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LOCAL LIKELIHOOD METHOD IN THE
PROBLEMS RELATED TO CHANGE POINTS
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Abstract ,

In this paper, the so—called local hkehhood method is suggested for solving the
change point problems when the data are distributed as multivariate normal. The
detection procedures proposed not only prowde stlongly consistent estimates for the
number and locations of the change pomts, but a,lso sumphfy mgmﬁcantly the
computation. : f '

§ 1. Introduction

~ Recently, considerable attention has been devoted o change point problems.
These problems originally arise in various fields ‘such as economics and industrial
'q\iali’ﬁy‘ “control. They aro also related to the problem of edge deteotlon (see
Mazumdar, Sinha and Li (1985)). R

When the underlymg distribution of the data i normal, the change points are
charaotenzed by bhose of the mean function and/or covarlanoe madrix funotlon In

- Section 2, we list five cases we are intorested in. B

Some authors studied the change points of the mean function or regression
funétion when the data are distributed as normal, The related literature is quite
extensive. Most of these authors orly considered the cases when there is ab most one
change point or the number of the change points - ig known. ‘Here we quote
Hinkley (1970), Sen and Srivastava (1978, 1975), Vostrikova (198]) and Schulze
(1982).

‘Generally, the number of change points may be unknown. For this cage,
Krighnaiah, Miao and Zhao (1986a, 1986b) investigated the detectionof the
number and locations of change points for the mean funobions using’ informaition
theoretio criteria. However, the computations of these methods are oo inuch when
there are many change points, Later, Yin (1986) proposed a nonparametric method
80 as to save the computatlon
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In this paper, we use so-ocalled local likelihood %o deteot bhe number and
locations of the ehange points when the data are distributed as multivariate
normal. One.of. the- oonstuous merits of this method is that it has much lesg
.Besudes the deteetlon pro—oedures are strongly
congigbent. S TRERG D e : '

computatlon in apphca.tlons

The problems are proposed in Seetlon 2 and the various oases are treated in

~ »‘-v N

 Seobions 3—-6 re.speotlvely

§2 The Problems Cons1dered

Let X (t) be an mdependent p—dlmenswnal process on (0, 1] snoh tha.ﬁ

A X(t) M(t)-i—V(t), o<t<1 I (2 1)

Where V(t) is an mdebéndent p—vama’ae normal process Wlth means and covan—

ances 4(¢) >0, #(t) i3a px1 real veotor function. The problems o be considered
can be formulated ag the followmg five forms '

Case 1. [ (t) i8 a left-continuous step function with the j Jump points #; <. <4,
. Which are called the change poin#s of the mean -funciion of X (¢), and A(t) =A4>0
for € (0, 1], where 4 is an unknown matrix. v - ;

' Cage 2. - (2) is a lefb—oon’omuous 'step fune’olon Wlth the ohange pomts
mentioned above, Write fg=0<ty< -+ < tg<ty,q = 1, We assume $hat A(#) =A4,>0 for
1€ (b 5], =1, 2, .+, ¢+1, and Ay, +++, Agiq are all unknown.

~ Case8. A()>0isa left~continuous shep function w1th the jump pomts by <lee
<% which are called the change points of the covariance function of X (#), and

(8) = for 1€ (0, 1], where & is unknown., .. .

Oase 4. p=1,4() isa. left~continuous step. functlon Wlth the j Jump pomts #<
o<ty and A(£) =A>0- for ¢€ (0, 1]. Write 0= bo<tyKore <tg<lfyuy=1, _We,_asJumse
dhat #(8) =u;. for ¢ €. (¢4, tj] and ,Lb1>,u/2> >[l/q > st :

Case 5. p=1, u(t) satisfies the conditions in the Oase 4, a,nd A(t) 7\.;>0 for
1€ (¢io1, 4], :

. In the above cases, we assume: that the. number ¢ of the change pomts s

. unknown. We want to determme g and the locations of t;, #5, -, 2, based on. the
data X(fz;/N), i=1, 2, N_ | |

Sy

Put X;=X (@/N ). Take a positive integer m<N For k =m, m+1 N m,
conS1der Xty X, X omazy . 22y X o Kunpay- w00y X ;H.,,, Flrsb we agsume tha,t X X, b=k—
m-1,: 5, k+m, are: mdependenﬁ p~va.r1ate normal variables suoh that -
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E§k~m+1=”'=E§k=ﬂ’(nr E,‘X;kub‘*—"“'éEgk-km‘—"fﬁ(z)y o (31>

and : o ' - R
Var (-Xk—m+1) =...=Var (Xk+m) A>O o (3 . 2)

where 4™ U™ and A are all unknown. Put ' :

Z(i.k)=‘,;n" 2(1,k)§» ,X(zpk):'m; 2(2,-1:)%4,

. (3.3)
X ®) ™= G 2w X,
& ktm o
W-here Za,n ='_E§+1 2(2,,,)= %1, Z‘(,,, ; . Then, the logarlbhm of the hkeh-

hood ration test (LRT) statistio for testmg the null hypobhesus Hy: M‘”-—M‘”’
against the alternative K: M‘”sélb‘”’ is given by __—
' Gn (k) =mlog| Ay, x| —mlongk »l, (3.4)

and Ay, w= ———[2(1.3) (X (1,70)) (X‘ (1.k)) +E<z.m (X, X(z.k)) (Xc'"X«.m) Ty

B, =g S (Xi-Z ) E-Zw)s  (3.5)
Take m=my and positive number Oy 'w Suoh that
N>>m>>C’N>>10g N, _ , (3.6)
Hereafter, ay>> 8y means LIBE o/ Py = oo ' R
'Deﬁne : P : '
Dy={k: k=m, M1, o, N—m, —Gy(h)>0g}. (3.7)
Assume that 701,y min{k: € Dy}. Dofine S :
" Dig={k: k€ Dy, b~y y<3m}. ©(3.8)
Assuime that Iag,y——-min{k- k€ Dy— Dy, 5}. Then we define
Dg, y= {k: b€ Dy—Dy, 5, b—ky, ¥ <3m}. I (3.9
Oontmumg ’ahls procedure, we obbain - .
- Dy=Dy,5+Dy, g+ +Da,3,-, - o (3.10)
and every Dy.x is not empty, Put - ax PR A s
| 2,__. {by.y+max(b: kE D)}, j=1, o g, 3.11)

then we can use (g, #;, -, £,) as an egbimate of (g, ¢, * tq) Wo have bhe fo]lowmg
‘Theorem 3.1. valerr the conditions of the O'ase 1, (q, b+, %) s @ strongly
consistent ‘estimate. of (gy t1, 1)) R SN
We need the followmg SRS
Lemma 8.1, " Lot By, Thy " oe0y @, b6 B.6.d. random mrrwbles such -that Eaa-O and
¢ () =E{exp (twy)} 48 ﬁmte n a. nelghborhood at t=0.,. Then, for any y'mm constans
8>0,

>6} <016‘ C“,

S

=
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where O and Oy are positive constants.. :
This result is well-known and the proof is omibted.

~Proof of Theorem 3.1, It is easily seen thab there exisi inbegers B, <o, B2, 0<

9<Loee<EJ< N such that

E——t, i<—1— for j=1 2‘ T A - (3 12)
N g N"- } y Ay 20y .

and ‘ ' _
B 6/ ) =ty S=Bfogtd, - By =1, o, g1, (3.13)

where ko-—O kqu—N and My My, o, Ky qélbﬂ.i
Fix j,j=1, 2, ++, ¢, and put k=4J. Since m<N, (8.1) and" (3 2) hold for N
large, where A® =f, K@ =4, . Using Lemma 8.1 and Borel-Cantelli’s lemma, we

have

N=roo

‘ Clim A;,, N——-./l | -a;;!, M . 3 14)
and* - S | ? : ‘
%’lfg B, N—hm {-—-—— E(i,k) (Xi X (Mo)) (X X (Lk))

+——- )N (X X n)) (Xc Z(s,k))

+-2-(X aw) X '(1,'754-:& (2.;:‘);2.{ "?r-")) - X mZ,(")} W

1 . . : b
=4 +5 (Bt + Ko gaafllns) “}— (gt Byp) (5 Bgin)

—A+'—' (MJ_MH:L) ('wi ‘w!-{-:l) ’ ~S° . i (3-15)

By (3 4), (8.14), (3.15) and M;#K&;,4, with probablhty one for N large,
— Gy (k).> aym for some constant >0, - . (3 16)
By (3.16) and m>Oy, with probability one for N large,

K€Dy, =1, 2, -+, g.. o . (311D

By the definition of D, ¥S notmg (3. 12) and m<<N we See that Wﬂih probability
one for N large, k3, <, kg belong to different D, x's, which implies IR
| q>q o o (3.18)

Ta.ke 616 (O 1/2) Wrﬂ;e
o KN (b m<h<N-m, ’N—-t, l> (1+si) forg —1i, 2 ‘_v-,q} (3 19)
Assume ’nhat kE Ky. By m<<N it i9 easily seen that (3. ) and (3 2) hold with

D = M =, for some =1, 2, -+, ¢g-+1 and N large.

- For a pXp matrix: A (a;”), wo write 4] = (2 | a5 ”)1/2 an&nse M(A)>7\.2(A)
5.0, (4) to ‘denote its elgenvalues. Also, we ‘write Hgll”——ﬁl ley]® for g= (g +ooy

o)’

By (3.5),'



No. 3 Krishnaiak, P. R. 6t o LIKELIHOOE METHOD RELATED TO OHANGE POINTS 367

Apy=—+— 1 Ean(X — ) (X,, ”’5) —-—E(X(v.m B (X o) — H5)"

v-—-l
AAk N—'Ok . ) (3 20)
By Lemma, 3. 1 for any &>>0, there exist constants 0 >O and 01>0 such tha,t
.P{HA;,; N‘—A“>8}<013‘0m

and - P{|Z 0 “(”)">8}<Oi" om,
which 1mp1y that for any &>0, S _
P{"Ak N—A">3}Q0 3—'0"‘ (3 21)

Hereafter wo will use 0 and O; for some new positive constants w1:bhou1; staterent.
It is well-known that for any p X p symmetric matrices 4 and B

trAB<2 MW AN(B) . (3.22)
(von Neumann (1937)) Wthh 1mp11es that _
B (u(4s, D =) St (= % B B-)
By 3. 21) and (3.23), S o
P{-?\.,,(Ak.;v_)%%‘. (A }<gwm, (3.24)
By (3.5), S .
| ‘v Bk N_A-k N——(Xa,m—Xm.m) (Xa,k)—X(z.k)) >0. | (3.25)

By (3.4), (8.22) and (8. 25),
_Gy<k) m10g|I +Ak1/2(—Blo,N—Ak N)Akllzl.
' <’m171'Axa Y (Byy— 4y, N)<mtr(3k. "Ak'N)/}"P<AE w)

=‘—” Xfivk)“Xm.k)" /M(Ak N) ) (3.26)
Agsume thab yNNN (0, 1). Then for N >3 R . L
2. . .
P ~6log N 31 N N' 3.27
(lywl> 0g )\\/2 ®lg ) GXP( og )< (8.27)

Since ~/'m (X ,,1)— M~ N0, _/1) for »= 1 2; it i9 easily seen that if we take the
constant 02 large enough . o .

{4"X<1 k)—Xm.k)u >OzlogN}<2N‘3 L (3.28)

By (3.26), (3.24) and (3.28), noking 0N>>10g N, we have N
' ' P{—Gx() >0Nf<01(6 om . N~ 3y, T (8.29)
Note that Oy and.O are the same constants for all #€ Ky and # (K y) <N. Thus _
© P{—Gy (k) >0y for some b€ Ky} <Oy(Ne o™+ N-%), . (3.30)

which i8 a general term of a convergent series by m>>log N..Use Borel-Cantelli's

~ lemma, with probability one, we assert that for large N

DyNEx=G. . oo (8.81)
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"By the definition of D, s and the fact
2m (1+¢&4) <8m,
with probability one for N large, _
| ' 7<g. | (8.32)
From (8.18), (8.32) and (8.31), it follows that with probability one for IV
large
§= 9 ’ (3 33)

and _— _ A
Lim ty=t; 2.8, §=1, 2, « ¢q. (3.34)

- Theorem 8.1 is proved.

'§4. The Case 2

~ Take X=X (i/N), t=k—m~+1, k—m+2, +, 'k+m. For b=m, m+1, -,
N —m, suppose thab (8.1) and the following hold: |
Var (Xy-ms1) =+ = Var(Xy) =49>0,

Var (Ziga) == Var(Fuum) =490,

where 4@ u®  AD gnd A® are all unknown, Continue to use the notations of
(3.8). Then, the logarithm of the LRT statistic for testing the null hypothesis Hy:
M‘”-—M‘”’ and AV =A® againgt the alternative Ky: M‘”#M‘”’ A and A® are

a bitrary is given by

Gin () =3 0g | Aeuw| +5 10g | dunw| —mlog | By, (4.2)

@D

where .
| Ayw =2 S (X~ Z o) (Zi=Fom)s v=1, 2 43
and By, g i9 defined in (8.5). .A '

Take integer m=my and positive number Oy such that

 N>m>Cy>log* N, | (4.4)

Define Dy, Dj, x, £ §=1, -, ¢ by (8.7)-—(8.11), Then we have the following

Theorem &.1. Under the conditions of the Case 2, (g, t1, *+ 5@)’ is @ strongly
consistent estimate of (g, t1, ++*, tg).

To prove bhis theorem we 1ntroduee the follovvmg

B _Lemma 4.1, Asswma that yN '5‘ Zin/ e\/ m, whefre m= me-—>oo as N —>00, wnd
21, ***y BmN are 4..d. random wd’q‘;ablss such that the distribution of 2iy Gs Sndependent -
of N, Bzix=0, and ¢ (&)= E{exp(tzs)} is finite for [t|<T with T bemg a constant,
Thon; for any given constant s>0 and >0, e e : SE

Pllyx|>e log N}<01N A
where O3>0 &s a constant,
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Prroof For N large, A (Nm ms)<T/2 It is eagsily shown tha,t '@ 8

continuous for ¢€ [0, T/2], and M Asup{|$" (¢)|: 0<t<T/2} Koo, We have

S [f=Ngn 0/ (Vms)).

P(yg=elog N)<éxp(-—).logN)E {exp[
By Taylor’s expansion, and ¢'(0) =0,
B/ (VE)) =L+ $ (4) (4 (V78) Y,
where (<?t,<\/(~me)<T/2. Thus |
P(yy=>clog N) <N"'(1+7\.2M/ (28°m) )< N~*exp {APM/(zs’*’)}

The same is true for P(yy< —slog N). Lemma 4.1 ig proved.
Now we give a proof of Theorem 4.1,

Proof As before, there exist integers &9, -, &9, Ak?)’———..0<lo§'<~~<kg<k2+1=N

such that (3.12) and the following hold: |
W (3/N) =g, A(G/N) =4, for 4= k°_1+1 SR, G=1,9 ey g1, (4.5)

where oy sk By, oo, Mg #Mm ’ IS |

Fix j(j=1, 2, -+, ¢), and pub k=%). By m«N, (38.1) and (4.1) hold for N
large, where 4 =, U =, .- A‘”—-'Aj and A®=4;.4. By LsmmaA3.1 and Borel-
QCantelli’s lemma, we have. o S :
| %’lfgoAikN A;,f Cas.
Hm Agyxy=4j1, 2. 8. (4.6)

N=>co

and

. . 1,5 - -
gg:Bk,N.= %l_l_l)?o {—;—- (As,n; 5+ As,v,m) T (Xawm—ZXemn) (Z(i.;;)“X(ﬂ.k)) '}

=—1- (Ay+Ay41) +'*1—(”J:"""-"5 ) (Bs—M4a)’y, a8, : (4 7)

Put H= (M,—lb,+1) (lb,— Mi41)" and /1—-—- (A i+451). By Jensen g 1nequahty we -

have o .
-1 (10g[/1,|+log[/1,+1l)+log|/1|>0 o (4.8)

By (4 2) and (4.6)— (4. 8), noting. that #y+ L., we have L
tim {—L G } = — 5 (log | 4y + +1ogm,+1|>+1og|z1+g| o
Slog| A+ H| —log|A|=log| I+ ABHAA|>0,. a.5.  (4.9)

Using the argument used in egtablishing (3.18),. we see ﬁhat f__v_vith probabi]ity one
for N large, - | . e
i>q. T ¢ 10)

Take &;€ (0, 1/2). Define Ky by (8.19) and take ké KN By m<<N (3 1) and -

(4.1) hold ‘with M‘1’=M‘2’—M, and: A‘1’==./1(”’=A, for -gome- §= 1 2 « g+1 and
large N.
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PU.JG Zv,k,.z.v"“:%; S_(ﬂ,k)<gi‘f'ﬁli) ((,-gi”"'gi)ly V=17 -27 and

Ek,N-—-%J—(Zi,k,N+Zg,k,N).——-:_—2%n.—.- Zor (X ) (Zi— 1) By Lemma 4.1, for any

e>0, L ,
Lll uky—A;||>slogN/~\/_}<01N ,v=1, 2,
P{| By v~ 4, |1>810gN/\/-}<01N -8 ‘
Note that \/—(X(,,,k,—lb,)NN(O A,), \/2m (Xm-—llq)NN(O ./1;), p=1 2, Using
(3.27), we can get

P{IIX'W.M—/’J!) (X(y,k)—/«o,) ||>02I0gN/m}<01N 8 p= 1 2,

(4.11)

P{J (X oo t) (B 129)| > Oslog¥ /m} <O, @12
prov1ded the constant 02 is large. By (4.3) and (8.5), _
Au.k,N—Aa %N = (X(v n—HK3) (X(v,k) DM /0 v=1, 2 | (4‘13)'
By, y—Buy= (X a;— ) (X y—5)">0. o
By (4.11) and (4.12), for any e>0, : |
- P{| Ay 05— A,,l>e1ogN/J“}<01N 3 y=1, 2, s
P{| By, y— 4| =clog N/~ m}<ON-3 RS
Using the argument similar fo (3 .22)¥ (3.26), we have
P{ry(Bow) <5 2o(4)}<OWN, (4.15)
and. . ' : A
O<”n10gf§k NI "mlOQIBk ¥ ”mlOglI+Bk1/2 (B, N'—Bk,;)Berzsfz o
<mtrBgY (B, x— By, i) <m| X ay— i */ Ao (By, ) - : (4.16)
By (4. 12) (4 15) antl (4 16), when the constant O is large, we ha.ve o
P{|mlog| B.y| ~mlog|Byx||>0alog N}<O:N-5.  (4.17)
In the same way, for O, large. v=1, 2, - |
L P{ —log[A,,kN[~—log|A,,kN] ]>0210gN }<01N“3 (4 18)

Denote by, A&”’>N’”> =>A the elgenvalues of Ay,,, g for v= 1 2 a,nd denote
by AS>hes>+++ =4, the elgenvalues of 4. Put 5 = G),"” —&) /7\.¢, G=1, een’ p, p=1 2,
By (3 23) and (4 11), for any >0, o

‘ P{|5<”’[2>3100-2N/m, for some 4, ¥} <ON=3, ° * (4 19)
When |#;|<1/4, |yl <1/4, 6=1, -, p, by Taylor's expansion, bhere exists &
-'posﬂuve cons’ﬁant 03 such thaﬁ o o o _ -
g —2(2 log(1+ w’z”" ) log<<1+w¢> g (1+y¢))<03m2<w‘+y2> - (4.20)

=1

Putb
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[P

""GNUG) ’mlOngk,N{“- longi s Nl - IOQIAz.k,N[

» m 2 Aa)._l_)\‘( — (1) (2). ‘ . !b |
-—2—2[210g—-——2-——- logh logx ]
(1 4.9 (2)
Z} 2’1[2 1og(1+-&_i’“‘_..) Tog (L4850 - log (1+3<2>)] (4 21)
Since m>1og® N, there eXJS‘bS & constant Ny such' that::

810g2N/m<1/4 for N>No (4.22)
By (4. 19) (4.22), for:any e>0, and N>y, T e

P{ G‘N(Io)>__ logﬂN}<01N sS4 p {Ost(lsa’l”*‘W”[a)

>£ 1og? N}<01N‘3+01N‘3 | (4.23)
By .(4.17) and (4.18), for any >0, o
P{(~@x®) = (~Ba®)] >—log2N}<oiN-3 29

By (4.28) and (4.24), for-any e>0 and N=>Ng .0 . o

Note that we..can choose - the .constants 01, N, e‘ﬁc, 1ndependent of kEK ¥ Sinee

#(KN)<N for N>N, we have - - R

(4 P{—Gy(h)>elog?N, for some k¢ Ky} <O’1N‘2 (4 26)
Whmh ig the general term - of a convergent. series, By Borel-Oantelli’s’ Iemma, Wwith
probability one for N la,rge ‘_ ~ '

A ) DNnKy @ | '- | (4.27)
Usung the argument similar to (3.21)— (3.24), we can” prove that with probability
one for N large, ¢<¢, ¢=g, and o

lim ity a5, j=1, 2 o, g

The theorem is.proved. = . .

§ 5 The Case 3

Followmg the local l1ke11hood prmclple, we can. deﬁne ERE
. Gy(/c)—--log|A1,kN1+——10g|A2;ml —mlongk,Nr. Gy
Where k m, m+1 N —m, and “ .

T Av,.k»N;'_' EG,-k)‘-‘(Xe X (k>> (X: Z (k))"k ) =1) 2 .
" (5-2)
. Bk,y-— e E(k) (-Xt X (k)) (Xi X (Ia))

Take m=my and Oy samsfymg (4 4), and deﬁne .DN, Dy, %, =1, o0, q by
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(8.7)—(8.11). Then we have

Theorem 5.1. Under the conditions of the Oase 3, (q, By, e, Ea) is @ strongly
consistent estimate of (g, 1, +++, ). -

The proof is similar to that of Theorem_ 4.1, Here we omit this proof.]

§6 The Cases 4 and 5

Put X;=X (/N). Take a p091171ve integer m<N For k=m, m~+1, -, N—m,
we assume that X k-m+1y *** Xpm aro independent normal variables such that
» IbEXk-m+1= -4:.=EX;,=M(1’,. EXk+1= °"=E‘Xk+m;'=ll'(2){ (6-1)
and SR
Var(X,_ ,,.,,1) =.-.=Var (X p) =2,
Var(X k1) =++-=Var(X ,,m) =A®,
Similar t0 (3.8), we can define X iy X, anand X4
First we congider the Cage 4. In this case, we assume that AV =A® =3, and p®,
u®, A are all unknown. , ‘
The logarithm of the LRT statistic for testing the null hypothesus Hy: u™®
e agamst the alternative K: uP>u® ig given by
Gu(k) =I(X 1,192 X a,05) mlog (Ai 5/ Bu,w), (6.3)
Where I(4) denotes the indicator of a. get A, and ‘

(6.2)

Ay, N“‘_—'—'[E(i.k)(Xi (1.1:)) +E(2.k)(X X(2.k)) 1,
(6.4)
Bk.N-——-— 2y (X4~ X(,,,)
Take m=my and Oy such that ~. .
|  N>m>Oy>log N, - - (6.5)
Define Dy, Dy, &, j=1, =+, § by (3.7)—(8.11). Then we have tho following =~
Theorem 8.1. Under the conditions of the Oass 4, (@q, t1, oes, Z@) 8 @ stfrongly
consistont estimate of (g, &y, =+, %). : o
Now we consider the Cage 5, and we assume that (6 1) and (6 2) hold and
w®, A A are all unknown. ‘
It can be proved that the logarlthm of the LRT statistio for testmg the null
hypothesus H,: ;1,‘1’—-;1,‘2’ AD =)@ against the alternatlve Ky ,u,‘”> ;w‘”’ a.nd 7\.‘1’ A
are arbltra,ry is given by

Gp (k)= I(Xa k)>X(2.k)){ 10g Ai.k.ri‘—- 108 Az,;.;,y -m log By, }

+1 (YM< Xian) {--10g A, (lo) 4o log A (k) —mlog B, ,,} (6.6)

whete:
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Ai; BN ;’% Doty (X — X(i,k)) 4
Az.n,zv=;’1; 2(2.70)(X¢"-Y(2-k))27 (6°7)

By, = _515&_ Zay (X=X )2,
and AV (), A® (%) sabisfy the following conditions:

1 ' + \(7(1,14)‘“2'(2-74))2 =0 )
RSO m%m&““<@@@%m2’ 6.8)
1 (Xam—Xa,n)? =0,

'W%><Www‘“ﬁYW®+W®P
The proof of (6.6) is routine, and is omitted. |
- Take integer m=my and positive number O » Such that
o N>>m>>C’N>log”N o (6.9
Define Dy, D, g, t;, j= =1, «., q by (3.71)—(8. 11). Then we have the followmg :
Theorem 6.2. Under tke oondmons of the Oase 5, (g, By oo, ts) is a stfrorngly
consistent estimate of (g, [ZORE tg). _
_ Smce the proof of Theorem 6. 1 ig smular o that of Theorem 6 2 we only glve
the proof of Theorem 6.2. . : :
Pfroof of Theorem 6 2. It ig easﬂy seen. f.hat there existy mtegers Ky o . K,
B=0<hg < <k°<k 1—N such that '

7\,_-..#, |<1/N, or j=1,2 0 g (6.10)
and _
w(8/N) =p;, A(G/N)=» for i= Bjeatd, ooy BY, j=1, <o, g1, (6.11)
where i, > pg> .- *> Mgt _v
Fix j, j=1, 2, -, ¢, and put b= k3. Since m<«N, (6.1) and (6.2) hold for N

large, where u™ = ;> p® = 1y;, 1 and A® = =My A® =M1, It can be proved that w1th
probability one for N large, X (1,,,)>X @%, and by (6. 6)

""“quﬁ} =log By, N‘“— log A1, 5~ —log Az.kze (6.12)
By Lemma 3.1 and Borel—Oante]h 9 lemma we have o
l llm A1 BN= 7\.3, a. 9,
o o (6.13)
llm .A.2 % N-—-A:j.;.j, 8.8, .
and , ‘
| lim Bk v=5 (h;+h:+1)+—(uf~u;+1) a8 (6.14)

N=roo

(Refer-t0 (4.7)). Along the line of proof from. (4 8) to (4. 10), We 886 tha.b ‘'with
‘proba‘mhby one for N large, - . e
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Take &, € (0 1/2) Define K - by (3 19) and take k€ K'y. By m«N, (6 1) and
(6.2) hold with u™® = y,(m—y, and AW =)®— =\ for some g=1, 2, ¢ g+1 and for
lalge N.

Put A'(i)(k) Z, A'(ﬁ)(k)/l(i)(k) =2, Alﬂo N w, Az B N—b and <X(1.k)"X(2,Ia)) =0,
The equation (6.8) can be rewritten as _

1 @ ,.. 1.

"?f?‘*?u“fz)ﬂ:’o’” EEE 4
o bt 0 o L . 1)

It is easily seen that. Wlth prcbablhty one we: have a>0; b>0 and 0>0. Mulbiplying
both gides of (6.16) by :vz we got . TP :

g a (.18
‘Multlplymg both sides of (6. 17) ‘by a;2 substltutmg (6. 18) into ¥, and multlplymg
both mdes of the obtamed equatlon by & ¢l +2)% we get S ' '

A b ag (1+252— b(l—i—z)”——cz +e2=0. L ) (6 19)
Equatmn (6.19) hag at least one real solution which' ig nelthel 0 nor —1, and if
2% '—1 is'Teal, @+c/ (1+z)2>0 Hence by means ‘of the' abOVe method of solutlon
we guarantee that the equamon System (6. 8) and the Sysbem of equatlons (6 18),
(6 19) havethe same real solation: AISO, any real solu’ulon of (6. 8) must be p051t1ve
We denote by (A¥ (%), A? (%)) such a solution of (6.8). By 6.8),"

G A — A | £ AP (8))2 = (R i~ K ai) ) (RO (8) + 59 (8) )2

: <Xy~ X a0/ A0 (8))2,

whioch implies that . . R
A . ‘ Ma)(]‘,) A1 kN[<(X(1 k)""X(ﬁ,k)) e - (6.19)

In the same way : e
o | M‘z’(l‘?) A2 2 Nl <(th.1o fﬁX(z.m) L .(6.20)
Write . . L L
| (7‘7) = _103; Ai.Iq,N’{f%"]-og 42,‘70:‘_,5{—'m 10g Bk, ' (6.21)
Then ' '1) (2)' ' L
| Gl () — G (k)|< |1og L (’”) ‘+m' og—%z-—i%! (6.22)

(*.By (4.12), (4.14) with p= 1, and (6 19) (6 22), 1’0. _:_ts eagy to verify that for any
>0, , '
P{| Gy (k) — Gy (k) |>slog9N}<01N'3 . . (6.23)
where 0y>0 i9 a constant independent of HE&'K y. § y
;. Since G (k) 18 jushiGy(h)(of {4.2) with p=1, the rest:of the proof has’ already
been given in the second part of the proof of Theorem 4.1; Thus-wehave with
propability one for N large, ¢<g, ¢=g, and '
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lm §—¢, a8, j=1, 2, -, q.

Theorem 6.2 ig proved.
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