ON CONDITIONAL EXPECTATION OPERATORS ON

 $L(\mu, X)$ ($1 \leq p \leq +\infty, p \neq 2$)

NA QIYUAN (那啟元)*

Abstract

Some characterizations of the conditional expectation operators on Lebesgue-Bochner spaces $L_p(\mu, X)$ are given, where $1 \le p < \infty$, $p \ne 2$. Also an example is given to show that the characterizations of the conditional expectation operators on $L_p(\mu, X)$ are different from that on $L_p(\mu)_s$ Finally, a representation of the constant-preserving contractive projection on spaces $L_p(\mu, X)$ is got when 0 .

§ 1. Introduction and Preliminaries

It is well known that a lot of immanent relations between the convergence of that martingales in Lebesgue-Bochner spaces $L_p(\mu, X)$ (1) and the structureproperties (e.g. Radon-Nikodym property) of Banach spaces X have been discovered (cf. [1]). But every convergent martingale in $(L_p(\mu, X))$ is generated by the conditional expectations of an element in $L_p(\mu, X)$ relative to a monotone increasing net of sub-o-fields (cf. [1]). Therefore characterizing the conditional expectation operators on $L_{\mathfrak{g}}(\mu, X)$ is an important problem. Following this direction, a lot of results have been obtained for case $X = \mathbb{R}$ (cf. [2-7]). Recently, P. Landers and L. Rogger in [8] showed that every constant-preserving contractive linear projection on $L_1(\mu, X)$ is a conditional expectation operator, where μ is a probability measure and X is a strictly convex Banach space. They also gave an example to demonstrate that, even if X is a uniformly rotund Banach space, the above result does not hold for $L_p(\mu, X)$ when 1 . In [9] the author gavesome characterizations of conditional expectation operators on $L_1(\mu, L_1(\lambda))$. In this paper, we study the characterizations of the conditional expectation operators on Lebesgue-Bochner spaces $L_p(\mu, X)$ for $1 \le p < \infty$.

Throughout the rest of this paper, we always assume that (Ω, Σ, μ) is a probability space, all operations of sets work in the modulo μ -null sense; and X is a Banach space. $L_p(\mu, X)$ denotes the Lebesgue-Bochner spaces of p-th integrable

Manuscript received March 28, 1987.

^{*} Department of Mathematics, Nankai University, Tianjin, China.

X-valued functions (cf. [1]), and $L_p(\mu, \mathbf{R}) = L_p(\mu)$, $0 \le p < \infty$. The definition and elementary properties can be found in [1].

Theorem 1.1. ^{16,81} A linear operator T on $L_p(\mu)$ $(1 \le p < \infty, p \ne 2)$ is a conditional expectation operator if and only if it satisfies the following conditions. i) $T^2 = T$, ii) $T\chi_Q = \chi_Q$, iii) ||T|| = 1.

§ 2 Some Characterizations of the Conditional Expectation Operator on Spaces $L(\mu, X)$ ($1 \le p < \infty, p \ne 2$)

Theorem 2.1. A linear operator T on $L_p(\mu, X)$ $(1 \le p < \infty, p \ne 2)$ is a conditional expectation operator if and only if it satisfies the following conditions:

- i) $T^2 = T$;
- ii) ||T|| = 1;
- iii) $Ta\chi_{\Omega} = a\chi_{\Omega} \text{ for all } \alpha \in X$;
- iv) For arbitrary x^* , $y^* \in S(X^*)$ (the unit sphere of X^*) and f, $g \in L_p(\mu, X)$, if $x^*(f) = y^*(g)$ a. e., then $x^*(Tf) = y^*(Tg)$ a. e., where $(x^*(f))(t) = x^*(f(t))$.

Proof The necessity can be deduced from the elementary properties of the conditional expectation operators easily. Now we prove the sufficency.

First, suppose that T is a linear operator on $L_p(\mu, X)$ satisfying i) to iv). For each $x^* \in S(X^*)$, we define a linear operator $T_{x^*}: L_p(\mu) \to L_p(\mu)$ by

$$T_{x_*}(X^*(f)) = X^*(Tf) \text{ for all } f \in L_p(\mu, X).$$

It is easy to see that for each $\tilde{f} \in L_p(\mu)$ there exists an $f \in L_p(\mu, X)$ such that $\tilde{f} = x^*(f)$. If there also exists a $g \in L_p(\mu, X)$ such that $x^*(f) = x^*(g) = \tilde{f}$, then by iv), we have $T(x^*(f)) = T(x^*(g))$. It follows that T is well defined. Clearly, T is a linear operator.

Second, we claim $T_{x*} = E(|\mathscr{B}_{x*})$ for some sub- σ -field \mathscr{B}_{x*} of Σ .

In fact, for each $f \in L_p(\mu, X)$

$$T^2_{x^*}(X^*(f)) = X^*(T^2f) = X^*(Tf) = T_{x^*}(X^*(f)).$$

Hence $T_{x*}^2 = T$.

For each $\tilde{g} \in L_p(\mu)$ such that $\|\tilde{g}\| = 1$, there exists, for each s > 0, a $g \in L_p(\mu, X)$ such that

$$||g|| < 1 + \varepsilon$$
 and $x^*(g) = \tilde{g}$.

Then

$$\|T_{x*}(\widetilde{g})\| = \|x^*(\mathbf{T}G) \leqslant \|\mathbf{T}g\| \leqslant \|g\| < 1 + \varepsilon.$$

Since ε is arbitrary, we have $||T_{\alpha*}|| < 1$.

For each $a \in X$ such that $x^*(a) = 1$, we have $x^*(a) \chi_0 = \chi_0$, and so

$$T_{x*}(\chi_{\Omega})=x^*(Ta\chi_{\Omega})=x^*(a\chi_{\Omega})=\chi_{\Omega}.$$

It follows that $T_{x*}(\chi_{\Omega}) = \chi_{\Omega}$ and $||T_{x*}|| = 1$.

By Theorem 1.1, there exists a sub- σ -field \mathscr{B}_{x^*} of Σ such that $T_{x^*} = E(|\mathscr{B}_{x^*})$.

Thirdly, we claim $T_{x*} = E(|\mathscr{B})$ where \mathscr{B} is a sub- σ -field of Σ which does not depend on the choice of x^* .

In fact, suppose $y^* \in S(X^*)$, then there exists a sub- σ -field \mathscr{B}_{y^*} of Σ such that $T_{y^*} = E(|\mathscr{B}_{y^*})$. For each $\widetilde{f} \in L_p(\mu)$, there exists f_1 , $f_2 \in L_p(\mu, X)$ such that $\widetilde{f} = x^*(f) = y^*(f)$. Then by iv) we have

$$T_{x*}(f) = x^*(Tf) = y^*(Tf) = T_{y*}(f)$$
.

It follows that $E(|\mathscr{B}_{x*}) = E(|\mathscr{B}_{*})$ in $L_{p}(\mu)$. By the definition of the conditional expectation operator we have $\mathscr{B}_{x*} = \mathscr{B}_{y*} = \mathscr{B}$. Hence \mathscr{B} does not depend on the choice of x^* .

Finally, we prove that $T = E(|\mathscr{B}|)$ on $L_{\mathfrak{p}}(\mu, X)$.

Indeed, by a standard argument of an approximation sequence of simple functions, for each $f \in L_p(\mu, X)$ and $x^* \in S(X^*)$, we have $x^*(Tf) = x^*(E(f|\mathscr{B}))$. Hence $T = E(|\mathscr{B})$.

Proposition 2.2. A linear operator T on $L_p(\mu, X)$ $(1 \le p < \infty, p \ne 2)$ is a conditional expectation operator if and only if T satisfies the following conditions:

- i) $T^2 = T$;
- ii) $Ta\chi_{\mathcal{Q}} = a\chi_{\mathcal{Q}}$ for all $a \in X$;
- iii) ||T|| = 1;
- iv) T(ga) = g'a for all $a \in X$ and $g \in L_p(\mu)$, where $g' \in L_p(\mu)$.

Proof The necessity is obvious. Now we prove the sufficiency.

First, we claim that g' does not depend on the choice of a.

In fact, if b = ka for some $k \in \mathbb{R}$, then Tgb = g'b follows from the linearity of T. Let a, b be two linear independent elements in X. Then we have

$$Tga = g'_a a$$
, $Tgb = g'_b b$ and $Tg(a+b) = g'_{(a+b)}(a+b)$.

It follows that

$$g'_a a + g'_b b = g'_{(a+b)}(a+b).$$

Since a, b are linear independent, we have

$$g_a' = g_b' = g_{(a+b)}'$$

Second, let \hat{T} : $L_p(\mu) \rightarrow L_p(\mu)$ be defined by

$$Tg = g'$$
 for all $g \in L_p(\mu)$,

where Tga = g'a for some $a \neq 0$ in X. It is easy to prove that $\hat{T} = \hat{T}^2$, $\hat{T}\chi_0 = \chi_0$, and $\|\hat{T}\| = 1$. By appealing to the Theorem 1.1 we see that there exists a sub- σ -field \mathscr{B} of Σ such that $\hat{T} = E(|\mathscr{B}|)$ on $L_p(\mu)$.

Since $Tga = E(g|\mathscr{B})a = E(ga|\mathscr{B})$ for all $g \in L_p(\mu)$ and $a \in X$, the last equality can be found in [1] on page 123. Notice that T and $E(|\mathscr{B})$ are bounded operators. By passing to a standard argument of an approximation sequence of simple functions, we have

.
$$Tg = E(g \mid \mathcal{B})$$
 for all $g \in L_p(\mu, X)$

Therefore $T = E(|\mathscr{B})$ is a conditional expectation operator in $L_p(\mu, X)$.

§ 3. A Counterexample

Theorem 3.1. Let X be a Banach space such that $X = (X_1 \oplus X_2)_{l_p}$ where X_1 and X_2 are nonzero closed subspace of X. Let $P: X \to X_1$ be the projection from X onto X_1 . Then for arbitray sub- σ -fields \mathcal{B}_1 , \mathcal{B}_2 of Σ , the operator T on $L_p(\mu, X)$ defined by

$$Tf = E(Pf|\mathcal{B}_1) + E((I-P)f|\mathcal{B}_2)$$
 for all $f \in L_p(\mu, X)$.

where $p \neq 2$, $1 \leq p < \infty$, and (Pf)(t) = P(g(t)), is a linear operator satisfying the following conditions:

- i) $T^2 = T$;
- ii) $Ta\chi_{\mathbf{Q}} = a\chi_{\mathbf{Q}}$ for all $a \in X$, and ||T|| = 1.

Moreover, if $\mathcal{B}_1 \neq \mathcal{B}_2$, then T is not a conditional expectation operator.

Proof First, we will show $T^2 = T$. By the definition of T, for each $f \in L_p(\mu, X)$, we have

$$Tf = E(Pf|\mathcal{B}_1) + E((I-P)f|\mathcal{B}_2).$$

By passing to a standard argument of an approximation sequence of simple functions, we get for almost all t in Ω $E(Pf|\mathscr{B}_1)(t)$ and $E((I-P)f|\mathscr{B}_2)(t)$ are in X_1 and X_2 respectively. Therefore by the definition of T and P, we have

$$T^{2}f = E(P(Tf) | \mathcal{B}_{1}) + E((I-P)(Tf) | \mathcal{B}_{2})$$

$$= E(E(Pf | \mathcal{B}_{1}) | \mathcal{B}_{1}) + E(E((I-P)f | \mathcal{B}_{2}) | \mathcal{B}_{2})$$

$$= E(Pf | \mathcal{B}_{1}) + E((I-P)f | \mathcal{B}_{2}) = Tf.$$

Hence $T^2 = T$.

Second, for each $a \in X$, we have

$$T(a\chi_{\mathbf{Q}}) = E(Pa\chi_{\mathbf{Q}} | \mathcal{B}_1) + E((I-P)a\chi_{\mathbf{Q}} | \mathcal{B}_2) = Pa\chi_{\mathbf{Q}} + (I-P)a\chi_{\mathbf{Q}} = a\chi_{\mathbf{Q}}.$$

Thirdly, since $X = (X_1 \oplus X_2)_{l_p}$, we have

$$||f||_{X} = (||Pf||_{X}^{p} + ||(I-P)f||_{X}^{p})^{1/p}$$
 a.e. for all $f \in L_{p}(\mu, X)$.

It follows that

$$||f||_p = (||Pf||_p^p + ||(I-P)f||_p^p)^{1/p}.$$

Furthermore

 $||Tf||_{p} = (||E(Pf|\mathcal{B}_{1})||_{p}^{p} + ||E((I-P)f|\mathcal{B}_{2})||_{p}^{p})^{1/p} \leqslant (||Pf||_{p}^{p} + ||(I-P)f||_{p}^{p})^{1/p} = ||f||_{p}.$ Therefor ||T|| = 1.

Finally, if $\mathcal{B}_1 \neq \mathcal{B}_2$, we claim that T is not a conditional expectation operator.

Otherwise, there exists a sub- σ -field \mathscr{B} of Σ such that $T = E(|\mathscr{B})$. Then taking $0 \neq a \in X_1$, for each $f \in L_p(\mu)$ by the definition of T, we have

$$E(f|\mathscr{B})a = E(fa|\mathscr{B}) = Tfa = E(fa|\mathscr{B}_1) = E(f|\mathscr{B}_1)a$$
.

Hence

$$E(f|\mathscr{B}) = E(f|\mathscr{B}_1)$$
 for all $f \in L_g(\mu)$.

It follows that $\mathcal{B}_1 = \mathcal{B}$. Similarly, we have $\mathcal{B}_2 = \mathcal{B}$. Therefore $\mathcal{B}_1 = \mathcal{B}_2$. This contradicts the hypothesis $\mathcal{B}_1 \neq \mathcal{B}_2$, and the proof is completed.

Remark 3.1. In contrast with Theorems 1.1, 2.1 and 3.1, we see the difference between the characterizations of the conditional expectation operators on $L_p(\mu, X)$ and that on $L_p(\mu)$.

Remark 3.2. Let (Ω, Σ, μ) and $(W, \mathcal{B}, \lambda)$ be probability spaces, where W is not an atom of λ , $1 \le p < \infty$, $p \ne 2$. Then there exists a constant-preserving contractive projection T on $L_p(\mu, L_p(\lambda))$, but T is not a conditional expectation operator on $L_p(\mu, L_p(\lambda))$. However, T is a conditional expectation operator on $L_p(\mu, \lambda)$.

In fact, let $\mathscr{B}_1 \neq \mathscr{B}_2$ be two sub- σ -fields of Σ . Since W is not an atom of λ , there exist W_1 , $W_2 \in \mathscr{B}$ such that $\lambda(W_i) > 0$, $i=1, 2, W_1 \cap W_2 = \phi$, $W_1 \cup W_2 = W$. Then $L_p(\lambda) = (L_p(\lambda|_{W_1}) + L_p(\lambda|_{W_1}))_{l_p}$. Let P be the projection from $L_p(\lambda)$ onto $L_p(\lambda|_{W_1})$. Then T defined by

$$Tf = E(Pf|\mathscr{B}_1) + E((I-P)f|\mathscr{B}_2)$$
 for all $f \in L_p(\mu, L_k(\lambda))$

is a constant-preserving contractive projection on $L_p(\mu, L_p(\lambda))$, but T is not a conditional expectation operator on $L_p(\mu, L_p(\lambda))$ (by Theorem 3.1). However, by Fubini theorem $L_p(\mu, L_p(\lambda))$ is isometric isomorphic to $L_p(\mu \times \lambda)$. It is easy to check that T on $L_p(\mu \times \lambda)$ has the following properties: i) T is linear, ii) $T^2 = T$, iii) $T\chi_{\mathcal{D}\times W} = \chi_{\mathcal{D}\times W}$, iv) $\|T\| = 1$. By Theorem 1.1, T is a conditional expectation operator on $L_p(\mu \times \lambda)$. This fact illustrate the difference between the product of σ -field and its factor σ -field.

§ 4. Case 0

In general, the conditional expectation operator on $L_p(\mu)$ for 0 need not exist. However we have the following results.

Definition 4.1. $\Phi: \Sigma \to \Sigma$ is said to be a regular set isomorphism, if it satisfies:

- 1) $\Phi(\Omega \backslash A) = \Phi(\Omega) \backslash \Phi(A), \forall A \in \Sigma$
- 2) $\Phi\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} \Phi(A_n)$, $A_n \in \Sigma$, $A_n \cap A_m = \phi$ if $n \neq m$, and
- 3) $\mu(\Phi(A)) = 0$ if and only if $\mu(A) = 0$.

Moreover, if in addition, $\mu(\Phi(A)) = \mu(A)$ for all $A \in \Sigma$, then Φ is said to be a measure-preserving regular set isomorphism.

It is easy to see that for each measure-preserving regular set isomorphism of the measure space (Ω, Σ, μ) , there exists a (unique in the sense a. e.) operator on $L_p(\mu, X)$ satisfying the following conditions (we also denote the operator by Φ):

$$(\mathbf{i}) \quad \mathbf{i}) \quad \Phi(a\chi_E) = a\chi_E, \ \forall a \in X, \ E \in \Sigma,$$

- 2) $\Phi(f+g) = \Phi(f) + \Phi(g)$, $f, g \in L_p(\mu, X)$,
- 3) $f_n \xrightarrow{\|f_p\|} f \text{ implies } \Phi(f_n) \xrightarrow{\|f_p\|} \Phi(f) f_n, f \in L_p(\mu, X).$

It is easy to deduce the following result.

Lemma 4.1.^[10] Let $0 . Then <math>f, g \in L_p(\mu, X)$ are disjoint (in the sense $(\operatorname{supp} f) \cap (\operatorname{supp} g) = \phi$) if and only if $||f + g|| = ||f||_p + ||g||_p$.

Theorem 4.2. Let 0 . If <math>T is a linear operator on $L_p(\mu, X)$ satisfying the following conditions: i) $T^2 = T$, ii) $Ta\chi_{\Omega} = a\chi_{\Omega}$ for all $a \in X$, iii) ||T|| = 1, then $T = \Phi$, where Φ is a linear operator determined by a measure-preserving regular set isomorphism satisfying $\Phi^2 = \Phi$, i. e. $\Phi(\Phi(A)) = \Phi(A)$ for all $A \in \Sigma$.

Proof For each $0 \neq a \in X$ and $E \in \Sigma$, we have

$$a\chi_{\Omega} = Ta\chi_{\Omega} = Ta\chi_{E} + Ta\chi_{E^{c}} \quad (E^{c} = \Omega \setminus E)$$

Then.

$$\|a\chi_{\Omega}\chi_{p} = \int_{\Omega} \|Ta\chi_{E} + Ta\chi_{E^{c}}\|^{p} d\mu \leq \int_{\Omega} (\|Ta\chi_{E}\| + \|Ta\chi_{E^{c}}\|^{p}) d\mu = \|Ta\chi_{E}\|_{p} + \|Ta\chi_{E^{c}}\|_{p}$$

$$\leq \|a\chi_{E}\|_{p} + \|a\chi_{E^{c}}\|_{p} = \|a\chi_{\Omega}\|.$$

It follows that

$$||Ta\chi_E + Ta\chi_{E^o}||_{\mathfrak{p}} = ||Ta\chi_E|| + ||Ta\chi_{E^o}||_{\mathfrak{p}} \text{ and } ||Ta\chi_E||_{\mathfrak{p}} = ||a\chi_E||_{\mathfrak{p}}.$$
 (2)

By Lemma 4.1, we have

$$\sup p \| Ta\chi_B \| \cap \sup p \| Ta\chi_{B^o} \| = \emptyset.$$
 (3)

Let $\Phi_a(E) = \sup p ||Ta\chi_E||$ for all $E \in \Sigma$. By (1) and (3) we have

$$Ta\chi_E = a\chi_{\Phi_a}(E). \tag{4}$$

Let a, $b \in X$. If b = ka for some $k \in \mathbb{R}$, then it is easy to see that $\Phi_a = \Sigma_b$; if a, b are linear independent, then we have

$$T(a+b)\chi_{E}=(a+b)\chi_{\Phi_{\mathbf{G}(E)}}(E),\ Ta\chi_{E}+Tb\chi_{E}=a\chi_{\Phi_{\mathbf{G}}(E)}+b_{\Phi_{\mathbf{b}}(E)}.$$

Since T is linear and a, b are linear independent, we have

$$\Phi_a(E) = \Phi_b(E)$$
 for all $E \in \Sigma$.

Hence if we fix a $0 = b \in X$, then

$$\Phi_a = \Phi_b = \Phi \text{ for all } a \in X.$$
 (5)

By (2), (4) and (5), we have

$$Ta\chi_E = a\chi_{\Phi(E)}$$
, for all $a \in X$, and $\mu(E) = \mu(\Phi(E))$, for all $E \in \Sigma$.

For E, $F \in \Sigma$ with $E \cap F = \emptyset$, let $0 \neq a_1 \in X$. Then we have

$$\begin{aligned} \|a_{1}\chi_{\Phi(E\cap F)}\|_{p} &= \|Ta_{1}\chi_{E\cap F}\| = \|Ta_{1}\chi_{E} + Sa_{1}\chi_{F}\| \leqslant \|Ta_{1}\chi_{E}\|_{p} + \|Ta_{1}\chi_{F}\|_{p} \leqslant \|a_{1}\chi_{E}\|_{p} + \|a_{1}\chi_{F}\|_{p} \\ &= \|a_{1}\chi_{E\cup F}\| = \|a_{1}\|^{p}\mu(E\cup F)\|a_{1}\|^{p}\mu(E\cup F) = \|a_{1}\|^{p}\mu(\Phi(E\cup F)) \\ &= \|a_{1}\chi_{\Phi(E\cap F)}\|_{p}. \end{aligned}$$

It follows that

$$||Ta_1\chi_E + Ta_1\chi_F||_p = ||Ta_1\chi_E||_p + ||Ta_1\chi_F||_p$$

By Lemma 4.1 and (6), we have

$$\Phi(E) \cap \Phi(F) = \emptyset. \tag{7}$$

By (1), (6) and (7), we have

$$\Phi(E^{o}) = \Omega \backslash \Phi(E). \tag{8}$$

Let $A_i \cap A_j = \emptyset$. If $i \neq j$, $A_i \in \Sigma$, take $x = \sum_{i=1}^{\infty} a_1 \chi_{A_i} \in L_p(\mu, X)$, where $0 \neq a_1 \in X$.

Then

$$Tx = \sum_{i=1}^{\infty} Ta_i \chi_{A_i} = \sum_{i=1}^{\infty} a_i \chi_{\Phi(A_i)}$$

follows from the fact that T is contractive and (6). By (6) and (7), we have

$$\Sigma\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \Phi(A_i). \tag{9}$$

Hence Φ is a measure-preserving regular set isomorphism.

By (6), if
$$f = \sum_{i=1}^{n} a_i \chi_{A_i}$$
, $A_i \cap A_j = \emptyset, i \neq j$, $A_i \in \Sigma$, $a_i \in X$,

then we have

$$Tf = \Phi(f)$$
.

For each $f \in L_p(\mu, X)$ there exists a sequence (f_n) of simple functions such that f_n

$$\xrightarrow{\mathbb{N}_p} f$$
, $Tf_n \xrightarrow{\mathbb{N}_p} Tf$, so we have

$$Tf = \lim_{n \to \infty} Tf_n = \lim_{n \to \infty} \Phi(f_n) = \Phi(f).$$

Hence $T = \Phi$.

By 1) for each $E \in \Sigma$ and $0 \neq a_1 \in X$, we have

$$\chi_{\Phi(\Phi(E))}a_1 = \Phi^2(a_1\chi_E) = T^2(a_1\chi_E) = \Phi(a_1\chi_E) = \chi_{\Phi(E)}a_1.$$

It follows that $\Phi^2 = \Phi$. This completes the proof.

Remark 4.1. By the representation, we know that the operator in Theorem 4.1 is an isometry.

Remark 4.2. If (Ω, Σ, μ) is a finite measure space, all results in this paper hold as well.

The author wants to thank the referee for his helpful suggestions.

References

- [1] Diestel, J. & UHL, JR. J. j., Vector Measure, Mathematical Survery 15, Amber. Math. Soc., 1977.
- [2] Ando, Contractive projection in L space, Pacific J. Math., 17(1966), 391-405.
- [3] Olson, M. P., A characterization of conditional probability, Pacific J. Math., 15(1965), 971-983.
- [4] Pfanzagl, J., Characterization of conditional expectations, Ann. Math. Satist., 38(1967), 415-421.
- [5] Rao, M. M., Conditional expectations and closed projections, *Proc. Acad. Sci. Amsterdam, Sar. A*, 68: (1965), 100—112.
- [6] Neveu, J., Discrete Parameter Martingales, North Holland Amsterdam, 1975.
- [7] Douglas, R. G., Contractive projection on L₁-space, Pacific J. Math., 15(1965), 443-462.
- [8] Tanders, D. & Rogge, L., Characterization of conditional expectation operator for Banacn+valued functions, Proc. Amer. Math. Soc., 81, 107—110.
- [9] Ryohei, Miyadera, Characterizations of conditional expectation for $L_1(X)$ -valued functions, Osaka J. Math., 23(1986), 313—324.
- [10] Na Qiyuan, The isometries of $L_p(\mu, X)$ (0<p<1) (to appear).
- [11] Loeve, M., Probability theory II, 4-th edition, Springer-Verlag, 1978.
- [12] Donald, L. Chon., Measure Theory, Birkhauser, 1980.