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*A RIGIDITY THEOREM FOR NON-NEGATIVELY
. IMMERSED SUBMANIFOLDS

. ZEANG (FAOYONG ¢ 3] ﬁ )*

Abstract

The paper is to genera,hze the rigidity theorem tha.t the special Wemga,rten surface is
. the sphere to the case of submanifolds. It is proved that a non—negatwely immersed
" compact submaifnold in space form of constant curvature is a Riemannian product of
several totally nmbilical submanifolds if the mean curvature and the scalar curvaturs of -
the submanifold satisfy a certain funetion relation,

§1. Introduction

After the original work of J. Simons™ who tirst. studied the minimal
submanifolds by caleulating the Laplacian of the second fundamental form, the
submanifolds with paralle]l mean ocurvature vector immersed in a Riemannian
manifold with constant sectional curvature have heen extensively cqpsidéred. K.
Nomizu and B. Smyth™ clagsified the non-negatively immersed compach
\hypersurfaces with congtant mean curvature in space form of constant curvature,
A well consequence is to classify the non-negatively immersed compaoct minimal
hypersurfaces in sphere. J. Erbacher™, K. Yano and 'Ishihara,["” generalized it to
high codimension case similltaneously. 8. T. Yau™ showed that the compact
hypersurfaces with constant scalé,r curvabure and positive sectional ocurvature
immersed in a space form of constant curvature are totally umbilical. Later, S, Y.
Cheng and 8. T. Yau® classified the non-negabively immersed compact
hypersurfaces with constant sealar curvature in space of constant curvature. In
this paper, we not only generalize Oheng and Yau's resultto high codimension case
“but also unify the works of Frbacher Yano-Ishihara and Cheng-Yau. We have

the following. : . :
' Main Theorem. ZLet M be an n—-d’&mens@onwl compact submanifold with non-
megative sectbonal curvature Gmmersed in an - (n+ p)—d'omen.s@oml Riemanmian

- mamifold with constant sectional curvature o. Suppose the normal bundle is flat and the
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unit mean curvatvre vector ts locally parallel. If the mean curvature H and the scalar
curvature R of M satisfy the following function relatlon

: ) f(H R)=0 - | (11)
| (:g)%iﬁ aaf;r aa{% <R 0>( f) >0, (1.2)

then M is a Riemannian product of totally umb@lwwl submanifold, 4.0,
M=MyX MyX++X M, m< min(n, pt+l)
where M, (1<i<m) are totally wmbilical.

- §2. Local Formulas

We shall state the struoture equations of Riemannian manifold as Chern has
done®, Let N be an (n+p)-dimensional Riemannian manifold with constant
sectional curavture ¢ and M an immersed n-dimensional submanifold. We shall
make use of the convention of the range of indioces:

1<A, B, 0, -<n+p; 1<4, §, b, --<m; ~
nti<e, B, 7, -<ntp.
On N, we choose orthonormal local frames {es, .-+, €,.,} such that, restrited 1o M,
81, +, 6, €T (M), Lot {w, -+, wn.p} be the coframes of {4, ***, €nigt. The structure
equations of N are written ag o
- des=S ooy ouptop=0,
dwsp= ; w0\ wor-+® 4z, '
' ' (2.1)
@ABz'—‘jz:'zKABGDwC’/\CbD{ : :
.CD
. K 4op=0(8.4003p —8.40030).
Restrioted to M, we have wa%O and 0'—-=da)a=2 wai Aw;. By Cartan’s lemma, we get

i '—2 hi.‘wh ﬁj h?é- o (2 .2)

Of conurse, we also have
do;= 2 wis \ 0j, wii+ 0;=0,

dwu 2 O \ o+ Q4

Q= — 5 2 By Aoy,
- Buya=Kymu+ E (Whe — G h), _ ,
- ; hwwm - 2 hmw;rl—E hua)sa = }k] hﬁ‘;m - (2- 3)

k’ljk = h{k‘!r ) )
dhuk— 2 hi moon "2 héxewsu— 2 hinenu+ 2 hukw,ea = 2 humwl, -
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b — hm= — Ry R — hﬁ»g‘Rmm’*" 2 kB o
The second fnnda,menta,l form of M is

IT= Zh!jwi®w§®9a = S (2.4)

Letting » be the mean curvature vector, H ’ﬁhe mean ourvauure R the scalar
curvature of M and § the square of the length of the second fundamental form, we
have '

=l E Ehueaa
) N o $

1. x\2
_r"ﬁz‘ RI0L0Y

- (2.B)

R= m 2 Rmh

8= 2( ;)2
If the normal bundle of M is flat, then the second fundamenta,l form can bej
diagolized simutanequsly. We write Af=A{0y A=(A{*, <+, AJ*?) and <A, AD=
2 AZA7. At the moment; the Gauss equatlon is : |

'R,,-¢5=27\,“7x“+c—<7\;,, ,>+c, %%7 : ' - (2.8):

Now, let us esbabhsh a fundamental 1dent1ty about the Laplacian 48. From
(2. 3), we have '

5 L 48 = 2 B+ 23 Bk

9 sk, 0

= 2 (h ﬂc)2+ 2 2? 0177 2 h hlclm 2 hcjlhkkc+ 2 (h@h?o‘m)i :

9.7'

“EM((hﬂu)s mh%‘m)"‘!% h?,(h?m hkw)-l' 2 (huhkm): | (2.7)
and : . ,
Bl = 3 W R+ S Pi— SR (2.8)
If the normal bundle of M is flat, from (2.6) and (2.8), we obtain
2 A (A~ hmm)-—- 2= — M2 (<A, 7w>+0) (2.9)

§3. The Proof of Main Theorem

In order to prove the main theprem, we need the following

Lemma. Let M be a compact n-dimensional submanifold with flat normal
bundle and non-negative sectional eurvature ‘mmersed n an (n+p)—d?}mens®'ohdlf
Riemanmian manifold N with constant sectional curvature ¢, Supposs

> ( u.yo)?"q %lW‘N"”((%' AD+0) =0, (8.1)

$ Jrlor 0t

Tiwré
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M=M XXM, m<min(n, p+ 1),

where M; (1<4<m) are totally wmbilical. .

Proof Beoause the normal bundle of M is flat, we can diagonalize the second
fundamental form simultaneously, i. e.

‘ - s = A0y
We may write | _
‘ M=ro=Nhiny Mat1="""=Mssiny ***y Matoiprt1=""=Mn
~and we then, without loss of generality, assume A, (1<6<m) are the distinot
veotors of eigenvalues with the multiplicity k;. |
. Aoccording to (3.1) and (2.3), we have (M ~2%) ;=0 and ;=0 if A, A, Thua

the distributions D; defined by @pys.sire s1=""*=Ops.4n,=0 and 'thé orthogonal
complement .D; are integrable. Denote the integral manifolds by M; and M,
respectively. Since all the A{s are constant vectors, the leaves of the foliation are
all closed and hence compaot. I ig easy $0°see that M, are totally umbilical and the
dimension of M, is .. Then M is a Rlemanma,n produo’o My XM, _

From (3.1) and <Ay, A> 400, we have <Ay, A,>+c=0 if A;%A,. Suppose A1, oo,
Apis are distinet vectors of eigenvalues- ahd let Ay, -+, Af(g<<p) be linear
mdependent veotors. Then 7&,+1—h17\.1+ «+ aghy. By inner produoct,

g, 7“p+2> E“a<7"a: 7‘4,;+2>,

<7“P+11 ?“G>=al<?“17 7\*a>+"'+wq<?“q' 2"& y 1<“<q.
and then '
. —c=—¢ Zwa _
.Ifc 0, by (7\,,, A= 0 iz g, we geb {Apeq, Kp+1> -0, <x,,+2, Aprap =0; these contradick

the independence, So
' ' C1=3a,, 1<a<y,

and hence - v
= 6=aa{Na, Aoy —0c(1— ),
i.e.. ' '

| 0=aa({ha, Aoy +0), 1<a<gq.
Olearly, there are at least two a ‘being not .zero. Therefore, there exish A;, +--, A
(1<t<gq) such that <?w, A= —-c (1<w, 9<t) This contradicts the independence.
Henoe m<p+1. : §

" Proof of Main Theorem Let us consider 1-form

W= 2( S 2 hsjhm>wi
Because M is compa,ct by Stokes fmmula we have

0___JM d*w=f ( 48— 2 (hljhkkt)f)
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and, from (2.7) and (2.9), we get. , :
0= [ 3 (CHimy* =t sznm x,nﬂ«m, Wtobl  (3.2)
Let h=H 8n41. Hence '
' 3 b= olfaaenﬂ ~ (8.8)
From (2.8) we have ; “
p2 h?;%‘wwwdﬂ o
(34)

2 hukwk—’"lHCOanu if a%'n+1

Because 6,4 is parallel in the normal bundle i.e. w,,,,_i.,—O from (8.4),we then get

Elm—-o if oa=;&n-l-1
M

(8.5)

" 8inoce the ﬁormal- bundle of M is flat, we may 'Wii:te'.h“",=x?8,,'. From (2.8), we

geb
T ¢+J 3 0

and then : .

_‘ n?H?2— n(n 1) (R—o¢).
By ta.kmg differentiation of 1. 1), wo get

aJJ; Hy+ g{e By=0

and, from (3.6),

o af /2 ST H,—8
5‘E‘Hk+ AR\ neD) k) 0

of . onH of 1o o
(aH -1 aR)”H"“_ n-1 OR Sk,

From (3.4) and Oauchy inequality, IR
f | 2nH Of Bot)? 9 3f‘2" g
(aH Tam1 aza) (2 i < - TR) (ki)

/]

ot

. <(. il%)zsg(hﬁk)zo '

n
Aocording to (1.2), we have

of . 2nH of \? 2 of |
7H a1 OF >('n T azz)’g‘

Then we get
(2 h?::?) i< Z(h m)
and the equality holds if and only 1f E(h,q‘)ﬁ 0. Othermse we geb

(a]f;"[ Zn_]i 38{;3 ) <(-—-§T aaé) 8, a oon’oradm’olon.

From (3.5) and (3.7), we also have

o _ 1 l- a2 = a\2
Be= n(n 5 22“ —_‘T;(g.-?-”’)"s_%:@"

NCRoY
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2(2 h«k)2<2(k sk)2 -
and henoe : : A : :
‘%(h;‘:k)’—g(? ki) =0, o - (3.8)
and the equality holds if and only if A%, =0. . |

* From (3.2) and (3.8), we conolude
| 2 (Hip)*=0, Zh— | (<7w, Ap+0) =0,

We have completed the proof by the 1emma

§4 Other Results

We shall prove some further resul’as about hypersulfaee Let the codlmenmon

p=1 and %y, Xa, ***, *, e the princlpal curvatures of M, Define -
A A H = 2 aaKie Ky, Ho——l- _ (4.1)

C1gh< i sheen

Theorem 1. Let M be a compact hyperswrfwce rwfbth non—negatwe sectional
eurvature %mmersed n a man@fold with constant sectional curvature o. I f the
Jundamental symmetric functions of the pmnc@pwl curwtwres of M swtfbsfy the follow’!/nq

Junctional relation
f(le Hi) .“-"r Hﬂ)=07 (4'2)
of SV {4 f _
| B Hes Eo-20+3) r_1>2( 39”) 4.3)
then M is either a totally umbilical hypersurface or ‘w Riemannian product of two

totally umbilical submanifolds.
Proof From (8.2) we have

K= jﬂ{% (ki) =SS k:‘:;} on zw—m <x,n,+c>}*1 RN

Let =R =#:dy. From (2.8) we geb . -
'H,,;=;: L ha, (4.5)

By (4.2), We"?obtain_ . ‘
2 a(j;, Hpt0
- and subsbituting (4.5) into it, we obtain. .
p3 aabfr gZ' ha=0. @)
| We shall deriye a reoursion relations of af' . By identity

(?\,—ml) (?»47;”) —Ar— Hi?»"‘;+'--~+ ( -'—1)”H;. (4.7)

we get

(ham ) () (o ) =107 = 252 et (1 2 (4
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OOmparing (4.7) with (4.8), we obtain the following recursion relations }
| | oH

a-Hr+1 aH — — . o n_o 4
H,= o + 3 T , ISr<n—1, Hy=u; o (4.9)
Inserting (4 9) into (4.6) ylelds
‘ r aHr (Hr_ i —_—>h‘ik - 0
ioeo C

of o < O oH,,
Z ot Hre B2 H, om,

By Cauchy-Schwarz inequality,
2 ? of 6H,. »
(3 2ty 5] G h?=(B 5 %t whe)

§,r 6%1;

. <2( 335 3?,-‘ Lo} Zhuk

35 e ) 3

i

v r

D LYsu. @0

H

L

From (4.3) and (4.10), v;?e gehii v :
@%ﬂ#ﬂﬁﬁﬂ-ﬁs @

and
(2 Prsiz)? <2 hm,
and the equalify'-holds 1f »a,-na only 1f Py =0,
Then, from (4.4) and (4.11), we get
' 2 h=0, 'E(m'—-%;)g(%m;—‘kc) =0,
By lemma, we have done. : . o
Theorem 2. Let Mbea compwct surface with non-negative sectfboml curvature

smmersed in @ 3—-dimensional manifold with constant sectional curvature ¢. If the
mean curvature H and the Qauss cwrvature R satisfy equation

f(H, Ry=0 (4.12)
 and the inequality
of of of B of .
<aH> +48 J T+ aB-0) (Z5) >0 (4.13)
holds, them M s either a totally umbilical surface or a Riemannian product of two

totally umbilical submanifolds,
Proof Woe first note thatb

of _1 9 of
B 2 aﬂ Tre R
of _1 o .. o
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Hence

O O UV ;g o O, p oy (DY
Oxs Owa 4<aH> +E{aﬂ'aR'+U%‘0<?§J->O°
From (4.6), ' o
-S’?“"hiik=0, k=1, -2..
¢=1 i v

Then by (4.14) there exist p, o such that

9 , 2
™ k111_=P E’{:y ‘k.'2'21= -pP 37{: »
S L
Therefore, e o E '
2 h JK‘"Z(E kzii)z = 2 2(7&;1"0, “h113h224)
ik - )

I‘rom (4 4) a,nd (4 15) we obtam
Ehmo—-o 2(%"’65)2(%4%1'*‘0) 0.

References

(4.14)

(4.15)

1] Nomlzu, K.& Smyth, B A formula, of Slmons type and hypersurfaces with constant mean curvature,

J. Diff. Geom., 8(1969), 367—377.

[2] Ohern, S. 8., do Carmo, M. & Kobayashi, 8., Minimal submamfolds of a sphere with second fnndamental

form of constant length, Functional Analysis and Related Fields, (1970), 59—75.

81 Yau, 8. T., Submanifolds with constant mean curvature II, dmer, J. Math., 87: 1(1975) 76—100.
{4¢] Cheng.S, Y.& Yau, 8. T., Hypersurface with constant scalar cu;yatu_re, M qtk._Am_.,2_25 (1977),.195—

204.

{51 Yano, K. & Ishihara, 8., Submanifolds with parallel mean curvature vector, J. Diff . Geom.,8(1971),

95—118.

T 6.1 Erbacher, J., Isometric immersions of constant mean curvature and tnvahty of the normal connection,

d
Nogoga Math. J., 48 (1981),139—165.-

{7] Slmons, J Mlmmal vanel;les in riemannian mamfolds, Ann of Math 88 (1968), 62-—105



