A NECESSARY AND SUFFICIENT CONDITION ON THE EXISTENCE AND UNIQUENESS OF 2_π-PERIODIC SOLUTION OF DUFFING EQUATION

Li Weigu (李伟固)*

Abstract

This paper gives a necessary and sufficient condition on the existence and uniqueness of 2π -periodic solution of Duffing equation

$$d^2x/dt^2+g(x)=P(t)$$
 (= $P(t+2\pi)$).

1. In this paper, we study the existence and uniqueness problem of 2π -periodic solution for Duffing equation

$$d^2x/dt^2 + g(x) = P(t), \qquad (*)$$

where $g(x) \in C^1(R, R)$, and there exists u_0 such that $g'(u_0) > 0$, $P(t) \in C(R, R)$, $P(t) = P(t+2\pi)$, for all $t \in R^1$.

D. E. Leach^[1] proved the existence and uniqueness of 2π -periodic solution of (*) under the Lond condition.

$$m^2 < \lambda \leq g'(x) \leq \mu < (m+1)^2 \quad (g(0) = 0),$$
 (1.1)

with a given integer $m \ge 0$ and two such constants λ and μ . R. Reissing^[2] proved the existence of periodic solution of (*) under a weaker condition.

$$m^2 < \lambda \leq g(x)/x \leq \mu < (m+1)^2 |x| \geqslant C > 0.$$
 (1.2)

Tung-Ren Ding⁽³⁾ resolved the existence problem of (*) under a weakened version of (1.1)

$$m^2 \le g'(x) \le (m+1)^2,$$
 (1.3)

and in this paper, by using a theorem due to T. R. Ding, we improve the result of D. E. Leach^[1].

- 2. We need the following hypotheses.
- $(H_1) m^2 \leqslant g'(x) \leqslant (m+1)^2$
- (H₂) $H(g) = \min \{ \sup_{x \in R} |g(x) m^2 x|, \sup_{x \in R} |g(x) (m+1)^2 x| \} = +\infty,$
- (H₃) int $A = \phi$, where $A = \{x \mid g'(x) = m^2, (m+1)^2\}$,

where $m \ge 0$ is an integer.

The main purpose of this paper is to show

Theorem. For every 2π -periodic function P(t), (*) has one and only one 2π -

Manuscript received December 15, 1987.

Department of Mathematics, Beijing University, Beijing, China.

periodic solution if and only if (H₁)-(H₃) hold.

To prove the theorem, we need two lemmas.

Lemma 1. For any x, y, $x \neq y$, we assume that

$$m^2 < (g(x) - g(y))/(x-y) < (m+1)^2$$

where $m \ge 0$ is a given integer. Then (*) has at most one 2π -periodic solution.

Proof Aussuming both x(t), y(t) are the 2π -periodic solution of (*) and $x(t) \neq y(t)$, for some $t \in \mathbb{R}^1$, we get

$$x''(t) - y''(t) + g(x(t)) - g(y(t)) = 0. (2.1)$$

Let

$$x(t) - y(t) = r(t)\cos\theta(t), \ x'(t) - y'(t) = r(t)\sin\theta(t). \tag{2.2}$$

We can prove easily that r(t) is a 2π -periodic function, $r(t) \neq 0$ and

$$\cos\theta(2\pi) = \cos\theta(0), \sin\theta(2\pi) = \sin\theta(0). \tag{2.3}$$

By applying (2.2) to (2.1), we get

$$-d\theta/dt = \sin^2\theta(t) + \cos\theta(t) (g(x(t)) - g(y(t)))/r(t)$$

$$= \begin{cases} \sin^2\theta(t) + \cos^2\theta(t) (g(x(t)) - g(y(t)))/(x(t) - y(t)), & x \neq y, \\ 1, & x = y. \end{cases}$$

It is obvious that $d\theta/dt < 0$. Let T_i denote the time in which $\theta(t)$ decreases from θ_0 to $\theta_0-2(m+i)$, (i=0, 1). Then we have

$$\begin{split} T_0 = & \int_0^{T_0} dt = \int_{\theta_0 - 2m\pi}^{\theta_0} \frac{d\theta}{\sin^2 \theta + \cos \theta \left(g(x) - g(y) \right) / r} \\ < & \int_{\theta_0 - 2m\pi}^{\theta_0} \frac{d\theta}{\sin^2 \theta + m^2 \cos^2 \theta} = 2\pi. \end{split}$$

In the similar way, we have $T_1>2\pi$. So we get

$$2m\pi < \theta(2\pi) - \theta(0) < 2(m+1)\pi$$
.

This is a contradiction with (2.3).

Lemma 2. Let $f(x) \in O(R, R)$. Suppose that there exist $x_0, x_1, x_0 < x_1$, such that $f(x_1) > 0 < 0$, $f(x_0) < 0$ and int $B = \phi$, where $B = \{x | f(x) = 0\}$. Then there exists $y \in [x_0, x_1]$ such that f(y) = 0 and for every neighbourhood $\delta(y)$ of y, there are y_1 and $y_2 \in \delta(y)$ satisfying that $f(y_1) \cdot f(y_2) < 0$.

Proof Assume the result is not true, so for every point $y \in [x_0, x_1]$, we can get an open neighbourhood $\delta(y)$ of y, such that any two points $z_1, z_2 \in \delta(y)$ satisfy $f(z_1) \circ f(z_2) \geqslant 0$. By using Heine-Borel Theorem, we can get $y_1(=x_0) < y_2 < \cdots < y_{n-1} < y_n(=x_1)$ such that $\bigcup_{i=1}^n \delta(y_i) \supset [x_0, x_1]$ and $\delta(y_i) \cap \delta(y_{i+1}) \neq \emptyset$. From int $B = \emptyset$, we can get $l_i \in \delta(y_i) \cap \delta(y_{i+1})$ such that $f(l_i) \neq 0$. By the fact $l_i, l_{i+1} \in \delta(y_{i+1})$, we have $f(l_i) \cdot f(l_{i+1}) > 0$ $(i=1, \dots, n-1)$.

So we have

$$f(x_0) \cdot f(x_1) > 0.$$

Applications of the second second section in the ACC

This is a contradiction.

- 3. The proof of the theorem.
- 1) The proof of "sufficent" part.

By using the result of [3], under the conditionse (H_1) , (H_2) , we can prove the existence of 2π -periodic solution of (*).

Under conditions (H₁), (H₃), for any x, y, $x \neq y$, we can prove easily that $m^2 < (g(x) - g(y))/(x-y) < (m+1)^2$.

Using Lemma 1, we get the uniqueness of 2π -periodic solution of (*).

2) The proof of "necessary" part.

At first, we prove that g(x) satisfies (H_3) .

Assume that it is not true. Let $x_0 \in \text{int } A$, so there is a neighbourhood $\delta(x_0)$ of x_0 such that for every $x \in \delta(x_0)$, $g'(x) = m^2$. We consider equation

$$x'' + g(x) = g(x_0). (3.1)$$

We know that $x=x_0+L\cos mt$ ($L\ll 1$) are solutions of (3.1). This is a contradiction with uniqueness.

Now we want to prove $g'(x) \ge 0$ $(x \in R^1)$.

Assume it is not true. Then there exists y_0 such that $g'(y_0) < 0$. Without loss of generality, we assume $y_0 < u_0$. From $g'(u_0) > 0$, we can get two points $z_1, z_2 \in [y_0, u_0]$ such that $g(z_1) = g(z_2)$. We consider equation

$$x'' + g(x) = g(z_1). (3.2)$$

It is obvious that both $x=z_1$, $x=z_2$ are 2π -periodic solutions of (3.2). This contradicts with the uniqueness.

Now we prove that (H₁) holds.

Let $I = \operatorname{im}(g'(x))$. Suppose that $n^2 \in \operatorname{int} I$, n is an integer. From $g'(x) \geqslant 0$ we know $n^2 \geqslant 1$. Considering the function $f(x) = g'(x) - n^2$, we can see that f(x) satisfies the condition of Lemma 2. So we can get a point x_0 and two sequences y_i , w_i such that w_i , $y_i \rightarrow x_0(i \rightarrow +\infty)$ with $f(w_i) > 0$, $f(y_i) < 0$. Thus $g'(y_i) < n^2$, $g'(w_i) > n^2$. Let us consider equation

$$x'' + g(x) = g(x_0). (3.3)$$

(3.3) has a center at point $(x_0, 0)$, and all orbits are closed orbits around the center. Let Γ denote the orbit which passes through the point $(x_0+1, 0)$ and whose period is $\tau(\Gamma)$; from the uniqueness, we know $\tau(\Gamma) \neq 2\pi/n$. Without loss of generality, we assume $\tau(\Gamma) - 2\pi/n \geqslant \delta > 0$. Now we consider the family of equations

$$x'' + g(x) = g(w_i), i = 1, 2 \cdot \cdots$$
 (3.4)

Let Γ_i denote the orbit of $(3.4)_i$ which passes through $(x_0+1, 0)$ and whose period is $\tau(\Gamma_i)$. From $w_i \rightarrow x_0$, we have $\lim_{i \to +\infty} \tau(\Gamma_i) = \tau(\Gamma)$. so if k is large enough, we have

$$\tau(\Gamma_k) > 2\pi/n. \tag{3.5}$$

The period of any orbit near center $(w_k, 0)$ is about

$$2/(g'(w_k))^{1/2} < 2\pi/n \quad (k \gg 1). \tag{3.6}$$

From (3.5) and (3.6), we know that, between center $(w_k, 0)$ and Γ_k , there exists a closed orbit H_k whose period is $2\pi/n$. We obtain two 2π -periodic solutions of $(3.4)_k$: $x=w_k$ and H_k for any $k\gg 1$. This contradicts the uniqueness too. So $n^2\in$ int I. Then (H_1) holds.

At last we prove (E₂) holds.

Assume it is not true, i. e., $H(g) = M < +\infty$. Without loss of generality, we assume that $H(g) = \sup_{x \in R} |g(x) - m^2x|$. Let $h(x) = g(x) - m^2x$. Then we consider equation

$$x'' + g(x) = 3M \cos mt. \tag{3.7}$$

Let $x = \varphi(t)$ be a 2π -periodic solution of (3.7). So $\varphi(t)$ is a 2π -periodic solution of equation

$$x'' + m^2x = 3M \cos mt - h(\varphi(t)).$$
 (3.8)

From (3.8), we get

$$\int_{0}^{2\pi} \cos mt (3M \cos mt - h(\varphi(t))) dt = 0.$$
 (3.9)

From (3.9), we obtain

$$3M\pi = \int_{0}^{2\pi} 3M \cos^{2} mt dt = \int_{0}^{2\pi} \cos mt (h(\varphi(t))) dt$$

$$\leq \int_{0}^{2\pi} |\cos mt (h(\varphi(t)))| dt \leq M \int_{0}^{2\pi} dt = 2M\pi.$$

But (H_3) implies that $H(y) = M \neq 0$. Hence we obtain a contradiction.

The proof of the theorem is thus completed.

Finally, I am very grateful to Professor Tung-Ren Ding for his advice and instruction.

References

- [1] Leach, D. E., On Poincare's perturbation theorem and a theorem of W. S. Loud, J. Differential Equation, 7(1970), 34-53.
- [2] Reissing, R., Contractive mappings and periodically perturbed, nonconservative systems, Atti Accad. Naz. Lincei Rend, Cl. Sci. Fis. Mat. Natur., 58(1975), 696-702.
- [3] Ding, T. R., Nonlinear oscillations at a point of resonance, Sci. Sinica (in Chinese), Series A, 1(1982), 1—12.