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THE ERDOS-RENYI LAWS OF LARGE NUMBERS
FOR NON-IDENTICALLY DISTRIBUTED
RANDOM VARIABLES**
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Abstract

The Erdos-Renyl law of large numbers’ (1970) is the ‘first important resalt for

~ asymptotie beha,\nours of increments of partial sums of & sequence of random variables

with <pan [OlogN]. Some generalizations ha.ve been done since then, such as conver-

genee rate of the limit, some results when order of span being eitber higher or lower

than log N. But all these results are only obtained in the case of i, i. d. ra,ndom variables.
‘This paper aims at the generalization of these results to the case when random variables -

~ are independent, but not necessarily identically distributed. To this end Chernoft Theorem

is genera,hzed to the correspondxng case at ﬁrst ' !
§ 1. Introduction
For the almost sure asymptotio 'behaviours of inerements of partial sums of a.

sequence of random variables, the first important result is well-known Erdoés-Rényi

law of large numbers (1970):
Theorem A. Lot {X,} be a sequence of 6. 4. d. random variables satisfying

the conditions
(1) EX,=0, BXi= |
(2) there emists ty>0 such that R(¢)=E oxp (tX1) <oo for |t|<to. Put §,=

2 %o p(a)=infoxp(~10)+R(2). Thon for a€{R'®)/RE), 1€ (0, #)} and O

O (&) such that p (&) =exp(—~0-1),
: 'S’n-l-'[ClogN] —' Sn
T ne X 1 [0 Tog W]
M. Csbrgd and Steinebach (1981) generalized this resuls. First, they gave
convergence rate of the limit in Theorem A. :
Theorem B. Under the conditions of Theorem A, S

Sﬂ+C0!05NJ S —[Oloz N 12 >=
11»7%<O<n<l?}-a['cl'clo,2v] [O]_og N]i/d [ og N] 0" 0 a. 8.

== 0% &, 8,
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hm( max max ——-'-S’—'E-Lﬁ-m--—[alogN]m >= . a. s, |

N-eo \0<n<N—[Clog N} 0<k<iolog N1 [ O log N]

And further, they investigated the case when the order of span ay is hwher than
Olog N: i

(i) O<ay<V,

(ii) ay/N is noninoreasing,

(ii1) ax/(logN)*—>0 for some p>2,

(iv) ax/log N—>co, '

Theorem C. Suppose {X,} satisfies the conditions in Theofrm B. Then for {ax}
satisfying (i) —(iv), we have -

llm( max -'gl"&;-;—'s-"i-ax>=0 a. S.,
N-soo \ 0<n<N~ay @y !

1im< max max S”+k1/2 S N) =0 a. s.,
N—i°° O<nsN—ay O<k<ay ﬁ .

where oy>>0 4s the solution of the equation p* (oanN””) am/ N.

Recently, Huse and Steincbach investigated the case of wN/log N->0: (v) wN/
log N is nonincreasing 0 0, (V1) a,N/ (log N)2 is nondecreasmg 10 oo,

Theorem. D. Suppose {X } sat’bsﬁes cond@twon (1) cmd |

(2)' R(t) <66 fm‘ wll t>0

(3) hm !li"(t) 0‘%, 0<Go<°°

whe/re ¢:(t) logR(t) Then fm' {wN} sa,tfbsfg/@ng (1), (v) (md (IV) we hwue the conclu—
stons 4n Theorem C. :

The purpose of this paper is to generahze these results.to-the case of independent,
but not necessarily identically distributed, random variables. : )

Let {X,} be a sequence of mdependen’o random vanables Wlthout 1oss of
generahty, we assume HX,=0 (n>1) Put o= EX?,, ro(t) =Bexp(tX,), P.(t) =
log 7.(8);, Oin=0ms1t *+0niw, Buy(t)=Eoxp(t(Sun—8s)). If there exists £5>0
such that R,y (f) <oo. for ¢€ [0, to)y put p.x (@) —-mf oxp(—toly®) Ry () s0ty = %NN

is $he solution of the equation: p.,(¢) =N-*. t,.N—-tm” v satisfies the equamon
R;Wn (t_nN ) / Rm)n (tnN> = 0' WN“”N (1)

Theorem 1. Suppose that { X} satisfies
(a) there ewists such an 'mcfrews'mg funct@on M (t) that Jor some TE (o, qo],
M(t) TooastTTcmd a‘,.(t)<M(t) for every n and wny te [0 T) And f' ; hor @f

T'<co, then there extsts an zmrrewsmg Junotion m(t) Too as tTT suoh tkat hm 11\\77 >a>0

’V—aoa
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for every m, where N,= {3, m () <r;(t), t€ [O T, _n<,7<n+N}
(b) there exists a cont%nuous Sfunetion v (t) >0, tE [0, T), fwhech is not inteqgrable
on [O T) of T =oco, such that lim —JYN—>,3>O for every m, where N""——#{j, (H) <

N

m{ max <§ﬁ@:_&_%ﬂa,w>}='o 0.8,

N-oo (0<naN—a g Onay

lim{ max max (—-—-———-—-—-S"*"—S" "‘O'naN“nN>}=O a. ..
N-oo l0<n<N—ay O<k<ay Ooy . B

- Proof First of all, we prove that there exist 0<t;<<o0,. 0<t2<0<>(or 0<8<T)
such that for every n and all large N, :

tnﬂ?tb : ) g o (2)
and S
tq as T'=oco0
" ’ o 3
t“N<{T 5 " as T<eo. ' @

Oonditions (a) and (b) (¢p () =_qj?,) imply thaj‘; i}here exish ,‘.'0~<_q'(’:,$<0'39<90 such
that for all la.rge N " '

) e QN 0'0<0'ﬁa,,<“1¢0'() . | . - - § (4)
Furthermore, from the deﬁmtlons of oy and tuy, WO oan write _
exP ( ]-Og N ) = me (anN ) = exp( tnNo- 165 %n N ) E GXp (th (S ml-ap : ») ) ‘_ (5)

- Since BEX,=0(n>1), B ©XP (st (Sniay—8a) ) 1. ]E{ence ) 1mphes Ocr.) ,xa,.zv>1
If there ex1sts subsequence N v sueh that hm tN,-—Q for some n, - hm a,,,, =00,

Moreover deﬁmtlon (1) can be rewrltten as

- Ol= S i) 2 ¢,<,,,,> RN,

§EmL Ty (t,,N)
From bhese and (4), we have

| on,=0unn) =0 "fﬁfil 5,8:1: ) )
But 7 (t,,m) <e¢ (in this paper, ¢ denotes a positive constant which oan take different
values at different places) for-all large s and every § since t,5 >0 and condition (a).
On. the other hand, rr,(t,,m)>1 always Therefore . e ;
U+a gy .
E ot ®

which contradiets (7)., This proves (2)

Turn to (8). By condition (a) and EX =0 (n>1), ‘there exists T, € (0, T) for
given g>1, such that s

L Eexp(tX,.)<exp (gcr t”/2), | 0<t<T1 | o 9)
for every n (e g .cf Lemma 5 of Ohapter 3 in [4]) Oomblmng (5) and notmg
the deﬁmtmn of £y, We obtam :

L exp(= logN)<exp(-toma,,y+gt”0'm,/2), tE[O Ti].
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Then o304 (a5 — gt/2) <1, ‘i. e.

1 1 T
oS apptgeh €Il (1)

If T<co, from (B) and condition (a),

(m (tog) ) ***/*< H exp (tm(&.m -8 )) = IV" oxXp (tmam,,am) <N°
for all large N. Thus
‘ " : (m (b)) < NO/(oalogN)__. ore, _
Then noting m(t) foo(#4T), we see that there exists 8>O sach thab ¢,y<T— 8
Agssuming T = oo by condition (b) we have ¥} (¢) { oo .(I—>o0) for a great many j,
which together w1’oh (6) and (10) 1mphes thab there oxists t € (O 00) such tha.t
by <\ta. ‘

In order to prove the Theorem, we verify, as the first step, for arbitrarily
given >0 '

lim sup{\ max max (ﬁ’ﬁiﬂ:g—-—o-maw>}<'s a@. S. @y

N-s00 0<n<N-—-ey OékGGN O-MN

Estimate the probability, using the subma,rtmgale inequality,
P { max max (S ko —cr,.aﬂa,,ﬂ>>s}

0<n<N—Gy 0<k<a, Olnyy ..

< 2 P{max (Sm-S )>crm,am+cru,,s}
< 2 exp( t,,y(o*,m,,a,,y—{—o*,,a,s))E exp(t,,N(S,.M, S’,.))

< 2 Prey (otx) eXP( 12 No-ﬂazve) < max exp( — t,NO‘MNS)

O<nsN—ay : .

<exp(—1t1008ay/*) < oxp(—¢ JIog N). : ' (12).
For 4>>3, define IV, §=5up {N, O log N<log®i} as [log®s] = [log3 (’b+1)] and sup {V,
Olog N< [log® (@+1) 1} as [log 5] < [log3 ('H— 1)]. By (12) and Borel-Cantelli lemma,
we obtain

Iimsup{ max max (—'—S'-'lf—’-‘——‘g—-—crm,,anm» <s. a.s. (13)

$~s00 0<n<N~tx; 0<hb<ty, O nap,
We have ay=ay, for Ni1<N< N,. Notmg convex properbyof —log p.x (%) ~and
(=108 Puoy(#) ) =apy = ,,yam,,}tiam as N large enough, by the definition of o,y
(assume a,y,=>a,y, the contrary can be dealt similarly with), we have-
log N—log N = —10g puay, (0ux,) +10g Pray (6,27)
L= --IOg‘ Praiy (euw,) ,’.iflog Pm;(%m) >6192§Gy(a18¢ '%N) .
Therefore A B

O'MN‘“"N[ O'M vaﬂN O-MN (“"N{ a"x)

< —-———17-2— (log N = logN ) <c 10g‘3/ 2 ('a 1) {log"' (fz,+ 1) log3 (o, 1) }

1/2
<ologt/2(54-1) o (1+ 1)< elog - (f“) 50 (ses). (14)
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Combine it with (18), (11) is proved,
The second step i9 10 show

N-eo Sn<N—~ap

limint{ max (Besza=80 ~om,,aw)}>-so | (15)
Write V |

P{ max <M*GMN%N 'g _.s}

OKA<N gy Cuayp

< [N¥/3g]-1 {1 _p { S tr0y — S

=0

R — 0O, 7 = — 8}}. (16)

O-‘QN 1Ox

Put §m=w~ Oiams 63%ag, v. ApPplying associated probability measure

a‘dno G

Py (E) = L] GXP{iﬁ,.N<S(c+1)a,‘Sta,)/Ria,,QN (tca,, N) }dP y
we have -

P> —5) = Risy,ap (tta,_. ) Cowomsy exp{ ~Yian, 8 (Stis 10y — Suag) APy

>Riama, (tiﬂyo N) exp{ - t‘(th <O-i20)v, a,v“{ap;N - g‘ aidvagy)}P‘N( —& <§W< - %)o

. 17
. ’ X . . 4 i
By (6) and noting - (X,—--Z;;—((—Zi"&-’;'.))_.)=0(j=éw§v+l oo, (9;+1)ay), we have
435I N
‘ o 1)’119 .
Emfm* 1 Em{ b ( X, (t“’”’”) >} =0,
e VN ") 1)

And further, it is easy to verlfy that X,~ rj((:me)) y §= wN+1 ’ (¢+1)ay, are
. I\Yiepyy N :

mutually independent under ) 50

1 (H+1)ay ry(t )
B2 = B, (X-~——---—’ el )
o std.N ‘ ?an:,ap j=§+1 ‘. : ,. . q”(tmn, N)

=.__1__ (.&21,)“' { ”'J (ttdmN> ___,( ’l‘./ (tiamw) 2}
- O'?ama.v i=teg+1 ’l'j(t,'a_v,N) T4 (tﬂlﬂ)N)

O-tanpap F=tag+1 - (tWN’N) S 4 (18)

By (a), there exists M >0 such that Y (Y <M as well ag l,l:" (t) <M for: every j and
any € [t;, ;] (or- Tty, T — -47). And by condition (b), there exists v>0 such that
P (8)=wv for the sime £ and a lot'of 5. Then Lo e '

1 (‘+1)Gp

0<61<E.N§¢N<02<°° - S (19)
Similarly %0 caloulation in (18), we have EW< X~ T’—(%-“!;ﬂ)l> xM’V’ (tm”, N) And
) 0 N

W (b, ) S M < 00, Thus &,/ (B ipely) V2 oonverges to standard normal variable

in dlstrlbutmn by Lyapou-nov 8 center hxmt theorem, Oombmmg it with (19)
implies that for every 4 and all Ia,rge N, the probablhty in the rlght ‘hand side of
(17) is larger than.a positive number . Thus:’sh{a loft hand side of (17) -
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PEw=—8)=Dpismran (%N,N,) exp (—g' 110 v t_l;> = Jl)_\;- exp(—;— 100 N fl—z})
Inserting it into (16), we obtain . : '
P { max (M_GmnanN><_8}

O<n<N— —oy Ona,

<exp{ — Py =—— 2 oxp (— tivox/a,,)}e.fy. . (20)

It is easy to see that i‘ J N<oo This proves (15). COmbining (15). with (11)

1mphes the conelusmns of the theorem

§ 3. The Order of ay IS Larger than logN

. Suppose that {agx} satisfies conditions (i)—(iv) in the introduction. At this
time; the restrictions on {X,} can be relaxed.

Theorem 2. Suppose that {X,} satisfies : : :

(a)’ there ewists t,>>0, such that r,(t) <M <oo for every n amd te [0 to),

(b)'  there ewists ao>0 such that h_g .

N->oo

>a>0 foa' evefry n- where N,=3{j:

0i<a?, n<y<n+N}, B : .
And suppose that {ax} s a sequence of pos%twe mtege'rs swt@sfg/mg oondm‘fbons (1\-——
(iv). Then the conclusions in Theorem 1 remain. tfrue : :
Proof First, we prove ‘ , S .
nzr*O (N'-*OO) o (21)
uniformly in n, In fact, (10) can be wntten as hm oa,,x< gt/2 (tE [o, T1]) under

condition (iv). Thus hm gy = .0 unlformly in n. Furthelmore, x[:,.(t) is nondeorea-

ging because () =0. Henee, noting oondition (b)' we soe that for #; € (0, #,) there
exists h>>0 such that ;(¢)=>h for a lot of j and ¢€ [#, #,). Therefore, by using- (6)
and o, z—>0, (21) is true, L e

" Since 1, (¥) == 0—2 A+ 0() (-0, notmg oondl’olon (a)' (Jmphes that for every

Io la—th moments are bonnded un1f01m1y m n), we can Wr;lte

l.l'm(t) log Bup ()= 2 tlu(t)———-— Oy (1+0()), (t->0)

And the order O(t) in the right hand side terids to zero umformly in n and N as
t—)O Compa.rmg the above expressmn with (6) 1mp11es '
' o b1 (N—+oo) I 7 (22)
uniformly in n. Farthermore,, from (). we have - D ow
A L : : . tnﬂdnaya N>10gN SonTEen Ty e
Hence there exmts d>0 such tha.’a for every n and all large N a,,,,om,,,>d log N A e,
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(dlog N)¥/2
O'nay -

Put N,=sup{N, dlog N<log®}. If N; is such that ay,—ay,,=1 (by condition (iii),
. ay,—ay,, <1 for all large i), we modify the definition of N,_, by setting N, i=sup
{N ay=ay,—1} if necessary. Then we have also (13) and ay=ay, for N, 1 <N<N;.
In imitation of (14),

awyiaﬂN‘ - omnanN - aﬂan; (“nN; - aﬂN)

<———(log N;—1log N)<

a,_.>

<olog™ N (log N, —log N) <o 1°g a3 1) Clog? (w+1) ~log?(5-1) )0

N . (3—>0).
Henoce (11) in Theorem 1 is also true.

In-erder o prove (18), (16)— (18) arestill employed. ‘Now' we have (21) and
(a)!, (b)’, so (19) remains true. The rest ig the same ag the correspondmg part in

Theorem 1. The proof of Theorem 2 is oompleted

§‘4. The _Ord_er of a.N_iﬂS-LO_Wer 'than-log.N

Theorem 3. Suppose that {X,} satisfies = - v
(@) + there exist T € (0, o] and an- 'lm,c'reasfbng fmwt%on M (t) Too (t T T) suoh» | v |

that 1,(6) <M () for every n and t€[0; T), S o -
()" there exist 0<by<<ba<<oo such that for every n 11m n,b" (t)<bg and lim N,/N

1\»00

' >a>0 fwhefreN #{g, 61<11m¢/.’7(t), n<j<n+N}

And suppose that {ox} swtfbsﬁes cond'z:t'bons (1), (11) and
© (i) ax/log N ] 0(N—>oo) a :
(iv)’ there ewists wE (0, 1) such that w,,/log N 1‘ o a8 N—->oo o
Then the conclusions of Theorem 1 remain true. A
Proof First, we prove _ , Co v
, oo T (N——)oo) s (23)
umfmmly in n. In fact from (5), ,,Na,.N—->oo (N—->OO) umformly in n by oondlblon_
(iii)’. It is enough to consider the oase of a,.N—a»oo ‘At this $ime, from (6), for any
M >0 there exist some § sush:that ) (4,y) > M for. all large N. Noting condition (a)”
(implies that there .exists a funobion A (¢) 4 oo, £ 1 T, such: tha,t Tl (t)<A(t)), we
have proved (23). : e : G At e
- Pub fy= min ¢,4. Certainly tN—>T as Well Let N,=sup {N log7 N <10g3 'I}}. '

’ O<n€N—-az
If N, is such that ay,~ay,, =1, we modify the definifion “of N.-i into Ny jy=sup{N>
ay=ay,—1} if neoessary Then we have also (13) a,nd aN__wN‘ for N‘__1< N< N‘ In
imitation: of:(14) - - T I SV ANt F ST T IR
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O-MN,aﬁNi - O‘MyaﬁN<

o (log Ny—1log N)
<c log"”/ 2N:(log N;—1log N) _
<6 log"‘/ 26— 1) (logs/ 7 ('b+1) logs/ v (6—1) )-—->0 (2:——>00)
Henoe (11) remaing true,

Recalling (28) and applying condition (b) ’, we have (19) for large N by (18),
Then (15) still holds. The theorem is proved.
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