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ON LINEAR AND NONLINEAR -RHEMANN;HH‘E;BERT
PROBLEMS FOR REGULAR FUNCTION WITH
VALUES IN A CLIFFORD ALGEBQRA -

XU ZHENYUAN (j%:};.

| Abstract

' _ Thls paper deals w1th the bounda,ry va,lue problems for regula,r functlon w1th values
" ina Chfford a,lgebra )

aW 0 z€R \1"
WH(z) = G(w)W‘(M)+7€f(9’ W*(@‘); w- (97)); s I W‘(°°) 0

'where Disa Lla,punov surfa.ce in R” the dlﬁerentla,l opera,tor a=._a_. + 2 2+ +—?—-
- O%y N Oy

n; W(w) 2 eAWA(w) a,re unknown functlons Wlth va.lues ing Clu’fmd a,lgebra M Under

, some hypotheses, it is proved. that the hnear baunda,ry value problem (where Af(a: W*(w),

W (2)) ..g(w)) ha,s a umque solut1on a,nd the nonlmea,r bounda,ry value problem ha,s ab.
:least one solutlon L

8.1 Introduction -

Let ¥, beo an n-dimensional real veotor spacé with orthonormal’basis e,=1, 63,

*+, €, Lot o7, be a Ohﬁ‘ord a.lgebra over V. Then an, a.rbltrary element of the basig
for o7, may be written as 64=0ubay "Gy Where A= {ai, o, e o a,.}c{l 2, -+, n} and
IKy<op< - <o<n. The elements {e,} i=2 sa,tlsfy the relation o0+ 60, = — 28y, Where
8 is the Kroneker delta. Each of the elements in .97 may be ‘written as g= 2 @ae4,

where a4 are real numbers. We define that |a|? ,—-E[m[? then we have | as-.{—-b |<|al

+18], |ab|<2™? |q]|B]. It is clear that this algebra ig incommutative,

Let = denote a, pomt in R and o= a;161+a7262+ +a7,.e,. We deﬁne T =101~ D30
om0, then' iFezw= |@]2. If there ex1sts g/ such that oy = = 45 = 1 then a; is sa,ui
to o mvertlble and it9 inverse is wrltten as y :v“ Obvlously, for quO we ha,ve
Let D be an open: connee‘ued set in R" ' The set of O"~fanetions in D with valuea

in &f,. is demoted by .FP={f \f: D>ty f (@) = 2 fa(@)es fA(w)EO'(D)} We

w-'l
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define also the defferential operators 3= =gy —ai +e; 832 A+ tg, 32,, and 9=¢; —8%
BEChy e - 6»—6%-7 For fe F (r=1), 8f = ZeaeA ﬁ: andfééz 6460 f: .
Note that the formal product of the operators 3 and 2 is 93=65=—éa—22,—+ aaz e kT
632 =4, the Laplacian operator. We deﬁne that f is left regule,r inDifdf=0in

D, in what follows, f is simply called a regular function. For n=2, the regular
funotion ig just a holomorphic function in the plane,

| Up 1o now, quite a lot of function theory on regular funchion with values in .7,
has been established*~! However, the various boundary valne problems have not

beeni fully investigated. This paper deals with $he Rlema.nn problem** for regular '

fanction with values in .2z, Let D* denote a simply connective bounded domain in
R with boundary I" which ig a Llapunov sarface. Leb D~ denote the complementary
space of D*+1I", This problem i8 to find out a function w(x), seotionally regular in
the domain D* and D- , whore boundary va1ues ,w+ (#) and w™ () at each point of the
bvundary I’ ea,tlsfy the followmg relation

W) =G@Ow®) +g(t), teT | D

and the function w(z) vanishes at the infinity. Here G(t) and g(t) are given Holder -

‘continuous functions with values in S, on I, i, e, they satisfy the following ine—
qualities

19— 9 | = (S 008 — 9a (B | ¥2<b]6~F |2, 0<acct,
AGB G0 | = (TN0u) ~Gu®) (D<K [t=1]", 4, TE T, 1.

whire k& and 4’ are positive constants which do not'depend on ¢ and_?.,

 §2. Linear Riemann Problem
Let us define the Cauchy integral over Clifford algebra

0@ = g dew®, @

Where w,=2w"2/T" (n/2) is the area of a. nmt Sphere in. R" and da',-— (61 cos(m, o1) +
62 o8 (n, 6s) +eeete, cos(n, e,,))dst, in Whloh ds; i a dlﬁ"erentla,l -of the area, andn
denotes the exterior normal direction ab the point ¢ on I, Obvmusly, the integral 2
i9 a sectionally regular funcbion in the domains D* and D-. If w(¥) i8 a Holder

continuous ftinetion on I', then; for & I, the integral (2) is finite in the gense of

Oauohy 8 principal. wvalues, In what follows, -we refer- the integral (2) to Oauehy 8

*) As n=3, see [10].
**) As n=38, see [11]
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principal value: ini’oegra,l for € I'. We have the following Plemelj formula™,
Lomma 1 If w(®) s @ Holder contimuous function on I, then both w*(w), and
w~ () are Holder continuous functions on I, wnd the following equalities hold

*(w)=——w(w)* 1J lt dww(t), wET e (3

W @) = = w(z) +- j T d;o‘t'w(t), o€l @
At fitst, we congider a special linear Riemann problem. I
Theorem 1. Let G(t) be @ Clifford constant G belonging to the center of 7, and
6t has an inverse G, Then there ewists a unique soluiton to the Réemann problem
dw(z) =0, € B\L, S
w* () =Guw () + g (&), t€T; w™ (80) =0, =
and the solution may be represented by the following formule o

‘W(m) X(m> J. |t-"".— dO‘tG 1g(t), . (5)
where - . PR : .
| (@, wED*,
X (o) = { ‘”ED_.

Proof Obviously, the function w (&) determined by (B) is sectionally regular in
Dt and D7, and ib vamshes at infinity. From: (3) and (4), we hive.

w* (@) — G~ (z) = <*’°> G2g(a) + f T l doG- g(t)

—@G [ X~ (w> G-t g<m)+ 11{ |t clo‘tG‘ 1g(t)]

. =g(z), o€ I‘ ,
Therefore, the function w(wx) isa solutlon to this problem Conversely, if there ig
another solution fw(w) to this problem then the functlon w (a;) =X" 1(w) (w (a;)
W (@) is regular in R"\T and w*(m) i3 continuous on I’ and vamshes ab mﬁmty
Aooordmg to Liouville theorem“”’, we have w (a;) =0, i, o, rw(m) 'w(w) Thus the
theorem is proved |
Let (I', &) denote the set of Holder continuous fanctions with values in &7 on
I' (the Holder exponent i§ a; 0<a< 1), We define the norm in # (I, &) as
A= O(f, 1")+H(f, ) ),
where
0, I) -max[f(t)l H(f, T, a) Lf%_f‘—(ﬂ 0<a<l.

,me

It is easy to proye ﬁhat ./{’(I’ a) isa Banaoh ‘space, And it ig also not difficult to
prove that fw)+ g(m) f (:v) g(a;) E%’ (F &) for f(z), glw)€HX (I, @), and the
following inequalities hold '

-.llf\-hfylla-» e Hgﬂa, Ilfglla<2"-1llf|| lgla (6)
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' “Here T isa Liapunov “surface (See [4]). So there exisha ntumber d>0 and g
constan’t §, 0<d<1. For any point # € I", we construct a sphere K with centre at the
point @ of radiug d in B", I" denotes the part of I" lying inside “the sphere K. -We
consider a rectangular coordinate system with origin 4, and the direclion of the
positive , axes is taken to bo the oxterior normal direotion at » to I'. Then the
surface I may be represented in:the form ¢,=¢, (¢4, £ g " £n-1)? We refer n to the
exterior normal direction at ¢ on I. Then, for any point §’ on I, there exists a
eonstant ¢ which does. 1ot depend on £ such that ‘

. cos(m, @ n> >1/2, 1—cos(n, @,)<¢-p*, A,
[6al < -0, IOOS('n, 1) l<5°p(§, k=1, 2, .+, 01,
where p i3 the length of.projection of : lw;] onto the plane z,=0.
Lemma 2. The integral operator. K

(o) (@)= 2J B cloyco(t), o€ T

is @ bounded linear operator mapping from the functwn spaee (I, o) dnto itself, i. 6.

Jor any w(t) €S (I, o), there ewsits a. pos@t@fve constani ¢ which doss not depend on
such that

1y

IKel<0O-ol. s
Proo f Since the Ca.uohy prmcupal value 1ntegra1 2 I -l-i—-——- do;=1, for

g€ I, we have

|<Kw><w>|—~] 2 2| o - w<m>>+w<w>l
<OIH<“”{1 “)J [i—2 "‘1'“ S
<eiH (e, I a)+0(w, T), . P )
where c1isa consﬁant 1ndependent of w. Now we estlmate H (K o, F o ) For any

, a:E I, denote 9= |o—=z ], we suppose that 477<d at first, I denotes the pa,rt of I’
lying inside a sphere of radius 2y with centre at the point . Denote 112,, F F e

- (8, -~ ]co(w) l

Then we have

| (K) (@)~ <Kw><w>|<| EN dm(w(t)-w(w))l

Ty, [i— I

- L‘mlt-— | dos (o (8) —w(x)) I

| +fw..Jr-,,l; ol dat(w(t)—co(w))
e d0t<w<t>——w<w>>)|

+lo(@) ~w(2)|
S .:-=_J1+._f,.2,.+J3+r|w(wi) *@(Z)I-
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From (7), we have

Ji<cyH (o, I', &) » det,

__dy
v —a] T

— b H (0, I @) 1 dgy d5"-1<c" H o, ,a>f £ o

s,,,]t m[”“i‘ cos (n, ,,)

=(ge H(w, a) on® =gge H(w, ' ‘

where 2, ig the projective domain of I‘z,, onto ~the ta,ngent plane at o, and ¢, is a
constant which does not depend on @ and z. Slmllarly we may estimate J,, where we
consuder the 1ntegra1 region Whmh ig the part of I’ lymg mmde the sphere of radms
477 Wlth centre ab the point z instead of the orlglnal one, Then e ma,y also have
J <03H (w, i oa) laz—x |*,. where s does-not; depend on x and a: Now we estimate J ;.

o Jr..,(]t - tjf >d“t<w<t> —o®)
-~ w,.fr.,,ﬁt“a“d"f"”<”>"w<w>>l -
f,. r.,,<¢f—£f ,t ,)de(«»(t)-—we»)[

[ R , P J‘I‘; Wdcr;(w(w) -co(a:)) '

Tt 18 olear that the second ferm of the right hand side of the above formuly is not
greater than ¢, H (co, , @) |o—1z|, Where cyis a posﬂuve eonstant which does no
depend on » and z; By’ [2];: we have ' ‘ :

t—zx t—% -
[t—a|" ]t a:l"

lt"w‘n-—z—k!t_w[k

e H= --'”..“ -

(Elt =] 14— wl"‘"“)lw-—wl

Smee -?3—<l l<2 for tGI},,, we have ]t a:]>—-lt o). Then |
t a:

J3<G 'H(“)7 f ) a)J

sl <04H(co, I' @) lw-—-a:]“ . ,_ I I T
where ¢4 I8 a constant which doeg not depend on, . and z, Thus for 4]:1; a:l <d we

°H(co, T a)}m a:l“

have : ..
| (Ke) (@)~ (Kw)(w)l*ic E(w, 06) !-’v-fvl“ |
where ¢ isa consbant Whloh does nop depend on @ and a: Obvlously, for 4|w—zx l >d,
there exsists an estimation similar o the above one, From (8) and the a.bove est1~
matlon, the lemma is proved ' B Lo
Theorem 2 mS’uppose that G‘(a:) wnd g(m) afre gwen Holdeq' aontmuous junotwn
"on!fl" with 'values Mb .sa{ wfwl G(m) swtesﬁes the following cond/otq,ow S T A
S gede wieailoon daelay ] ':.c'ﬁ_,zn-m, u]_ ~G((m}"a (’b+1) <1 A ST )}
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where ¢ i3 & positive constant mentioned in Lemma 2. Then there ewsits a unique solution

to the linear Riemann problem '
dw(z) =0, s€ R"\T, ' (10)
w* (@) =G ®w @) +g@), t€l; v (e0) =0.. _ (11)
Po oof The solution fo this problem may be written in the form
_ 1 t—x _
L’-__—l T dow(t).

where w(®) isa Holder continuous function to be determined on I Then, from
Lemma 1, the Riemann problem (10) (11) can he reduced to an equlvalent smgular
mtegral equatlon for w(t),

o(@) = -1—-(”—@[ -2k datw<t>]+g<w>,_wer e
Liet A denote an mtegral operator dehned by the rlghb hand side of (12), i. e.
(40) (@) = 22D [0 (5)  (K) ()] +9(a)

From Lemma 2 and (6) and’ (9), -the mtegra,l operator A4 is a confraction operator
mapping the Banaoh space S (I', &) into itself, therefore there is a unique fixed
point for the operator A. Fhus ‘theie existd a unique solution to (12) and the theorem

is proved.

§ 3 Nonhnear R1emenn Problem

Now we congider -the nonlmea,r Rlema,nn problem o
ow(w) =0, s€ R\ T, :
w* (&) =@ (@) w (@) +Af (@, w* (@), w (@), € L5 w™ () =0,
where A is a real pa,ra,meter G () is a given Holder continuous fanction with values

(13)

in &7, determined on I, and f (=, fw‘” w®) is-a given function with' values in &F,
determined on I'X.o/,X ., and f(z, 0, 0)=0. For any Olifford nnmbers w™® and
w®, the fanotion f(m, ,wu) ,w(z)) is a Holder eontmnons fancbion for wEI’ and for
any point € I, the function f(z, w®, rw"”) sa.tlsﬁes the Llpsohl’az eondltlon with
‘respeottothelast $wo variables; i. e, L Lt
| £ G@, 0, ™) —f G, @, &)

. <Zo|w-—-m|“+lilwm-—'w‘1’| +lz|fw"’-—fw(”| 0<a<1 (14)
‘Where To, l1 and lz a.re posfolve wnstants whmh do not depend on a; ; w‘” ~‘i"‘,':'zd;(‘:")
ond 5D oot

We can represem; the solublon in the form fw(w) = -LJ‘ -I-}-—f'l—— do", w(t), Where

co(t) is a Holder conbinuens. fun@tmn waﬁh va,lges in, .saf tg.be determmed on .l1 Then

. the nonlinear Rlemann problem may be xeduoed o an eqmvalent nonlmear smgular _
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integral equation

o (@) = i~G(¢)[ I dmw(t)]

+Af (w, wém)_*_ J (t l doo (t),

_o@
co2m+

Let Bw denote an integral operator defined by the rlght hand side of (15), i, e.
1—
Bo=1=80)14(5) - (Kw) @1

+xf< o),

l BTt N (t)) wET | (15)

— do (1),

lt l
| w( ) 4 b
- Z I do‘;w(t))

. wn r It . |
Now we consider the opera.tor B in the oontmuous funotlon space 4] (T’) In the fune-
tion space O (I'), the norm is, defined as

Neo(2) | =0(w, T) maxlw(w)l
and O (I‘) is a Banach space. Let M- dénote a subset in 0 Iy,
B U ={a(@) | (@) EH#(T, @), |ole<Ih,
Where lisa constant and then M is a oonvex olosed got in O (F) Suppose that the

.funotmn G(:v) samsﬁes the 00nd11;10n (9) From (9), (14.) and (7), 1t is not d1ﬁiou1t
to find out that for any W€ M, the. followmg mequahty holds '

L  [Bola<Blolat |4 (8 olat), . (e
.where B is a positive constant mentioned in Theorem 2, an.d B = 1+c (l1+t2) If
|A] is so small that |

lhl<zl(+,3%)' ' e P (17)
then the operator B maps the set M into itself. Now we proceed to prove that the
operator B is a confinuous mapping. Suppose that the sequence of functions {w™ (z)}
is uniformly convergent to a fanction w(w), ‘where each w®™(z) € M. We have fo
prove that the sequenee of funetions {K w""}.is also uniformly convergent to the
“fanction Kw. For any oI, I'h, denotes the part of I' lying ingide a sphere of radiug
‘2n with centre at the point », Fz,, =I"—F},, Then - ot
It L2 do () —o®)) 2

f=g

“"n I"alt l"

- [(Ko®) (W) (o) @ |<|

+

do‘ (w‘“’(t) -w(t)) J.;-i Js.

.S.up'posezn‘<d. From .(.7).‘we have
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t.._
ST

,,,It w]

l” doy (w () —o (@)

, I'.,,]t

W,

2f —i:f- do, <w‘"> &~ @)

@o J iy [t ="

2 Lﬂ_—- do (w(t) --co(a;)) [

2 t—2 ™ () — .
w,,fp,f“"’—“n S| |0 (@) o ()]

+2n-1

29 2 148
<cg-z~f —-—-—-—.1 p”‘”dp_—l—o5'~;~ - p" 2dp=cf enP-clonp,
0 pn—- & i 1 Jo pn -

where ¢; and ¢ are constanty which. do nob depend on w‘"", o, # and 7. Therefore we
can let 7 be so small that J,<s/ 2, Obv1ous1y,
' constant which does not depend on o™, w and 4 , but depenas on . For the a.bove ?7,

-—coll -where ¢; is a

according to the unlformly convergence of the ssquence of funotions’ {w(”’ ®F “there
is a number N so that for any fn>N we have Ji< s/2. Thus, for n>N, | (Ko™ (z) —

(Kw) (&) | <e. So the opera.ﬁor B i3 a-continuous mapping.from M into itself. Accor—
ding to Arzela-Ascoli ’sheorem  the set M is a compact sef in the space O(I‘) Thus
the contmuous operator B maps the convex olosed snbset M of O (F) mto itself, and

there at least exlsts a Holder oon’amuous solubmn 10 the nonhnear smgula.r mtegra,l
equatlon (18). Thus we ha,ve proved ‘the fo]lowmg theorem

' Theorem 3 Suppose that the function f(a, W, w"’) satisfies the condition (14),
‘and G (t)- swt@sﬁes the condition (9). If: satisfies (17), . then the nonlinear Riemann
problem (13) has at least one solution.

... We can also prove that there exists.a unique solation to- the above nonhnear
Rlemann problem if some other" sunsable conditions are imposed on the function

f(w ,w(i) ,w(ﬂ))

[ S [N
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