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NUMBER THEORETIC METHODS IN APPLIED
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“Abstract

In this paper; the authors give some applications of F—uniforiniy distributed
 sequences, which are suggested in their Previous paper under the same title, in experimen-
tal design, experiments with mixtures, geometrie probability and simulation,

| § 1. Introduction

In our previous paper™  we proposed a method to produce sets of points
which are uniformly distributed over a domain D of R® and gave some applioa-
tions in numerical evalution of probabilties and moments of s continuous
multivariate distribution and optimization. In thig paper we shall give the
applications of thiy kind of uniformly distributed sotg of points in experim ental
designg for both independent factorg and 'experiments with mixtures in Section 2
and Section 3, and in geometric probability in Section 4. We also give exampley to
show the conﬁparison between. the number-theoretic method and some other niethods.

The definitions and notations given in our paper [13] are retained hereafter,

§ 2. Uniform Design

If there are s factors and each factor has n levels, then the number of all
possible ex-periments is n°. The orthogonal array is o choose O(n®) experiments
among them by the theory of orthogonal Latin squares and group theory. However
the number of experiments in orthogonal array is gtill large if n ig comparatively
large. The number of experiments may be decreased by BIB (balanced incomplete
blocks) method for the case of $=2 only. Henece it requires to find a method for
deoreasing the number of experiments, | |

Wang and Fang (1981) proposed a kind of experimental designs, the uniform
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designs, by the number theoretic method which has been applied satisfactorily in
designs of new pi:oduoﬁs in textile industry, metallurgioal industfy, engineering
industry and agriculture in China.

‘We offer a set of tables U,(5°) of uniform designs, where n denotes the number
of experiments, b the number of levels and ¢the maximum number of factors. For
example, if there are 3 factors 4, B, O and each has 11 levels 4,, B, Oy in a design,
then a possible choice is to use the table Uy (11%) listed in Table 1.

Table 1, Un (116)

numbers\columns 1 2 3 4 5 6
1 1 2 3 5 10
2 - 2 4 6 10 3 9
3 3 6 9 4 10 8
4 4 8 1 -9 6 7
5 5 10 4 8 2. 6
6 6 1 7 8 9 5
7 7 3 10 a 5 4
8 8 5 2 7 1 3
9 9 T 51 8 2
10 10 ©9 8 6 4 1
11 11 11 1 11 11

There is a table attached 0 each U,(5°) which indicates how to select: oolumns for
the s factors. For Ujy( 116), the attached table i Table 2, '

Table 2. Table a.tta.ched toUn (116)

number of factors recommended o columns =~
3 N
3 1 -4 7 7§
4 1 2 4 5 5
5 1 2 s P
6 1 3 3 YO 5 6

For our-problem, the colutnns 1,4, 5 are recommended. Finally’ we list' the degign
of exreriments in Table 8. Therefore- only 11 experiments are deigned for 3 factors
and each has 11 levels. ‘ : ‘

Tables of uniform design are obfained by an mteger veotor (hy, <, hy m) in
- which h1 =1, h1<h2< <Zhgandg, 6! d; (b, n) =1, G=1, -os; s, -Let ' '

o P, (k)= (khy, - kks) (qiiy ¥ que) © (modm), - o0 (2.1)
where 0<gyy<n, b=1, ++, m, j=1, -+, §:' Table U, (n*) is formed by- @k,') - "When,
= 11, §=6, hi=1, hy=2, hs =38, fig=B, k5——7 andhe 10, theoorrespondlng table of
“uniform designi¢ just Table: 1, S DR O SRR
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Table 3. The design of experiments .

No. A . B - . 0O
1 4y " By G
3 Ag - Bm s Cs

i A3 . - . By Cyo
4 44 B, G
5 Ay B; Oy
6 4y By - . G

T Aq . By Cy
8 Ag By Cy
9 4y . ' By "G .

10 Aio BG 04
11 Ay Byy " Cy

Since 1</y<n and g, ¢, d. (h, n) =1, 6=1, ««s, 5, the number of possible %, ig
given by the Euler funotion ¢(n) » ; '
$(n) =n 11(1——1-,-) @)
where _p runs over the prime factors of m. Since —h=n—h (modn), the rank of
matrix (qy) is at most 1+¢(n)/2 if n>2, i, e., the number of factors must be<g

b @) /2+1, There are at most <¢( ) 2) possible choices of k= (h,, s, hs)’ gince

hy=1. We want to obtain the “best” & among h’s. Wang and Fang (1981) noted that
a best A i3 the minimum of the fanction : .

D(h) = 2 > 1—;1og(2s1n{ "‘f_"l })) | (2. é)

N =i v=1

“with respeot to A, where {m} denote the fractional pa,r’o of x, and it corresponding
~set of points is (2. 1) which is called a uniform design,

When n i large it will cost much time for finding the best &. We suggest o use

8 setb of points of the type
. Qu(k) = (k, kb, <o+, k6°-?) (mod n), 1<h<n (2.4)
instead of P,(k), where b is an mteger satisfying. 1<b<n/2 and b+ b (mod n),

- 1<6<j<s—1. Integer b is usually chosen a primitive root -mod: m, if n is-a prime
- number. We call also -a set of points (2.4) with minimum. D(b) among all. those

b=, b, -, b,y)’ a uniform design. Most of the tables of uniform design are

- produced by (2.4),

the last row of a table.for n+1, For instanoce, the table, Umo(lO“) can be obfained by

A table of uniform design for the .0age of even x can. be obtamed by omﬂ;tmg

- omitting the Jast row of Uy (11%). (Of. Table 1),

+Data; in.the uniform. design-.can not he analysed by the usual ana,lysm ‘of
variance, because the number of experiments is t0o small- oompa.red with the .
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numbers of factors and levels; But we can treat the data by régr_éssibn or shepwis‘e
regression. ' '
Ewample 1. To demgn a melon product we shall congider  the following
faotors: - . :

~ A: Temperature (C),

B: Time (m), _ :

'@+ Concentration of methanol (g/ 1),

- D 00ncentra,t10n of sulphuric acid (g/1), -

. B: Concentration of mirabilite (g/1).

/FEach factor has 7'levels listed in Table 4,

, ffable:4 Factors and levels

factors\levels . " 1 2. 8 4 o8 6T
A . 64 66 - .68 . 10 - T2 TA .. T6
B 14 16 18 20 a2 24 . 26
c 18 20 22 24 a6 @8 30
D . “oper o1 918 o924 ¢ 830 -236 . -248
B 70 70 85 85 85 100 100 -« -

Tf we use Labin square design, then we require 49 ‘expe'riments which lead to
.the following linar regression equation - L
. o f=—42.87+0.8bw,+0:3823+0. 26a;3+0 10a;4~—0 04m5 - (2.B)
with a multlple correlation coefficient B=0.97 and a standard deviation =0.83.
Here 4 stands for the ‘quality of. Vinylon.. Now we use uniform design and choose
U14(14%), which desugns for 14 levels. We repeat the original levels twice by the
quasi-level method, and obtain the regression equation as follows

g/—- —87.97+0. 87w,+0.46w5+0. 38w3+0 1Tw,+0. 045 - (2.8)

with R=0.96 and o=1.13. Equatlon 2. 6) ig olose to (2 5). The result 1s not ’ooo
bad because only 14 expenments are arranged

' §38; Experiments with Mixtures:

. If s faotors Xy, -, X, are. non-negabive and sainsfy X,+++X,=1, then the
experlments are oa.lled the expenments Wlth mixtuares, which’ offen appear in
designing the ochemical and meta]lurgmal produets In h 1agh ’ﬁwo decades, a 16t of
‘works appeared in the shabistioal Titerature have: proposed some kinds of designs.
.Scheffe (1958) introduced the simplex-lattice designs and.the polynomial models: He
(Scheffo (1963)) suggested an alternative dedign, ‘thie simple~centroid - design; 10 the
general simplex-lattice. Draper and Lavrerioe ‘(1965) -proposed: to use the designs
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which minimized the bias in the fitbed model as well ad the variance through
minimizing the mean square error of the estimate of response over the experimental
region. Thompson and Myers (1968) considered an elliptical region ingide the
simplex factor space by rotatable design. Snee (1973) suggested techniques for the
analysis of mixture data. Cornell (1975) gave a suggestion of axial design and he
((1978), (1981)) gave a thorough review of thig subjeot. | .
In this seotion we give a different approach to the experiments with mixiures
by a uniformly distributed set of points over the simplex. This kind of designs has
the same ad-vantages as the uniform degign mentioned in Section 2. We pay
atbention fo the best formulation of ingredients, and call this design the uniform
design fo r experiments with mixtures (UDEM). Let
, Ly y={(ms, oo, @)t 220, ";= 1; ---',»s,. it wy=1}y .
be a part of the surface Jof the unit simplex in R®. The idea of uniform design for
experimenty with mixbures is to design n experimeniss which are uniformly
distributed on 7T',_,, )
Lot {gu, 4=1, +=o s—1, k=1, o, n} be a uniform design defined by (2.1). Then
{bu} with - : '
A b;“-=—g—q‘—7—"2‘n;}~,‘k.-——1, oy M, b=1, ey §—1 _ , (31)
iga seb of uniformly distributed points in I*!, In Section 2 of [18] we Suggesb a
‘method to produce a uniformly distributed set of points {Py, k=1, «, n} on T\,
with Py= (a4, -+, @) and - | i S : '
o= TL B (=B, =1, o) 51 |
{ , ::i R T . ) (32)
Figure 1 shows the ﬁnifqrmity of the set (3.2) when s=38 and n=31,
Baample 2. Consider a regression model

3 ; 8
Y=3+21 3¢X¢+,;1 e X Xj+e,
= = ,

where ¢ stands for_v.a.~-random{’e_i‘rqr. Since. Xy -+ +X +=1, it can be reduced to the
form ' ’ ”

: Co&=1... §~1 L ) R
Y=e+ 21 3¢X‘+';}1‘3;’X‘Xj+€. o : . (3.3)

- Qonsider the i’ollowin.g_special modzél_,_-. e T i e e

P e V=X1+X3-3X}-8X}+X,Xy+e, ot (8.4
‘where ¢~ N (0, ¢*). When o i small. (for example, :=0.005), we get .the following
data for n=17 and s=3 by the use of UDEM(8.2)... . . ... . . .

- - The corresponding regreccion model in.: -
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Table 5. DATA

No X, X ' y
1 .829 076 ~1.100
a 08 .58 —~ 541
3 617 . .102 - .301
4 546 .807 - .157
5 .486 045 o~ 160
6 ©431 Ja8e .038
T .382 . 564 - .330
8 336 215 146
9 .293° 530 - 103
10 .352 ' 110 .168
11 214 . .439 .03l
12 178 .798 - .80
13 .143 .328 .134
14 .100 708 - .64
15, 076, . 190 . .155
16 .045 C U Bg0 T~ 388

[
=

015 el ' .000

?—v—o 0376 +1.1162X3+1. 1197X, 3. 0842X2
~8.0880X3+.8336X X5 " - S (3.5)
which is close o the model (8.4). Theé multiple correlation coefficient of the equation
'(3.5) is R=0.9999 and the estimate of s’oandard devla,inon i8'8=0.0054 which is
~olose $0 o =0.003 t00. '
‘When o i8 gettmg large, we can not get so excellent results. For example,
’ conmder the model ‘ ’

“Table 6.

No Xy . X ¥

1 0.817 0.055 8.508

‘2 0.684 - 0.179 9 .464

3 0,592 - '0.340 . © 9.935

4 0.517 0.048 9.400

5 0.452 © 0.01 10.680

6 - 0,394 . 0.38¢ ¢ 9748

7 0.342 . 0.59 9.608

8 0.203 . . 0.8 10,238
9 0247 0.336 . 9.809
10 “lolod v 0857 - 9133
ST 0,68 © . . 0.809° 8933 .
12 0.124 . . 0.204 o 9em
13 0.087 Co4s6 0 ossL
Y14 0081 i o008 L i tggeg
15

0.017 £ 0,083 -0 . - 10,189 .
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where e~N (0, o?) with o=0; 30 and 15 expenmen’os by (3 2) We obtain the

data (Table 6) by simulation. -
The correspondind regression equa,tion now beoomes

¥ =10. 0908-+0.7972X, ~3.4542 X3 2. 6733X3-+0.8884X . X, (3.7)

with R=0.9008 and & O 2891, Note that this regressmn equation deviates from
the model (8.6), because there are high correlations between: X; and X%. In the
original model the response Y reaches its maximum'10.0857 at X 1=0.171 and X,=
0.0286. From the regression equation (3 7) it i8 easy to show that ¥ reaches its
maximum at X;=0.105 and X,=0.0196 which ¥ in (3.6) is 10.0728 that is close
%0 10.0857. Hence, from the point of- vlew of the best formula.tlon of ingredients, the
result of thig example Seems nice,

§ 4. GeQmetric Probability” and Simulation

In this section, we use two “cage study” methods to illustrate the applioations of
uniformly ditsributed sets of points over D to the problems in geometrio probability
and simulation. The readers can understand the: - general prineciple from these two
.examples withoub essential difficultiey, The quegtions come from pracbical problems,

and .have ‘no satisfactory solution for a comparatively long -time. Now we propose '

algorithms for finding their feasible solutions by the use of number theoretio method.

. A. The area, of the intersection. between a fixed cirele: and the union of a seb of
random ciroles. Given a unit oircle K with centre at the omgm There are m
random eireles 0,,:-, 0, with centres Pi, *esy Py, and radii By, <o, R,, respectively.
Assume that . .
. o ~N2(0 O';Iz), ,
where ¢,>0 and J, denotes the 2x2 identity ma,tnx Let § be the overla.p area
between K and the ‘union of all random ciroles, i. e,

S=Kn (O1U+--UOy,).

It is required o know the distribution of 8. It is easy to find the distribution of §
for the case of m =1, since the overlap area of two circles can be expressed explicitly
in terms of the dlstance between ’shelr centres, When m>1, it seems difficult to find
a feagible method for finding the dlstrlbutmn of 8. This'is a preblem of geometrical
proba,bﬂlty A. natural way is to use simulation.. The clagsical method is the .so--

called laftice pomts ‘method. Lot ABOD be the c1rcumsor1bed square of the unit

cirole K as shown by Figure 3. D1v1de the square ABQD into n? equal subsquares of
pide 2/ («n—~1) Woe have n’" la.ttme pomts - '
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(12, —1e2l >0<w g<rn-—1_"" )

1;
in ABCD. Suppose that there are N pomts lymg in K. We now use comupter to
produce m reandom oircles with oentres P,NN 2 (0 otf*) and radu R, ('Iz =1, «, m).
Suppose that M pomts among the N latiice pomts are covered by these. m random
circles. Then we geb an obvservation wM/N for the distribution of S. ‘We then
generate other m random circler and obtain another observation. Continuing thig
process, we have an empirioal distribution of S. This method is called the method
I. Its oonvergent rate is slow. The more serious thing is that its acouracy is low
even if we take N large, because ‘there are 0(«/ N ) pomts among: the N lattme
pomts located nearly the boundary of K. ' -
' However we may use a get of pomts (8.1) of s=2 with & linear transformation
ingtead of the above n? lattic e points and do simulation ag before (ef. Figure 3).
We call this method the method II which gives fasber ‘convergent rate and hlgher
acouracy than the method I. For example, we take m=1and eompa.re the results of
8 given by these two methods with ‘the exaoh valus of §. It takes more than 180
mmutes by the computer IBMPC/XT and - the method I %o geti a- sample of size
1, 000 with an error 0.15, bub it needs only 4 minubes by the game computer and the
method II to obtain’a sample of gize 1, 00 with an error 0.02. In general the method
11 is faster than the method I about 100~ 1000 bimes, - '
" Note that the set of points (8.1) of §=2 is defined in ABOD, but not in" K.
Ingpiring by the nmnenoal interation over K stabed in [18], it is possible o define
2 et of points tha.t is umformly dlstrlbuted over K by means of the seb (3 1)
Let S : :
{m r cos(2md), o (4”1)
y=r Sln(2av0), 0<0<2m, 0<r<],
'and lev (6, m) (A< 'Iz< N) be a sot of points (4.1).If each point of the set
Q)= (s cos 27:0‘, ry9in 206;), 1<w<N " (4.2)
has a suitable “Welght” w;, (4. 2) may be considered a8 a unlformly distribated sof
in K (Cf. Figure 4). Since the transforma’clon (4.1) has the Jacobian 2m’, wo
define the weight for Q,(4) to be 2mr;. So 1f there are M pomts Q,.(fz,,) (g 1, o, M)
covered by the m-random’ o1rcles, We use ' :

2752’)"‘

to approximate the a,ré"as‘bbvéred by thede m random oireles; We call this method
the method III. In order to compare the - methody IT and IIL; we also take m=1 and
consider the interseotion ares of two unit ¢ifeles K and O with-distance d hetween
their centers’ (of. Figure 5). We use a set of 1069 points of the type (3.1) in ‘which
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844 points are lying in K for the method II, and a seb of 828 points of (3.1) is used
for the method III. The result is given by Table 7,

Table 7
- errors\d : 0.1 0.5 0.8 . 1.3
method IT ' ~0.55% 0.07% 0.19% 0.018%
‘method IIT . 0.00% 0.04% 0.13% 0.08%

From Example 2 of [13] we may obtain a uniformljr distribut_ed gt of points
denoted by {#, k=1, :--,n} over K, by which we may have anothef method——
method IV. Now the simulation is based on {x;,, k=1, -+, n} with the same manner
as method I1. Our simulation resulty show that the mebhods III and IV almost have
the same accuracy.

B, The problem of covermgbhe sphere by random belts with a fixed width.

This problem comes from the steel rolling [1]. People w1sh %0 inoreage the life of
the roller by using a random rofary ball roller instead of a ﬁxed roller. Its matheman
tical model may. he stated ag follows:- Leﬁ S be $he unip sphere af +m2+w3——1 and 3
a constant satisfying 0<3<0.3. Let R he .a great oircle Whmh is uniformly
distributed on § and G,(R) be the belt on § with width § and with B ag the
equidistant partition curve. Leb G4, :-+, G, *+ bo a _seqﬁential,_ sample of the
population G;(R). For any #€ S, we denote by Dy(x) the number of belts which
cover & in the first N random belts. If there is a point in §.that ig covered by m
Lelts where m is a given positive integer, we say that the roller is ugeless. For a
given integei' m, lob T'y, bo the minimum of N such that Dy(x)>m for some &€,
i. e, ‘ S
Tn=min{N: Dy (&) >m, for some & S}. (4.8)
The T, stands for the life of the roller. We Wisli to obtain the distribution of T,
and o find some way 0 increase the life of the roller.

It iseemg diffieult to give a formula, for_fhe distribution fanction of T',, which
leads us to do the problem by simulation. In our simulation the following facts are
used: : | ‘ |
From Exmple 3 of [18] we can ob’ﬁam a seb {®y= (v, Thzy wks) k 1 . n}
which is uniformly distributed on §. More precisely, :

Wy =008 (wox1);
g = 8in (wey) cos(2mweya),. k=1, eseym, (4.9
- zv,,s——Sm(awm) 51n(2mk2), . _ : |
where. F;(cm) =by 0=1, 2 k= 1 osey My by =.(bs1, bua)’,. k 1 oy n} is a. umformly
digtributed set on. I?, and.. - -

PN
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Filg) = T 3-i-1)
£,0) = j (sinat) D ds, §=1, 2,
_ ' " 2’ 2 '
i, e, “Fl(cv)_=%(lfoos (wa) )
and . o Fa(o)=w.
Therefore " _ byy = '%'(1 — 08 (W6x1) )
| _ | bya= Ca
and
Ty =1—2byy, ‘ :
. wk2~2~/bk1~bk1 OOS<2ka2), ) N (4‘5)
- C 50;53"-“2'\/1),;51"‘670151_11(2752)742), k=1, 2, eoo, f, o
Let I5=min{N: Dy(2y)=>m, for some &, 1<h<<n}, -

‘When » is sufficiently large, T, is close to T, and the distribubion of T% is close to
that of T',,. Our simulation ig baged on T'%. '

Given a point v on S, it corresponds a great oircle R such that the normal
direction of the plane including R s the direction of ov. If we identify the points ©
and -o, then it has a one-one tcorrespondence between the points on § and the
great oircles and consequently the belts with width & on §. Thus; fo generate a
random belt G3(R) which ig-uniformly distributed on § is equival ent to generate a
point ¥ €S which is uniformly distributed on §. We alse use G,(v) o denote the
belt corresponding to ©. Our problem of simulation includes the following steps:

Step 1. Give m and 8, for instance, m=20 and §=0.2.

Step 2. Choose a suitable n (for “example, n=1069) and produce a set of n
points {ay, k=1, ---, n} whioch are uniformly distributed on §.

Step 3 By a standard techmque of the S1mu1at10n genera’ae sequenblally the
points i, ¥y -, which are lndependenb and umformly dlstnbuted on § and
consequently we have the corresponding belts Qs (¥1), Gy (¥s), +=-.

Step 4. If there are N(N=1, 2, .) random belts to be -.gene.ra-ted in the
ourrent step, account the number -of Belts covered &, and denote by Dy(xy). If
Dy(ay) =m for gome &, go to-Step B, otherwise go back to Step 3 and gener&te the
(¥ +1)th random belt,

_Step B. Accouns the number of random belts genera’ned already Thls number
is an obeervation of T, -

Repea’o the above prooess o tlmes and obtain a sa,mple of size no of T* We take
o= 5000 the resPeohve sample mean and the sample standard devla,tlon are

T* =99.7 and o(T%) =9.8. o |
Furthermore;- the orrespondmg ‘empirioal dlsbmbu’smn is close to the normal
digtribution. '
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By the same way, we obtain 20 samples of size my=5000 (total 100,000
ohservations) and find that the results are very olose to each other, _

Since the T, (or T;,) ghandg for the life of roller, we note that sometimes T% can
be reached at 125 in 100.000 obeervations _by the above simulation, We denote the
corresponding normal directions by ©f, ¥, -+, ®f;. Thi§ means that if v,=0%, i=1,
2, -+, are fixed, we always have Tf,,¥125 in the case of §=0.2 and m =20, which is
betiter than the above random choices of {©}. I8 it possible to find another set of &%*,
vy, -+ to beab the above {v}, 4=1, .-, 125}? We may use the uniformly distributed
sots of points on I? fo produce the sets of {w}*, k=1, -, n} on §. First we choose
n=126 and find the corresponding T,=126. Then we inorease n one by one untill
the T’y can not be inereased any more. Finally ‘we find & get {b;*= (via, Va2, Vna)’,
k=1, 2, .- 155} by which T, =158 The v}* is given by

 Vp=1= 2bk1; 4 . o
Va2 =2~y — D%y COS (2mwbya),
s =20/ By — b2g Siny Cwby),

where the seb {by= (byy, bys)’, k=1,---, 155} ig produoed by (%, hz, n) = (1 20; 155)
(8ee [13], Section 3 for details).-

This example indicates that the number theoretic method wins the ohamplon of
100, 000 experiments by Monte carlo method in our simulation. IR
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