaf Ty(p7, 0, 4 9) |o— A (3.8

’Wl’ﬁh the aid of (3. 28), by meang of the similar argument o (3.9), 1. a i9 controlled
by the Tight ha.nd gide of (3:27) too; So far we have proved (3.19) and (8.22) if
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p=1lor p=0in (8.25) and (8.27).
Indeed, from (8.25) and (8.27) we can get more, The inequality
AT £ <O |f | a27Het D (3.29)
comes at once from (3.25) and (8.27) with p=—1/2, |
- (8.20) i the direot consequence of (3.19) and the fact that T',f is the solubion
of
@ DwAY T ee=Fy v>0.
(8.23) is the immediate consequence of (8.20) and (3. 22) with the aid of the
-well known. interpolation inequality of the form _
| | 2] <O sup iy sup u] (3.30)
for any funotion w which has a piecewise continous derivative of second order in R?
and a finite sup|u|. Along the same line of proving (3 .-30), with a slight modifica~
tion, we can obtain
Iyluy<0(supluwlsuplyul +suplu/y1/“l) - (8.81)
 for the same funotion mentioned above with the additional condition %(0) =0. The
details of proof of (3.31) is omitted." “Applying (3.31) to T} £ aftor it is extended to
the below plane and noting (8.19) and (8.20) wec and educe (8.21) without difficulty.
'We now proeeed to study a priori estimates for boundary value problem .

_ {Lu_—_-wuyuw+2wmyu¢,,+a22uw+wiu,_—i-'w;,u,,+au =f, (3.29)
u;:g(m)"r y=0, -
where
' coay € 0% (R2),
{“ au€ 0" (Bs) o | (3.33)
@11, w22>0 if y>0 and Y tbfa""?/ll:u“m<0 if y>0 )

Here we uge C* (Ri) %o denote the set of all functions ¢ in O(R2%) sainsfymg
| (a]a<+o0.
Theorem 3.1. Let (3.83) be fulﬁled Then fw wwy uw €02 (RL) with Lu=f and
u(w, 0) =g, the inequality, : -
F(u) = | Yttoo| st | 4 thay | a+ Iu,,,,‘la+ || agrsat |yl assss
<OUgluet|flotlul] NCED
" holds for some constant C independent of u except the diameter of bts support, _
Proof Denote by 0,(a, y) the cirele with the-centre (a, &) and radius 8 which
ig a constant to be determined. Suppose that {0(e,.0), I=1, 2, -+, lp} is an open
covering of the intersection of suppu and {y=0}. Fui"oherr_nore, {0s(xy, 0), 1=1, 2,
«=:lo} and an open set N consish of an open covering of suppu . Lot ay(1=0, 1, -+ l)
be a partition of unity sabordinate o this open oovermg W:Lth v =uo; we find ‘
: {Lw—-fri"Ltu ]‘ly y>0," |
L : : =gy, y=0 N O -
Mmeover | ]‘,] and | 91| can be controlled by the sum of the nght hand side of (8.8

(3 35)
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and y(s) |u| +6F () for any >0 and some positive function y(s) of &, Therefore it
suffices t0 prove (8.384) for each v, since (3.34) is a coeroive inequality for (3.82).
We shall, for convenience, put down v, f, g instead of v, F;, ¢; and assume @=0,
1#0. S ;.
If 1=0, (8.84) is valid because (3.32) ig elliptic in suppu. Thus it remains to
prove the cage of [¢0. The method of the proof we shall use is standard. Let us ﬁrst
consider the problem of frozen cosfficients

{Lfv Y11 (0) v + 22 (0) vy =f — Lfv+yc111 (0) Vopt+ s (0) vy =f*. -

v=g(),

Without loss of generahty we may assume a,u (0) =a32(0) =1, Wlth v=p(2" ’D) it ig
easy 0 S0

a. 365

vy=Bg+T;f".
Because f* and g are of compact support one can approximate them respectively by
gequences in O (R2) and in O7(RY). So Lemmas 8.1and 3.2 are applloable for B,g .
and T, f” They provide ‘
[vos] = |y B) |+ 19T | <OTIglavat [F1] 1205, (3.37)
where O is independent of 4, f* and g. From (3.36) it follows that with oy =min
(a, 1/2) we have that the right hand side of (3. 37

- <O[|glata+|f |a+F (v) (8+b‘"“)‘+7(s) |v]]2-Hat+2> (8.37)
for another constant O independent of §, f* and g. Proposition 2.1 shows
|W[a+a‘<0[|91a42+ |f la+F (v) (@%+8)+|v f?"(s)] (3.38)

Similarly, we can prove from the right hand side of '(3.88). that |y /20% /oxdy |,
|&Pv/2%|, -+ are bounded above. Summing up all estimates and choosing sufficiently
small ¢ and 3 we can deduce (8.84). This completes the proof of Theorem 3.1,

§4. The Proof of the Main Theorem

Basged on a priori estimate reéultéd m § 3. We can proceed to disouss the régula-— :
rity of solutions %o boundary value problem for the nonlinear degenera.ted ellLiptic
equation, Let u € 0%+*(Q) with a>0 satisfy '

{F (o, u, Uy Uygt) = F (a: 6"u) 0, in Q, @0
U= g(m), on 9Q.
- Withouot loss of generahty, we may assume that Q=R2 ={(w, ¢)|y>0} and

' " a+%/8EZ for any integeré. - . . (4.2)

Obviously, -it sufﬁces to locally prove the main theorem. Consider the botundary

| va.lue problem for the quotient du/h= (u(a+h, y) —u(, ¥))/k of the difference of u
' L(Au/k) F y(du/h)y+F(du/B)+F, (Au/h) SR
=—F,+3(Fy—Fy (Bu/k)y, y>0 -.-(4.‘3)‘ o
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and _

(du/h) = (4g/h), y=0, | (4.4)
A wl_lere o :
El""—Fu(ma Y, a“u(w y))}

==J Fy(@w+Ah, 9, Ao v (w-+h, y)+(1 —A)Pu(e, ¥))dA,

ebo. Setbing W = (40,u/k) and d1ﬁ’eren1;1at1ng both sides of (4.3) w117h respeo’ﬁ @, we
have |
. LW =0f /6w—L(du/h) € 0", (4.5)
Here L stands for the operator after dlfferentlatmg the coefficients of L. The
ellipticity of F in R} provides FyyFa—F3,>0 in RZ. The assumption of “bhlS
theorem about the degeneracy on a2 implies
Fy Fog— Fia 0 and an>0 y=0, (4.6)
since (1 3) is coordinate-free. In order to reduce (4.8) to the form llke that studmd
in Theorem 3. 1, a ohange of independent variables should be introduced. Beoause
the coefficients of (4.5) are only in O*%, in doing so we have t0 do earefully Suppose
the ohange of the independent variables is of the form _ . o
3=0(s, y) EO%% y=y @
and | |
0‘(10, 0) =, Oy (w7 0) = (F:&/Fzz) (wy O) (4’8)
The funoction satisfying (4.7) and (4 8) can be construocted by solving -
(4— 1)0' 0, >0 and 30/32/—- - (Fiz/Fzz) if y=0
and then takmg o=G— o-(a;, O)+a; Under the new coordma,’ae system (4.5) may be
rewntten as follows » 5
Lw wnyWa:+2amyW +a22WW+ + =3 f/0w— L(du/h),
{WEO“ 1f y =0,
where @€ C® and ay4, @ ave posﬂuve ThlS comes from the reasom that u€ 0%*% and

(4.5")

the coefficients of the equation, under new coordinates
Au .F'ua"o', Am FmO‘a,-f‘ngO'y 0 and AQQ—F22>O Y= =0, , (4.9)
The second part of the assumption (1.8) may be written in the form-

‘a——?}' (det(Fy) ) 7;.]?5_{%1 (mﬁdaz . “21',2_-?; ) =y135>> 0;

which implies @y; >0 near y=0. Without loss of generality,  we assume that W .is of
compach support and o,(#, ¢) #0 if necessary, multiplying it by a cutoff funotion.
Applymg Theorem 3.1 to. W one can obtain, according to the notation in (3.384),
o & (W)<O0, independentof b, . aes (4. 10)
From (4 10) and lefting A~>0, we sse that Ou.,/d% and du,s/0y are in Cot/3(R2)
'I‘hus Yoo B0 Ugpy aTO in O%*W3(RE) in (@, y) since 0,%0 in supp W. Afber letbing -
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h—>0 in (4.3) and using the latter part of (4.6) we can solve iy, =D (z, y, u, &y,
Usowr Usay), Where @, is a smooth function of its argument. 80 usy is in O**+/3 jp
(,-y) as well as in (E, 5) . In view of the fact that F33>0, by means of the theorom
of implicit function, one can solye ' . A

o _ Uy =DPa(a, y, Uy Oy Uy Uiay) o o (4.11)
@, is also a smooth funotion. This shows Uyyy € C4HY/3 in (%, ¥) as well as in (=, 9).
An applieation of the regularity theorem of standard elliptio problem provides
0 € 0****/3, 8o the right hand side of (4.5) is in (**+¥8 ip (%, y) . Repeating the same
argument as done previously, we have &€ C*3 for all |8| =8 and ¢€ Z*, which
implies #u€ O(R}, 0=(RY) for all |8 =3. Combining this with (4.11) we have

completed the proof of the present theorem, |

Remark., There is no difficulty in repeating the discussion carried out here
for quasilinear equation if u € 02+4(Q). _
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