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SOME TWO-INDEPENDENT-V ARIABLE INEQUALITIES
INVOLVING IMPROPER INTEGRALS

YANG ExmAO (4 & #%)* GaN LURU (¥ &) *

Ab_stract

In the paper the authors establish four theorems on two-independent-variable
‘Gronwall-type inequalities involving improper integrals with infinite integration limits,
The results obtained improve and generalize the main results proved in the recent paper
[5] by A. Corduneanu. Two classes of nonlinear continuous fumctions defined by F. M.
Dannan [6] are applied in this article. And the results can be used as handy tools in the

study of many Volterra mtegra,l and integro- dlﬁelentla,l equa’cmns with improper mtegra,l_
functionals,

§1. Introduction

As well-known, various kinds of inequalities have played a vifal role in the
davelopment of mathematios. Particularly, the theory of Gronwall type integral
inequalities, hoth in one and more than one Varia,blg, is erucial and indispensable
in the study of almost all kinds of analytio equations such ag the differential and
Jntegral equations, integro-differential equations, and functional-differential
~eqﬁaﬁons.1n the recent yea,rs, in addition to a large number of research papers
‘many interesting monographs devoted o such inequalities have also been published.
:Seo the hooks by Beesack™, Bellman and Cooke™, Lakshmlka,n”aham and Leela,’:"
and Walter™ ). However, in spite of the frequent appearance in literature of many
fequa.tlons involving improper integrals with infinite integration limit, only a few
investigation work have been done so far for Gronwall type 1nequa11tles with
Amproper integrals. To the authors’ knowledge, the articles by Antonishin™,
_Pwhpa,ﬁ;e"-93 Gordunea,nuf"J and Singare™® are the only papers: devoted to the
.establishment of such’ inequalities. AmOng them the first two Works are devoted to
the one-variable case and the others are concerned with two-variable mequahtzes
iA¥' for application, we noté that the inejuality obtained in Pachpatie™ has beén
successfully applied by Méité and Neva.im: in the -study of n-th order linear
difforential equa,tions It is also mdlcated in Smga.re“"J tha’a two—varla,ble
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inequalities with improper integrals are Very useful in the investigation of many
Volterra type integral equations,

In the recent paper [B], Corduneanu discussed the followmg ’owo—-mdependent—
variable inequality and some of its spécial cases_ :

u(a, ) <F (@ 9)+h@ D F([ [ a6 Duluts, H)dsdi]<oo, 0/y>0,  (A)

where the functions a, f, h u€O(R. xRy, R, F, wEO(R+, R,), and B.= [O o0).
Here we denote by O(N, M) the class of all continuous functions defined on set N
with range in set M. He gave some upper bounds on the function u(m ) sa,tlsfymg »
(A) under various hypotheses. .

The aim of the present paper is not only to obtain some new bounds on function
u(z, y) from (A) but also to disouss the followmo* generahzamon of mequa,hty (A)

w(, ) <f (@, v)+9(a, y>j j (s, u(s. dsdt

+h(, y)FU J b(s, t)wu(s, t))d,sdﬂ<oo @, y=0, (B)
where the functions a, b, 4, f, 9, h€C (R+><R+, R,), and F, waG (R4, R.,.)

§ 2. Linear Case

In this section we discuss the linear oage of inequality (A). Two theorems -
obtained here are different from the OOrollary 4.1 of Corduneanu®™, Consider the
linear inequality ‘ '

u(w, ) <f (@, y)+his, y)rrb(s,'t)u(s,' ) ds dt<co, ®, y=0. )
. eJy )
Theorem 1. Suppose the fumcitons b, u, f, h belong fo O(B: X Ry, R.), with
f (m, y) non-increasing and f (&, y)=>A>0 for v, y=0, where A is a constans. Suppose
that ' o ' I

j:f:b (5, ) (1+h(s, £))dsdb<oo (O
holds and inequality (1) ds satisfied. Then we have . |
: u(z, y)<f(z, y) 1+h(z, 9)8@y)) for o, y=0, 2
where ) : e
‘ G(w, y)i=— 1+'expL L b(s, ?) (1+h(s,t))dsds. o (3)

In addition, Sf h(w, y) >1 for @, y=0, then the factor 1-+h (s, t)contained both én (Cs)
and, (8) cam be replaced by h(s, t). B
Proof Define v(w, 9)* =u(a, y) / f(w, ¥). Then we have

jo j B(s, o, #)ds dt <oo,
~ sinoce f(m, )>A>0 for w, y=0. We. observe from mequahty (@)
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| o(a, §) <1+h(g, y)m:b(s, 8) 28 D e dr1+h(s, v)r(@,9) for , y=0, (4)

o)

where

| ’f(a?_, ?/)==J:J-:b(s, (s, t)dsdt, , y>0,

)

since f(#, ) is non—increasing for , y>>0. We obtain from (5), by differentiation,

(@, 9) == b(a, Hos. HAH<O,

o, 9) == | 5, (s, 9)ds<0,

and

742, 9) =b(o, y)o(@, 9)<b(z, 9) [1+h(z, y)r(@ N1

<b(z, y) A+h(z,9)) A+ (s 9)), 2 y=0;

herem we have used inequality (4). We notice here that the faotoz (1+h(a; y))
contained in the last inequality can be replaced by h(w, y) if the oond1 fion A(w, y)

>1 holds for », y>0. Noting +), 7, are nou—pomtwe we derive from the above

nequahty

;y( 29 ) <b(a, 9) (Lt 1), 2 350

®

Betbing y=1 in (6) and integrating with respect to ¢ from y o co, we get

— 1, y) (7 | |
: 1+r)'(m’ ,y)<_Lb(w’ t) (1+h(m7 t))dty @, y>0y

sinoe 1, (z, 00)=:0 holds. Now set #=s in the last inequality dnd integrate with

espeot 10 § over [z, oo). Using 7 (oo, ¢) =0, we then obtain

In(L+7(u, 9))< j”j-“b@, £) (L-+h(s, £))ds di, o, y=0,

Qr
' o'(w y)<9(:v y)form y=>0,

™

,Where funotlon 6(w, y) is given by (8). Finally, substitubing the lasb bound on

7(z, y) in (4) and using vz, y) =u(w, y)/f(®, ¥), we have the desired estimate in

2).

We remark here that the upper bound in (2) is better than that given in the

‘Corollary 4.1 of [5] by inequality (8.4). The next result gives a very useful new

‘hound for the fanction u(z, y) satisfying inequality (1).

Theorem 2. Suppose the functwon b, u, f, hEO(Ry X Ry, R,) wnd the cond@twm

L L’b(s, 8 (FGs, §)+h(s, §))dsdi<oo
holds. Suppose further that 'Iinequawty (1) s satis fied. Then
u(a, 9)<f (s, ) +h(z, y)t/:(w y) for @, y>0,

P(o, y) :_—,~=v-1'—l—ex‘p[ f b(s t)(f(s t)+h(s t))dsdt

-where

(G

@
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This theorem ocan be derived from Theorem 3 below by letting F(g) =¢ and w(g) =
q. We leave out details to the reader. _ : '

Remark 1. The monotomicity of f (%, ¥) and f(w, ¥)=>A4>0 and k(a, y)=>1
arenotrequired in Theorsm 2; +hus the last resulb is more general than the Corall
ary 4.1 in [B].

§ 8. Nonlinear Cases

We now prove some ‘pew nonlinear exbensions of inequality (1), which are
very useful in many situafions of applications. In the sequel, the following function
" class H(p) defined by F. M. Dannan™® will be used.

Definition®, A4 funbt?}on wCO (R, Ry) bs said to belong to the class H(p) if
(i) w(u) és nondeoreasing and pisitive for u>0,
(ii) there ewists a function @ €O0(R,, R.) such that
o - w(ou) <p@)w(u) for v>0, u=0.
We are awared that any submultiplicative fanetion # in the class O(R,, B.)
~ satisfying above condition (i) must belong to the class H(w).
Let us first consider the nonlinear inequality o

u(@, ¥)<f @ )+ DF|[ 36 Huu(s, 1)ds dt] <o, 3, y0, (&)
where b, 1, f, REO(R. xR, R,) and F, wEO(R,, R.). Throughout this section
we define a strictly inoreasing, nonnegative and continuous functiop G on B, by
| __ L GWi=| arEey T ' (D)
and denote by @G the inverse funotion of @. Clearly, G is also striotly inoreasing,

nonnegative, continuous on R. . _ _ :
Theorem 3. Suppose b, u, f, hEO (R X R,, B.), and F, wcO*(R,, R,) are
nondecreating, with w € H(p). Suppose that the condition -
[7[o6s, Do(r 9+nls, D)dsdt<oo (©)
and, the inequality (A) are satisfied. Then we have '

u(s, 1) <f (&, 1) +h( y)F{ a[[ ] o6 v rG, z)+h<s,’t>)dsdt]}, ©)
provided that o o
e HE(f (s, +h(s, H)dsdi<@(ea). - | - o)
Proof We define a function R(3, 9) €O(R.XRBs, B by
R, 9= [ 3 Duls D) 2 920 Sy

Then inequality (A) yields. . **



414 ' ’ OHIN. ANN. OF MHTH. - Vol. 11 Ser.B

u(@, y)<f(o, y)+h(, ) FLR(, y)], 9, y=0. (12).
We derive from (11), by differentiation, ‘

By(@, 4) == [ b (@, (s, )<,

By(o, ) == [ 3G, puu(s, 9)ds<0,

and
Ry (w, y) =b(w, y)w(u(w, y)) for o, y=>0.
Since w € H(p), and b, u, F, R(a; y) are nonnegative, we obtain from the last:
inequality
Riy (e, y) <b(w, y)w{f (2, y)+h(z, y) F[B(z, y)1}
- <b(e, Pw{(f(@, y)+h y)) A+ FIR(@, )1}
<b(a, 9)o(f (o, y) +h(e, y))'w{1+F[R<w, y)]}, %, :t/>0
sinoce (12) holds. This inequality implies that

9y
since R,, R <0, F', w'>0, and w(w)>0 for 4>0. Set ting y=¢ in (13) a,nda

_ 1ntegrat1ng with respect to ¢ over [y, o), we then gob

’ R, (@, 1)
fw(l—{—F[R(é y)]) f b(w, t)‘P(f(w, t)+h(m t))dt @, y=0

since R(w, o0)=R (z, 00)=0 and F(0)=0. Hold y>0 fixed in the last mequa,ll’oy
and then rewrite it as . :

- IR G, y>1<j (o, D0 (@ §-+h(x, D) 5, 40,

where funotion @ is defined by (D). Selting g=s in the above inequality and’

integrating with respect 1o s over [#, o), we then obbain

GLRG, y)KI j b(s, HP(f (s, 8)+hs, ))ds dt, o, y=0,

since G(O) 0 and R(oo, y)=0. Now, we may derive from the last inequality .

R(m, g/)<G"1Uac L b(s, D(f(s, ) +h.(s, t_).)ds dt } (14)

provided that condition (10) is séhisﬁed. Thus the desired bound in (9) follows
from (12) and (14)- 1mmedlately

Remark 2. The following conditions are required in the Proposfmon 4 of
001'dunea,nu‘5J '

(1) f (2, ¥) =1, h(a, 'y)=>1 for , y=0'and f(s, y) is nonincreasing,

(2) the functlon w is submultlphca,tlve and v w(u)<< fw(u/fv) holds for all
v=>1, u=0. . .
Bedause all these condﬂuons are elther ehmmated or relaxed in above Theorem 8,
-Theorem 3 should have a much wider range of application than the Proposition 4 of

2D N<b@ oo, 040 ), 500, (135
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IB]. : . ]
* We now turn to the following generalization of inquality (A):

w(a, 9) <f (@ »+9@ )| [ als Huls, Ddsds

+h(a, y)FU j b(s, Dw(u(s, v))ds dt]
<oo, 7, y=0. : ' - (B
Theorem 4. Suppose the funciions a, b, ¥, f, ¢, ‘and b belong to the class O (R, %
"R., R,), with f, b non—increasing for .a, y=>0 and f(z, y)=4>0, where A is @
constant, Supposs F, we&O* (R;, R,) are rrwndeca‘ewsmg wrrwl wCH(p). Suppose that the
condétions

I:j:w‘(s,. B (oG, D)dsdi<oo, (Cs)

‘ j‘”f”b(s Ho(f* (s, O+ dsdi<oo, Q)

and, the mequalwty (B) are satisfied. Then we have. :
u(w, ) <f*(, y)+h*(m, y)F{G' U:J b(s, t)gv(f*(s t)—i—h*(s, t))dsdt]}

. (15)
provided that _
ﬁ “b(s, HP(F* (s, )+ (6. £)ds di <GH(o0), | (16)
where G is the same as defined tn Theorem 3 ”
| @ )i =F @ 9) 1+, HEG, DL
h*(w y):=h(@ P+gl NE@ NI o
and
f(a; DE =—-1+expj I a(s t)(l—!—g(s t))dsdt (18)

In addition, of 9(e, y) =1 then the factor [1+ g(s )] cowtamed in (Og) wnd (18) can
be replaced by g, ‘t) _
Proof Rewrite mequahty (B) as , o
u(w, ) <J (o, y)+9(o, y)L J:a,(s, Hu(s, t)ds di, @, y=>0, (19)
- where funotion J (z, y) is defined by |
J(w; i) —-f(w, y)+h(m, y)FU J b(s, t)fw(u(s )ds dt]

Ttisa smlple matber to verify that J (o, y) €0 (R+ %Ry, R,,.) is non-mereasmg for
&, y>0 and J (az, y)>A>O holds. Note condl’vlon (04), and then a smtable
apphcatlon of Theorem 1 to (19) ylelds - S -

u(a, .«/)<J (2, y) [1+y(w, EG, y)], , y>0

i. 0., . : L ,
uGa, y)<f*(w,_ >+;,*<m, y)FU j b, $u(uCs t))dsdt] @,y>0, | " (20)
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where ¢£(z, y) and f*(z, y), h*(z, y) are given by (17) and (18), respectively.

Finally, in view of condition (Os), an application of Theorem 3 to (20) completes.

the proof of Theorem 4.
The next corollary is a consequence of Theorem 4 which establishes a very

useful new inequality.

Corollary §. Let all funcmons a, b, £y 9 and % be the same as defined im.

Theorem 4. Suppse condition (Os) and
| j (6 LG, B-+h(s DpGs, Hdsdi<oo (O
hold, where ' ‘
p(w, g):= ——I1+exp'[:[:(1+ g(s, %))dsdt.
Supp se further that the linear inequality
u(w, y)<f (o, y)+g(a, g)rra(é t)u(s, t)ds di.

+h(w, y) f f b(s, 8) (us, 1)) s dﬁ<°° 3 y>0 @

98 sat@sﬁed whera ¢ € (0, 1] és a constant. Then we have _
u(a, y)<f (@, )pa, v) +hi@ Yp, v) (o, ) -11, 2, y>0, (22}
where '

oo, 9):={1+1-0)[ [ 265, 9 LFGs, ©-+h(s 1pGs Ddsdsf -

Proof Taking F(u)=u and w(u) =yl in mequahty (B), we then get
inequality (21). Noting we& H (fw), we obtam here by simple- computation,

du g
e e
Henee we have G(oo) —oo and :

G4 (p) = — 1+ [1+ (1—g) p]¥0-0 for all 30,

Thus, an application of Theorem 4 to inequality (21) completes the ploof of this

corollary.
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