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Abstract

Let D be & bounded O*-domain in R’ and (a,) be a bounded symmetric matrix
defined on D. Consider the symemetric form

=13 ou(m) ov(w) 1
&(u, v)= 5 ¢§1ID €D S ~7n, dz , u, v€ H'(D).

Under some assumptions it is shown that the diffugion process associated with the regular
Dirichlet space (4, (H*(D)) on L3(D) can be characterized as a unique solution of ‘a
‘certain stochastic differential equation.

§0. Introduction

Let D be a bounded domain in R* and a;(z) 1<4,j<d, be bounded Borel
functions on D such that the matrix (ay) is symmetrio and uniformly. positive
definite on D. Oonsider the following form ’

& (u, 'v)—-—- 2) @i (@ )au(a;) aqé(‘:’) dw, u, v€ H*(D), - (0.1)

where H*(D) is the Soblev space of order 1. It is easy to see that (&, H*(D)) is a-
Dirichlet space on L?(D) which is local but not regular. However, if 0°(D) is
dense in H*(D) and if we redard (& H(D)) as a Dirichlet spaceon L* (D) rather
than on I2(D), then if is regular because the &y—norm (&1(u, v) = =& (u, v)+ (%,0))
ig equivalent to the Sobolev norm on H*(D). Thus according o Fukushima’s
Theorems ([2], Theorems 6.2.1 and 6.2.2) there exists uniquely (up to the
equivalence) a do-symmetric diffusion process M={Q, F, F1, X, Po, »€ D} on
(D, #(D)) whose Dirichlet space is (&, H*(D)).

The purpose of this paper is to characterize X, under some assumptions on D
and on (@), as a uniq{ue.solutioﬁ of an SDE (stochastio differential equation) on
D. Our proof of this resulb is essentially based on a generalized Stokes formula for
fanotions in H(D) which igestablished in § 1. In § 2 we show that for each v&
H(D), the restriotion on 9D of ibs Quasi——c'onbinuous modifioation & on D is a
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version of its trace » (v) on éD. The main result is proved in § 3.

§1. A Generalized Stokes Formula

Let D be a bounded 0°~domain in R%. Tt is well known that 0°(D) is dense in
H'(D) and D is situated on one side of D, where H*(D) denotes the Sobolev space
of order 1, i. e. : | : -

H(D) = {uGL”(D) EL”(D) 1<i<d}. @

Let n(a) = (ni(x), oo, n4 (cb)) denote the unil outward norimal veotor of D at o€ oD,
Tt is well known that for «€ 0*(D) we have so-called “Stokes formula”
I 3";{(;:7) dm—LD v(@)n;(@)o (de), o 1.2
where o (de) stands for the “area measure” on the houndary. 8D. The following
Jemma extends this formula to the case where v & H? (D): | |
Lemma 1.1, Let veH JL(D) We denoie by v(v) the trace of v on the boundary
aD Then we have

J a%gf) dw = L v(v)(w)ni(w)a(dm), : - (@.8)

~ Proof Oonsider the followmg symme’ﬁrlc form on H(D)

A a(u v) = éj 3u(a;) 2v(a) da;-l—J u(w)fv(m)dm.a’

ow;
Tt is well known that there exists a unique «€ H 1(D) such that
- a(u, v) =J’ »(v)do, V?vEHl(D)‘, o (1.4)

where »(v) is the trace of v on’dD which is in H"”(@D) (see [1], §37) Since

a(|v|, |v])<a(v, v), we have . ,
Jop 1@<, (loldr=atu o)) </aGhw Vallol, oD <ulalole.
(1.5)

This means the mapping v—>»(v) is continunous from HI(D) into Ll(aD da)
Now suppose v& H'(D). Let 0,€0?(D), n>1, such thab || fv,,—rv" >0 (n—)oo)
As v(fv,.) =,|sp, We have by (1.2)

L; aqg, g) dy= f ~ v(v,.) (m)fn,;(a;)o'(da;),

from which and by le’atlng n—-)oo we get (1.3).

The following result is essential for proving our main result in § 3.

Lemma 1.2, Let w;,E Ol(D), 6, j= 1 , d. Then for any w€ C*(D) and vE
H*(D) we have - L : S . - : .
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v ou
e;EJ‘ 2 ow;, Ow; ;@

- j fv(w)Au(m)dw+J » () (a) Ew,,(m) " (a)o (do) (L.6)

where

9 T, e Ou(@)
Au(a) ‘;:]1 prs [a,,(a;) or; ] | _
31;:(:0) , 6=1, -+, d. It isobvious that »,€ H(D)
4

Proof Let hy(x)=w (w)é} a;(x)

and we have

v (k) (@) =» (8) (@) 3 au(a) 22, w€ 0D,
Thus by (1.8), we geb
3, 28D ar= 3 o) @ F0u(a) 2 o) @),
whioh ig just (1.6). ‘

§2. A Remark on Quasi C*~Continuous Modifications

Let D be a bounded 0%*-domain in R?, Consider the following form

e -3, 20 2 g,

It is known that (&, HY(D)) is a regular local Dirichlet space on L?(D). Thus
each v € H*(D) admils a modification » on D which is quasi-continuous on D. On
the otherhand, if D is a O*~domain suoch that D is situated on one side of 9D, then
each v€ H*(D) has its trace » (v) on @D. The following lemma tells us that we
have actually o|,p=v(2), o(da)~a. e. |

Lemma 2.1, Let D be o bounded O*~domain in R?, .

(1) The “area measure” o on 8D is of finite energy integral in the sense of 12].

(2) For each v& H(D), the restriction on 8D of its quast—consinuous mods, ﬁcatmm
% on D s @ version of its trace v(v) on 2D 'wv;th respect to o (dw).

Proof Put

&1(u, 0) =&y, v)+ j _4(@)v(@)dz, v, v€ HX(D).
By (1.4) there exists a unique € H*(D) such that
E1(y, v) =LD v do, Yv€O (D) N H*(D),
Thus by definition o is of finite energy integral and we have
&:(u,0)=| 5(@)o(da), v€ HHD)

(see [2], Theorem 8.2.2). This means in particular that the mapping v—>v|,p is
continuous from H*(D) into L'(2D, do) (see the proof of Lemma 1.1), Butb this
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mapping coincides with the trace mapping » on. 0°(D), so they are the same
on H'(D). Thus we have &|,p=v(v), o(ds)-a. e., for each ve HY(D).

§3. The Main Result

- Let D be a bounded O®-domain in RS, Let ay(z), 1<4, j<d, be functions in
0*(D) such that the matrix (@) is symmetrio and uniformly positive definite on
D. Consider the regular Dirichlet space (&, H*(D)) on I2(D) which is defined by -
(0.1). Let u={Q, &, F:, X;, P., «€D} be a do-symmetrio diffusion process
assooiated with (&, Hl(D)) :

Let o= (o) denote the square root of (a,,) and pub

b(o) =3 21 2D, 0,(a) =3 au(a)m(@) 3.1)

where n(®) = (ns(z), -, ma (a:)) denotes the unit outward normal vector of D at a;E
aD. Consider the following SDE on D: ‘ .

X,_Xo+f o(X,) dB, +j B(X,) dm-—j:c(Xa)dLs, 3.2)

where X,= (X}, «++, X?), B;= (B, ---, B}) and L are stochastio processes satisfying
~ the following conditions: . '

(i) (B,) is a d~dimensional Browman motion,

(ii) (I) is a continuous non-negative increasing process satisfying.

[ Lo(xDaL=L, | (3.3)

(iii) (X) is a continuous process taking values in D.

A solution of (3.2) is understood as a system {X;, By, L} defined on a filtered
probability space (2, &F, &, P) and satisfying the conditions (i)—(iii) and
(8.2). The following theorem is the main result of this paper. - |

Theorem 8.1, Let u={Q, F: X: PuoC D} be @ dm—symmetmc d@ﬁuswrm
process associated with (&, H 1(D)).

(1) The “area measure” o(dw) on 8D is of finite energy indegral with respect to
(&, H*(D)). |

(2) Let (L) be the POAF (positive continuous additive funciional)associated with
the measure o. Then there is a d-dimensional process (B;) and a Borel set N <D of
2610 &1—capacityssuch that, foa" each a;E D\N, the system (X;, B;, Ly, Ps, is a solfwtq,on
of SED (3.2). o :

(8) Let .Sf be the L*-generator of the Dirichiet form & on I? (D) Put

90—{u60 (D) __] _o}

where
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(w) 2———-%1(@, x€ oD,
Then Do D(ZL) and, for ue @0, we have
Lu= —-Au fwhere Ay= 2——?—-—[ -—@i—]

ww
w7 Ox; ow;
Proof (1) By Lemma 2.1 (i) or (1.5) we have

) M@ @ <OVET D, v ODNED), 6.
Wthh means o-(dzv) is a measure of finite energy integral with respeot 1o
(¢, HX(D)) |
2 Let (L;) be the POAF assooiabed Wlth the measure a(da;) Then by [2,
lemma 5.1.4], one has

P, [Lt=fI;D(X",)dLs, w;o ] =1 | (3.5)

~ for. each € D\ Ny, where N, is a set of zero capaoity.
For any f, g€ %,(D). (%, (D) stands for the set of all bounded Borel funoctions
on D) put

w(4) =me<.m> o (do) + jmg@s)dw, AcBD).. . (3.6)
Then » is a signed measure of finite energy integral and the CAF associated with »
is ' | ST T
(" yx fo(Rds, @
| a= [ SRYAL [ g(Fds, 3.7
Now let u €0?(D), put ' T
d o T = ou . : S .
du= 3 [a?j——aﬁj}_. S )
Then Au € 0(D). Put .
v (da) = —2 cﬁ(m)__. cr(dm) +._ Au(m)dm (38.9)
Then the CAF assooiaved with » is
== SoZ) 2L R+ j Au(E)ds. (3.10)
Aoccording to [2, Lemma 5.1.4], one has for any ve H'(D) i
lim lf E,,[At]q)(w)dw=f’E(w)v(dw). @B
t40 $JD D .

On the 6ther hénd by Lémma 1.2 and Lemma 2.1 (-2)- wo have for any fvé H* (.D)

& (u,v) = ——I fv(a;)Au(a;)clw+j‘ fv(:v)E c;(m)——-—- (z)o (da) = ——I fv(w)v(dw)

| | (8.12)
Thus (3.11) and ( 3.12) give us
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t40 tJ e [A‘]”(w>dm="éa(“ v), v€ HY(D). (8.13)

According to [2, Theorem 5.3.1] there is a set N 2€D of ZOT0 capamty such that,
for each € D\N 2, the process
.. | Mwl—u(x,) u(Xo) -4 | L (8.18)
is a Py,—martingale, In addition, by [2, Theorem 5.2. 3], we have for any 4, v, f G
D), |

f f(w) P MO (de) = E(uf, v)+E(of, u)—& (s, )

- [ 10 3, ) 22 263, g

Where p(M “, M™) denotes the signed smooth measure. assomated wﬂih the OAF
(MW Y, Therefore we have '

(M Mm»—J (i:'a' ou )(X )i,  eam)

A
sq=1 on; 3
Now leb u,(a) —-m; Mé=M™1_ Then we have by (3. 10), (3 14) and (8.15)

Xs —Xi— J b(Xs)ds+J 0:(X o) 4L, | | G iG)

<M %= (X )d, | 3.17)
Let (a;) be the inverse of (o) and pub - |

B n]jﬁn ’;-3 oc,j (X(Io—-i)t/2"<Mkt/2”'— M(k-—-l)t/2”} ) if the limi éXSi‘bs,
. 0, . ‘ otherwise.
Then for o€ T)\ N, the process B;= (B;, -+, Bf) is a d-dimensional Brownian motion
under P,, and one has o
d_(t p—
M= 3 0u(X)dBY, Ps. . B CRT)

From (3.16) and (3.18) we see that, for € D\ (N 1UDNy), the system (X;, B, L,
P) is a solution of SDE (3.2). S
- (8) Let uE Dy. We have- AuE I2(D) and by (1.6)

@@(u v) ———( Au ), IvEHl(D)

| This means € D(¥) and $u=-—-Au (see [2], p. 19).

B.e_mark. If the SDE (8.2) admits a unique weéak solution for any initial
distribution,; then the oorresponding'family of probability measure {Q, o€D} on
' the sample space is called the reflecting diffusion on D with the directions ¢(z) of
oblique reflection at the boundary. In general, such a reﬂeotmg diffusion does nobt
exist. Bub the above theorem bells us that the family of probability {P,2€ D} can
be regarded as ananalogue of such a reflecting diffusion.
The next theorem gives us a sufficient condition. under Wthh the above
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mentioned reflecting dleusmn on D exsits and canbe regarded as the dz-symetrio
diffusion associated with (é” H Y(D)).

Theorem 3.3. If furthermore each a; bs O"”(D) then the SDE (3.2) admits
@ unique strongsolution. We denote by Q the spacce of the contimuous fumctions on Ry
w'bth mlfwes'm D, and let Fi= cers. s<t}, F =N\ Fi, where X (w) w(s) ts the

te IH-

«cooa'd'mate fpfrocess Then {Q, &, 1, X4, Qo, z€ D} ds o d@ﬁ"us’bon process associated
with (&, H* (D)), where Qg s the law of the solut'bon of (8. 2) 'w'btb, X 0=2. '

Proof Smce <c(m), n(z))= 2 Gy (x)n,(w)n,(m) >8>0, the first assertion of

‘he theorem. 18 a fact proved in [3] W1 shout lossof the generahty, the diffusion
‘process associated with (&, H*(D)) can be constructed on (Q, F, F,) with bhe
coordinabe process (X;) and a fimily of probability measures {P,, &€ D} Thus by
Theorem 8.1, for each x& D\ N where N is a-Borel seb of zero capaciby, one has P,
=Q,. Therefore. {Q F, Fi, X4,deo€ D} is a diffusion process assomated W11;h (c‘”
HY(D)).

Remark. Under each @, (Xt) is a semlmartmgale because it satisfies the
SDE (3.2), where (Lt) and (B;) can be oonmuoted ag follows. Since we see easily

j T,p(X)ds=0,
by (8.8) we have
f : o(X )dLo=— [: Lp(X)dX,.

Let di(x) =i21 Bii(2)n;(w), where (B;;) is the inverse of (a.;). Then {ce(), d(@)d>=1,
and , . | ' :
L=~ g}jﬁ Lo(X)d(X)dXs, (3.19)

After that, we pub . ' .
Mt-—-Xt-—XO—J B(X)ds+ J (X)L,

Then we can consbruct the process (By) just as in the proof of Theorem 3. 1. In this
way we have constructed a family of solutions {X, B;, L, P,, € D} of SDE (3.2)
on the same space (2, &#, &) with the same proocesses - (X ), (B;) and (Iy).
According to Theorems 3.1 and 3.2 the process (L;) is necessarily the PCAF
assooiated with the measure ¢. This fach can also be proved by bhe followmg
argument. Let € 0*(D), v€ H*(D). From (3.2) and by Ito’s formula we ha,ve
{(T) denotes the L2—sem1group of the dlﬁ’usmn) :

&, o) = hm—-(u Ty, v) =lim j o (&) Ba (@) = u(X,)]da:.

= —lim 7[ m(m)E,UoAu(x,)ds]dm

t-0 2
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+lim _H v(w)EwUté

-0 0 5 Ow;

(X )e(X )AL ]ozm

t d au
=L (4, fv)Ls—i-hm-— ] @(w)El,UOg;% (Xs)ai(Xs)_dLs]dw
from which and (3. 12) we golb

ety 1[ v(@) B IE (X))o (X)L ) do
=LD5(0J‘>;§ a%if) 0i(2) o (dw).

= d
In particular, if we take w€ 0?(D) such that ] —g—:—- ¢;(w) =1 for o€ 0D, then we
=1 A
have - o .

mgﬂ 0(0) Bo(L)do = f @0 (de).
>
This means (L) is the PCAF associated with the measure ¢ of finite energy

integral (see [Lomma 5.1.4).
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