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ON CONDITIONAL EXPECTATION OPERATORS ON"
L, X) A<P<+00, P#2) | "
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Abstract

Some cha1acte11zat10ns of the conditional eXpecta,tlon opemtom on. Lebesgue—-Bochner
spaces Lp(, X) are given, where 1<p<o5, p+2. Also an exa,mple is given to show that 4
the characterizations of the conditional expecta,tmn oper&tors on L,(w, X) are dxﬂ‘e1ent
from that on L,(w), Finally, a representdt1on of the consta.nt-pleservmg contra,ctlve
pmJectlon on spaces Ly X) is got when O<p<1 S SRR k

-§'1; Intro"ductio*r’r and Preliminaries”

It is well known that a lot of immanent relations betwesn''the. conivergencs of
that martinga;les in Lebesgué—.Bo_chner- spaces Ly (w, . X7) (:12?105<00_) and the stFucture
properties (e.g. Radon-Nikodym propérty)of Banach Spaces X have-béen discoversd
(of. [1]). But every cenvergent rhartingale in (Ly(u, -X) s generated by the
conditional expectations of an .element in Jy(u, X) relative to: a monotoneé
inoreasing net, of sub~o-fields (of...[1]).. Therefore oharaterizing the conditional
expectation operators -on L,(u, 'X). i8 ‘an-important; préblem.. " Following- thi§
direction, a lot of results have been obtained for case X =R (of. [2-H77). Reoently,
P. Landers and L. Rogger in [8] showed-that every constant—preservihg oontractive
linear projection on L;(u, X) is a conditional expectation operator, Where W8 a
probability measure and X is a strictly convex Banach space.-They also gave an

‘example to demonstrate that, eyen if X is a uniformly rotund Banach'space, the

above result: does nob hold for Ly(w, X) Wheh 1<p<oo, In [9] the author gave
some characterizations of conditional expeetatlon operators on Iy (w,Li(A)). In this

_paper, we study the oharactetizations of the ‘conditional expeotation operators, on

Lebesgue-Bochner spaces L,(u, X) for 1<p<co,

Throughout the rest of this paper, we always assume that (@, 3, u) is a
probablhty space, all:operations of sets work in the medulo u-null gense; and X ig
a Banach spaoce. I,(u, X) denotes the Lebesgue—Bochner spaces of p~th 1ntegrab1e
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X-valued funotions (of. [1]1), and L,(u, R) =Ly(w), 0<p<oco. The definition and
elementary properties can be found in [1]. |

Theorem 1.1. % A linear operator T on Ly(u) (I<p<oco, p+#2) isa
cond@t@omz ewpecmt%on operator @f and only of 65 sutisfies ihe following condiidons.
i) T?=T, ii) Txo=1xa, i) "T“ =

§2 Some Characterizations of the Conditional Expectation
Operator on Spaces L (u, X) 1< p< oo, pF2)

Theorem 2.1. A linear opemtorr T on L,,(u,, X) (I<p<oo, p#2) s a
cond@t@oml empecmt'bon oper mﬁor 8f and only 4f it satisfies the following conditéons:

1) T2 ‘

ii) T ll

iii) wag axo forr all a€ X;;

iv) For arbitrary o*, y* € 8(X*) (the unit sphere of X*) and f, gEL,(,u,, X), if
o*(f) =y*(9) a. 6., then &*(Tf) =y*(T9) a. 6., where (&*(f)) @) =" (f(©)). -

Proof The necessity can be deduced from the elementary properties of the

conditional expectation operators easily. Now we prove the sufficenoy.
First, suppose that T is a linear operator on L,(u, X)satisfying i) to iv). For |
each el (X*), we define a linear operator Tgs: Lp(pb) —»Ly(w) by ‘ |
- L Tl (X() =X*(Tf) for all FE Ly(w, X). .
It is easy to see that for each f € L,(u) there exists an f€ Ly(u, X ) such that F=
&*(f). If there alsq exists a g€ Ly(u, X) such that «*(f)=a*(g) =F, then by iv),
we have T'(z"(f))=T(a"*(g)). It follows that T is well defined. Olearly, T is a
linear operator. ,
'Second, we olaim T =H (| Ufé’@*) for some sub—o‘-—ﬁeld B of 2.
In fact, for each f€ Ly(u, X) A S
T(E)) =X T) = - X =T (‘X*(f) )
Hence 1%, =T.
For each gEL,,(,w) suoh that lg7l=1, there exmts, for each s>>0, a gE L,,(,u,, X)
such that - -

Then.

llgll<1+s and @ (g)

1T () | = |2 (T < |Tg| < 9!l<1+6. o
Sinee ¢ is arb;hary, we have |T,.] <1. N
For each a.€ X such that a*(a) =1, 'we have w*(a) X0= %, and 50
: Ton(x0) = (T axe) =" (axe) =%a.
It follows ’ohat T,,* (x2) =10 and |Te| =
By Theorem 1.1, there emsts a sub—a—ﬁeld B of E snch tha,t T,,«-E(]ﬂﬂ)
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Thn:dly,u we claim Tm*—E( | Qé’) where Z is a Sub——o‘——ﬁeld of 2 whioh does not -

-depend on the choice of *.
In faot, suppose y*€S(X*), then there exists a sub~a—ﬁeld By of X suoh that
Ty=E(|%By). For each F€ L,(u), there exists fi, f2€ L,,(,w, X) such that f =
3*(f)=y"(f). Then by iv) we have

Tox(f) =" (Tf) =y (Tf) Tw(f)e
It follows that B(|%Bw)=E(|%:) in L,(). By the definition of the oondl’olonal

expeotahon operator we have %= %« =%. Hence % does not depend on the ehome-

of 3", .
Finally, we prove tha‘a T= E( [ Q) on Lp()u/, X ) A _
Indeed, by a standard argument of an approximation sequenoe of smaple
funotions, for each fE€L,(u, X) and o' ES(X*), we have o*(Tf) =w (E(flfé’))
Hence T'=H(|%#). R
~ Proposition 2. 2 A linear opefmto'r T on ,,(,w, X-’ ).(1§p_<_‘o_o,- paé__z) s a
- «condétional empeomt@on opemtm' of and only 4f T satisfies the followlehg conditions:
i) T2= . o
ii) Taxg axo for all wGX L |
ii1) |T]= | ‘ L
iv) T(gw) gwfor all wEXcmd gEL (u,), wheo’e g GL (u)
Proof The necessity is obvious. Now we prove the sufficienay,
First, we claim that ¢’ does not depend.on the choice of @, o
In fact, if b="Fa for some k€ R, then Tgb= g'b follows from.the linearity of 7',
Leb @, b be two linear 1ndependent oloments in X. Then we have
Tga=gua, Tgb= gbb and Tg(cH— b) = g(afz,)(a—{-b)
It follows, that = ' :
9aw+9ab 9€a+b> (w+ b)
iSince @, b are linear mdependent we hawe .
~'—gb g’(a+b)°
Second, ot T: Lp() Lo (1) be defined by
Tg=g for all gEL,,(y,), -
“where. T'gas=g'a for some. @#0 in X. It iy easy to prove that = .’f’” Txg Yoy and
|| =1. By appealing to the Theorem 1.1 we see that there emsts 2 sub—a—ﬁeld #
«of 3 such that T'=E(|Z) on Ly(w)..

Since Fga~FH (9| B)a= E(gwl,@) for a11 gEL,(;w) and wEX ’ohe lasﬁ equahty :

-can be found in [1] on page 123, Notice theb I' and H(| %) are :hO‘lfnded,PPQl-%?%‘ﬁ-
By passing 0. a standard argument of an .approximation..sequence of simple
-fanctions, we have '

- Bg=E (9| ). for all-g& Ly(ky X},
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Therefore T'=E (| &) is a conditional éxpeot_ation operator in Ly(u, X).

§3. A Counterekample

Theorem 8.1. Let X be a Banach space such that X=(X,@DX.),, where X1 and
X, are nonzero closed subspace of X. Let P:X—>X, be the projection ffrom X onto Xj. .
Then foo' arbitray sub-o—fields B1, %a of 2, the operator T on Ly(w, X) defined by

Tf= B (Pf| B) +B((I- P)f| %) for all fELy(w, X),

where p#2, 1<p<oo, and (Pf) (&) =P(g(?)), s a szearr opemtofr swt%sfymg the
followmg cond@t@ons

i) T2

- ii) wag-wxg for all a€ X, and | T|]
Moreover, tf By B, then T is not @ crrmdwt@oml expectation operator.
| Pfroof First, we will show T?= T By the deﬁmtlon of T', for each fE L, (/J,, X),
we have * ~
- Tf=E(Pfl~%)+E((I—P)f|%)-
By passing o a standard argument of an approximation sequence of simple
funobions, we get for almost all ¢ in @ E(Pf| %) (¢) and BE((I—P)f| %) () are im
X;and X, IeSPecrblvely Therefore by the definition of T and P, we haVe "

T°f=E(P(Tf) | %) +B(I~P) (T | Z) |
~E(E(Pf| %) | )+ BB (I~ P)f| %) | Ba)
. =E(Pf| %) +EB((I-P)f|%)=Tf.

Hence T=1T. ' ' : s

Second, for each g€ X, we have

T (axo) = B (Paya| %) +E((I—-P)wxal%) = Payo+ (I — P)aga=aza.
Thirdly, sinde X = (X,@®X5,);,, we have -
A= (RfIE+ | =PI . torall FELG X).

It follows that :

l|f|19_= (HPf|l£+ ! (I—?)fllﬁ)”"o

o »Furthermore

|1Tf||p—(l|E(Pf|~%) "+||E((I P)fl%)ll”)*’K(llell"*'Il(I P)fﬂ )1’” ﬂfﬂs»
"Therefor 17 =

- Finally, if .%sé,%, we claim that T is not a conditional expectation operator.
Othermse, there exists 4 sub-o—field % of 3 such that T=E( I.%') Then taking
‘0 aé:we X i for each F€ Ly(u) by the definition of T, we have
- B(f|#)a= E(fwi@)=wa=E(f“lfé’1)=E(fl%)m
Hence

| B(f|B) =B | @) tor a1t FE L),
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It follows that ,@‘r-go” Slmllarly, we have %= fé’ Therefore .%—- ,%’2 This
contradiots the hypothesis %+ %, and the proof is completed

Remark 3.1. In contrast with Theorems 1.1, 2.1 and 3 1, we se¢ the
difference between the charaoterizations of the condmonal expeetamon operators on
© Ly(w, X) and that on L,(k). '

Remark 3.2. Let (Q, 3, ) and (W, Z A) be probability spaces, Where W is
not an atom of A, 1<p<oo, p#2. Then there exists a consbant—preservmg
contractive projection T' on Ly(w, Ly(A)), but T is not a conditional expeotatzon
A:olieratOr on Ly(w, L,,(R.)) However T is a oondltlonal expeotatmn operator on
Ly(u X X). 4 ' o ’ |

In fact, let 2+ %, be two sub-o-fields of 2. Sinoe W is not an atom of A, “there
oxist Wy, Wo€ Z such that A(W,)>0, i=1, 2 WiNWa=d, W1UW2——W Then

Ly(A) = (Lp(A) ) + Ly (A ) )i, Lot P e the pl’O_]GG‘blOD. from L,,(?\.) onto Lp(?\,[w,
Then T defined by - .
Tf= E(Pfl%’l)—i—E((I P)flﬁ‘z) for all fEL,,(,w, L (h))

is a constant-preserving contractive projection on Ly,(u, L,(\)), but T is not a
-conditional expectation operator on Ly(u, Ly(A)) (by Theorem 3.1). Howerver by
Fubini theorem Ly(w, Ly(A)) is isometric isomorphio to L,,(y,x)u) It is easy to
scheck that I’ on Ly( X 1) has the following properbies: DT is linear, 11) T~ =T, 111)
Txoxw=2%x0xw, iv) |T|=1, By Theorem 1.1, T is a conditional expechation operator '
‘on L,(wxA).This fact illustrate the dlﬂ'erenee between the product of cr-—ﬁeld and
.its factor g-field. . :

§4. Case 0< p<1

In general the conditional expectahon operator on L,,(,w) for O<p<1 need not
.exist. However we have the followmg results. :
| Definition 4.1. &:3—3 s said to be a regular set isomorphism, if ot saurosﬁes
1) @(.Q\A) Q\P(4), VAEZ, -

2) &([) 4)= (04, A€ 3, 40 Au=g if ntem, and

.. 8) p(@(4)) =0 if and only if p(4)=0. -
Mo'reowe'r Bf n wdd%t%on, pu(D(A)) =u(4) for au A€, ihen 915 @s sa@d to bea
-measure—preserving regular set isomorphism. .

It is easy to see that for each measure-preserving regula,r 8613 isomorphigm. of
‘the measure space (2, 3, u), there exists a (unique in the sense a. e.) operator on
L,(w, X) satisfying the following conditions (we.also denote. the operator by €):
0y 1) @(axs) =axs, Vo€ X, HEZ, ‘
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2) ¢(f+y)=¢<f)+d5(g) f, 9€ Ly(m, X),
8) fa—2>f implies B(£,) = B(f) fu fE me, x).

It is easy to deduce the followmg regult.

Lemma 4.1.59 Lot 0<p<1. Then f, g€ Ly(u, X) are digjoint (in the sonse

(suppf) N (suppg) =¢) &f and only if |f+gl =1 flo+ gl

Theorem 4. 2. Let 0<p<1. I f T @s a lénear opemtoa** bn 'L,,(,u,, X) satisfying

the follcwmg cond%wom i) T?=T, 11) wag =ayg for all a€ X, 1ii) HTH =1, then T=

gD, where @ %s a, Z%neao oper, ator detea mmed by a measufre—pfresefl ving regular set

gsomorphism swt@sfymg D?*=D i, e. @(@(.A)) =®(A) forall A€,
Pa"oof For each O#QE X and E€ 2, we have o

» . . axa T@Xp—waE"l'waEa (Ec Q\ E)

laxoxe= I Il waE+waaclI ”dﬁb<f (H wap I! + llwanaﬂ ’)dlb =| wayll ,,+ I wamllp

it

< Ilwxallp+ llwxmllr lazel.

T follows that

| o lIwaE+wana||p— | Taxsl. +llwaE»|lp and Ilwaallp—HaxEllp | @y
' =By Lemma 4 1, we ha.ve - : | '

R sup p|Tazs| st pllarsl =g . ()

"Let @G(E) —sup pll Tast" for all B€ 2. By (1) and (3) we have Fe S

' Y Tayg=aye,(B). R ()

Let @, b€ X. If b=+ka for some £ € R, then it is easy to see that @,=2; if @, b
are linear independent, then we have
T(a+b)xn=(a+D) %o@w (B), Taxs+ Tbxg=wx¢,w)+ Ogycm)e
Since T is linear and @, b are linear independent, we have
By (B) =By ( ) for au EES. -
Henee 1fweﬁan==b€X then N
. D=0, = for all wGX’ ‘ ()
By (2), (4) and (56), we have -
- Taxs=ages, for all a€ X, and ,u.(E) p,(di(E)) for all EcZ. (6)
For B, FE 3 with ENF =, let 0a;€ X. Then we have
" w1%¢(EnF)||y= VTa1xe0pl = | Ta1xe+ S| < ”T w118l st | Tasts] o< | wixallp-l- lasxsls
| = lastaorl =1 (BU B)lalou (B UT) =l 'u (@ (B uF)
= "“1%45(5 nF)"ﬂ
- It follows that” : = :
o | Taixn+ Tael o= IlTaanllp+ 1Tasels
By Lemma, 4.1 and (6); we have EE ‘ ' o
@(E)ﬂé(ﬁ’)a-@ Lo S )




By (1), (6).and (7), we have
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(B =0\(I). - (8)
Let A;N A;=J. If 635, 4,€ 2, take ;wé‘g @154, € Ly(uw, X), where O0+#a,& X,

Then - o o

o= 3\ Ty, = 3 urociy

follows from the fact that 7' is contractive and. (6), By (6) and (7), we bave

(0 a)-Zow). ©)

Hence @ is a measure-preserving regular set 1som0rph1sm.

By (6), if f= Ewm,, AN Ay= 645, AES3, w,EX

then we have
- Tf=92(f).
For each fE Ly(w, X) there exists a sequence ( f,) of suuple functions such thad; f»

SN i RN —25 T'f, so we have
Tf= hmTf,.——hm@(f) @(f)

Hence T'=9.
By 1) for each EE 3 and 0#a;€ X, we have
' Xo(oEy) @1 = =@ (“1961«7) Tz(wﬂm) SQ)(“ME) = XaomyB1e

It follows that @*=®. This completes the proof.

Remark 4.1, By the representation, we know that the operator in Theorem
4.1isan isometrs; '

Remark 4.2. If (@, 2, w) is a finite measure space, all results in this paper
hold as well.

" The author wants to 'bhank the referee for his helpful suggestions. °
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