CUMULATING CENTRAL POLYNOMIALS AND IDENTITIES FOR $M_n(F_p)$

CHANG QING (常 青)*

Abstract

Analogue of Formanek Central Polynomial, the author constructs a cumulating central polynomial for $M_n(F_p)$ and a cumulating identity for $M_n(F_p)$.

§1. Introduction

Let F_p denote a field of characteristic $p \neq 0$; F, a field of characteristic 0 throughout: $\mathfrak{M}_n(A)$ denote the set of identities satisfied by $M_n(A)$, where A is a commutative ring. We have the map

$$\phi \colon \mathfrak{M}_n(\mathbf{Z}) \to \mathfrak{M}_n(\mathbf{F}_p),$$

$$f(x_1, x_2, \dots, x_t) \to f(x_1, x_2, \dots, x_t) \pmod{p}.$$

An important question (see [1, 2]) in the theory of PI-algebra says that: Does $\phi(\mathfrak{M}_n(\mathbb{Z}))$ generate $\mathfrak{M}_n(F_p)$ as a vector space over F_p ? To answer this question it is important to find as many elements of the set $\mathfrak{M}_n(F_p) - \phi(\mathfrak{M}_n\mathbb{Z})$ as possible.

All polynomial identities and central polynomials for $M_n(F)$, or for $M_n(F_p)$, which the author has met before, are based on the concept of the "alternating" property of polynomials, but for F_p , $M_n(F_p)$ possesses the most fundamental property that for any $a \in M_n(F_p)$, $p \cdot a = 0$, if a polynomial $f(x_1, \dots, x_t)$ can "cumulate" the elements of $M_n(F_p)$ to p times, i. e. for any $a_1, \dots, a_t \in M_n(F_p)$ $f(a_1, \dots, a_t) = p \cdot a$ for some suitable $a \in M_n(F_p)$, certainly $f(x_1, \dots, x_t)$ is a polynomial identity for $M_n(F_p)$. The polynomials which are precisely of cumulating type are the symmetric ones:

$$S_t(x_1, \dots, x_t) = \sum_{\pi \in \operatorname{sym}(t)} X_{\pi 1} X_{\pi 2} \dots X_{\pi t}. \tag{1}$$

According to this consideration, the author has independently established the following^[3]

Theorem 1. If $t \ge pn$, then (1) is a polynomial identity for $M_n(F_p)$; if t < pn, then (1) is not an identity for $M_n(F_p)$.

(Later the author knew from Professor Edward Formanek by communication that the Russian mathematician A. E. Zalesski had obtained the same results). In

Manuscript received December 4, 1987.

^{*} Department of Mathematics, Hubei University, Wuhan, Hubei, China.

this paper we shall establish a cumulating central polynomial and another cumulating identity for $M_n(F_p)$ by using Formanek's method^[4] and Jacobson's argument^[5,6].

§2. A Cumulating Central Polynomial for $M_n(F_p)$

Let x_1, x_2, \dots, x_{n+1} be commuting variables over F_p . Denote

$$p(i, j) = x_i^{p-1} + x_i^{p-2} x_j + x_i^{p-3} x_j^2 + \dots + x_j^{p-1}$$

and

$$g(x_1,x_2, \dots, x_{n+1}) = \prod_{2 \le i \le n} p(1, i) p(n+1, i) \cdot \prod_{2 \le k \le j \le n} p^2(k, j)_{\circ}$$

Use the Formanek map^[4]

$$\rho\colon x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_{n+1}^{\alpha_{n+1}} \to X^{\alpha_1}Y_1X^{\alpha_2}Y_2\cdots Y_nX^{\alpha_{n+1}}$$

We transform $g(x_1, x_2, \dots, x_{n+1})$ into $G(X, Y_1, Y_2, \dots, Y_n)$ with coefficients unaltered.

Theorem 2. $G(X, Y_1, \dots, Y_n) + G(X, Y_2, Y_3, \dots, Y_n, Y_1) + \dots + G(X, Y_n, Y_1, \dots, Y_{n-1})$ is a central polynomial for $M_n(F_n)$, but not for $M_n(F)$.

Proof of Theorem 2 $G(X, Y_1, \dots, Y_n)$ is linear in Y_i , so we can assume $Y_s = e_{i_s j_s}$, $s = 1, 2, \dots, n$, being matrix units, and $x = \text{diag}\{x_1, x_2, \dots, x_n\}$. We have

$$X^{\alpha_1}e_{i_1j_1}X^{\alpha_2}e_{i_2j_2}\cdots X^{\alpha_n}e_{i_nj_n}X^{\alpha_{n+1}}=x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_n}^{\alpha_n}x_{j_n}^{\alpha_{n+1}}e_{i_1j_n}\neq 0$$

if and only if

$$e_{i_1j_1}e_{i_2j_2}\cdots e_{i_nj_n}\cdots e_{i_nj_n}$$
 is a path, i. e. $j_k=i_{k+1}$ for $k=1, 2, \cdots, n-1$. (2)

So when (2) holds, $G(X, e_{i_1j_1}, \dots, e_{i_nj_n}) = g(x_{i_1}, x_{i_2}, \dots, x_{i_n}, x_{j_n})e_{i_1j_n}$. Note that if i = j, $P(i, j) = px_i^{p-1} = 0$, so $g(x_{i_1}, x_{i_2}, \dots, x_{i_n}, x_{j_n}) \neq 0$ if and only if

$$\dot{\boldsymbol{v}}_1, \ \dot{\boldsymbol{v}}_2, \ \cdots, \ \dot{\boldsymbol{v}}_n \text{ is a permutation of } 1, \ 2, \ \cdots, \ n \text{ and } \dot{\boldsymbol{j}}_n = \dot{\boldsymbol{v}}_1.$$
 (3)

This implies:

$$G(X, e_{i,j_1} \cdots e_{i_n j_n}) = \begin{cases} \prod_{1 \le i < j \le n} p^2(i, j) e_{i,i_1}, & \text{if and only if (2) and (3) hold,} \\ 0, & \text{otherwise.} \end{cases}$$

So

$$G(X, e_{i_1j_1}, \dots, e_{i_nj_n}) + \dots + G(X, e_{i_nj_n}, e_{i_1j_1}, \dots, e_{i_{n-1}j_{n-1}})$$

$$= \begin{cases} \prod_{1 < i < j < n} p^2(i, j) E, & \text{if and only if (2) and (3) hold,} \\ \mathbf{0}, & \text{otherwise.} \end{cases}$$

This ends our proof.

§ 3. Another Cumulating Identity for $M_n(F_p)$

Using Formanek's method^[4], we can easily establish an identity for $M_n(F)$ (also for $M_n(F_p)$). Let

$$\rho^* \colon x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_{n+1}^{\alpha_{n+1}} \to X^{\alpha_1} Y_1 X^{\alpha_2} Y_2 \cdots X^{\alpha_{n-1}} Y_{n-1} X^{\alpha_n} Y_n X^{\alpha_{n+1}} Y_{n+1}.$$

Let $f_1(x_1, x_2, \dots, x_{n+1}) = \prod_{1 \le i \le j \le n+1} (x_i - x_j)$ be polynomial of commutative variables. Then the image $G^*(X, Y_1, \dots, Y_{n+1})$ of $f_1(x_1, \dots, x_{n+1})$ under ρ^* is an identity for $M_n(F)$ (proof is trivial, similar to that of Theorem 2).

Analogue of this example, let $f_2(x_1, \dots, x_{n+1}) = \prod_{1 \le i \le j \le n+1} p(i, j)$, then the image $G^{**} = G^{**}(x, y_1, \dots, y_n)$ of $f_2(x_1, \dots, x_{n+1})$ under ρ^* is an identity for $M_n(F_g)$ (obviously, G^{**} is not an identity for $M_n(F)$). To see this we note that G^{**} is linear in Y_1, \dots, Y_n , so we assume $Y_s = e_{i_s j_s}$, $s = 1, 2, \dots, n$ and $x = \text{diag } \{x_1, x_2, \dots, x_n\}$. So $G^{**}(x, e_{i_1 j_1}, \dots, e_{i_n j_n}) = f_2(x_{i_1} x_{i_2}, \dots, x_{i_n} x_{j_n}) e_{i_1 j_1}$ iff (2) holds, otherwise $G^{**}(x, e_{i_1 j_1}, \dots, e_{i_n j_n}) = 0$. But $x_{i_1}, x_{i_2}, \dots, x_{i_n}, x_{j_n} \in \{x_1, \dots, x_n\}$. This forces, at least two of $x_{i_1}, x_{i_2}, \dots, x_{i_n}, x_{j_n}$ are the same. In this case $f_1(x_{i_1}, x_{i_2}, \dots, x_{i_n}, x_{j_n}) = 0$. So G^{**} is an identity of $M_n(F_g)$ and of cumulating type, surely not a P. I for $M_n(F)$. So we have Theorem 3. G^* is an identity for $M_n(F)$ and also for $M_n(F_g)$. G^{**} is an identity for $M_n(F)$ only.

References

- [1] Procesi, C., Rings with polynomial identities, Dekker, New York, 1973.
- [2] Formanek, E., The polynomial identities of matrices, Algebraist's homage, contemporary Mathematics, 13 (1982), 41—79.
- [3] Chang Qing, A sort of polynomial identities of $M_n(F)$ with Char $F \neq 0$, Chin. Ann. of Math., 9B:2 (1989), 161—166.
- [4] Formanek, E., Central polynomials for matrix rings, J. Algebra, 23 (1972), 129—132.
- [5] Jacobson, N., PI-algebras, An introduction, Springer Lecture Notes in Math. 441.
- [6] Jacobson, N., Some recent developments in the theory of PI-algebras, Universale Algebrien und Theorie der Radikole (studienzur Algebra und ihre Anwendungen, Band I pp. 17—21. Akademie-Verlag, Berlin)
- [7] Zalessks, A. E., Amitsur-Levitski symmetric identity theory, (1985).