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UNIQUENESS OF OPTIMAL QUADRATURE
FORMULAS FOR W7 AND THE
FUNDAMENTAL THEOREM OF
' ALGEBRA FOR PERIODIC
MONOSPLINES

Huane DAREN (FA)* Fane GENSUN( B BTN ®

Abstract

This paper proves that the optimal qua.dra,ture formulas of type (r1, «=+#,) for Wi is .
unique, and the extremal function is characterized by its oscillatory property. On the
- other hand, the fundamental theorem of algebra for periodic monosplines with odd.

multiplicities is solved

§1, Introduction

For pre-assigned mulbiplicities (rof, 1< rm<m, and fEWP, consider the

quadrature formulas of type (11, **+) Ta)®
1 n Tl n .
[l #@) =R 2 (- D auf (o) B, 220 @

where :
Wi {f; fE€O™A[0, 11, @ abs. const,. |f™<1, f2©O) =),

j=07 1, ey m—1}, 1<g<oo. ‘
Nikolsk1ii®®, Sohoenberg™ and Bojanov®™*# studied the following nonlinear extremal

problem:
W B3 13, -, )i =inf sup [R(H)],

Gin® fewy
and they discussed the existence and uniqueness of the parameters {ay, »}, which
attain the infimum of (A), i. e. the exisbence and uniqueness of the optimal
quadrature formula (OQF) of type (ry, we, 1,) for WZ. Bojanov ‘proved that the
OQF of type (ry =, ra) for W is existen® (1<g<oo) and unique (1<g<o).
Then we have established the following , ' | v
Theorem A, For given (r)s 1<2[(ri+1)/2]1<m, the OQF of type (11, **°5
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Ta) for W1 is ewistent, and the optimal coefficients {ay;} satisfy the conditions
a; <0, §=0, 2, -+, r;—1, ¢f r; és odd, E 1.2)
@ r-1=0, @53<0, =0, 2, =« 7;—2, &f r; ds even. :
It is well-known that the extremal problem (A) is closely related to the

minimal problem in M,(ry, -, 7,), which consists of all periodic monosplines M
%), of the form

o n_ re-1 ) ‘.
M (5) "““'{"EE @Dy (b — ),

‘where
By < ooe LT <L 434, §w¢o+1=0,

D(f) =21mg-m kf:l k=™ cos (2hat— mar,/2).

We solve the uniqueness of the solution of (A) in this paper.. Our second goal
s bo disouss the fundamental theorem of algebra for M. m(ry, o To). Schumaker™®

Scheonberg " and Miechelli ™! proved the following perfect theorem for the olass
-of non-periodic monosplines Np(ry, +++, ),

m—1 n ri—1 '
Nou(ry, oo, 1r0) ={M(t) ={"/m| + 20 c;t’"—i—:z: anﬁ(t-mg)i-,, 0oy <o <, <1 }
jz = j: ]
Theorem B. Given 1< <m, lot

. 2N=§;(”'z+("i), ' | " 1.3)

where o;=1 (if r, is odd) or O (if r, is even). Then for any ME N,(ry, «, 1), the

total number of zeros of M is no greater than m-- 2N, Conwersly, for given 0<<iy<oeo
<bowim<<1, there exists MC Nyu(ry, +++, 1), such that
| | M%) =0, =1, -, m+2N.,

Furthermore, M (t) is uniquely decided by (4)7**Y if and only of oll (v)7 are odd
But, in the periodio case, the uniqueness is not true. Zhensykbaev® proved
Theorem C. Lot MEM, (1, ---, 1). Then M has ot most 2N zeros in o period

e _

QConversely, for given Byl oe e Ztay <Lty there emist ewact two monospléines M;(¢) €
Mn(1, -, 1), such that |
M,(#) =0, 6=0, 1, «+, 2N; j=1 2.
Definition 1. We say (ry,

w1, Tu) U8 k-cireular if kb os the smallest naiural
number that makes the equality

. ('l’1, ) ’)"n) = ((rk-l-l} M) "I‘,,, T1y **y frk)
hold; we use the notation '

oL =j§1(fr;+0',-).

For an n—oéreular (ry, -+, ) we also say that thet it is non—céreular

(1.4)
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Remark 1. If ry=--=r,=p, and p is odd, then 2L=p+1. If (14, °2o, Ta) is
non-gircular, then 2N =2L. : -

Definition 2. Giéven fE€O0[a, b], we say f aliernates r thmes, 6f there ewist a<S
1< e LEry1<b, suoh that

F&) = (=15l fle

where o=1 or —1, And (£.)i** are named aliernate pobnis.

Our first main result is as follows.

Theorem 1. Géven (r)%, 1<2[(ri+1) /2] <m, the extremal problem (A%

(4% inf{|M|., ME Mp(rs, =, Ta), 2y = 0L g < LT <1}
has @ unbque solutton, which. s characterized by (1.2) and the oscillatory propersy, i.6.
GE Mu(ry, ooy Ta) U8 the solution of (A*) 6f and only 6f there ewist 0<E&1<<Eaw<<.
1, such that | '

@i i1 <0, Of T; U5 0dd,
 @y,r1=0, 8f i Us even, odd
| ¢ (&) =0 (=D bl

where =1 or —1, 2NN is defined ¢n (1.3).

Aoccording to the duality relation, Theorem 1 is equivalent to Theovem 2.

Theorem 2. Given (r)f, 1<2[(ri+1) /2] <m, the OQF of type (11, *+, Ta) for
W is unique. | : |

Corollary. Supposs that T1="""=Ta=0 1<2[(p+1)/2]<m. Then the equally
spaced knots | :

mf= (’i/—j)/%, ®=1’ AR
are uniquely optimal knots of the OQF of type (o, =+, p) for Wi Moreover,

D)+ SaDari() -

Remark. Barrar and Loeb obtained the analogy of Theorem 1 in non—
periodic case by using. the fundamental thoerem of algebra for non-periodic
monosplines ™ (of. Theorem B). But the attempt to prove Theorsm 1 by
establishing the fundamental theorem of algebra for periodic monosplines with.
odd mulbiplicities failed. We prove Theorem 1 by using the topological degree.
Then we prove the following Theorem 3 by use of Theorem 1 and the result proved
in [6]. | , -

Theorem 3. Suppose that (r:)1 are ol odd, 1<ri<m, and (g, *++, Tn) B8 b~
circulars Then for any given 0=ty <L oee<Boy<l, there ewist ewact 21, monosplines
M) dn Mp(re, Tn), SUch that ' ' '
- M,(t) =0, 4=1, -, 2I; j=1, -, 2L,
Remark. In the cage Of rp=-+--=1,=1, We obtain Zhensykbaev's result by

E(WT; p, ++, p)=1/n"min

use of different method.
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§ 2. Preliminaries and Proof of Theorem 1

For given m;<~--<w”<-1+m1, 1<r;<m, we denote
Yo T 1= =Y, =y, 0=1, «--, 0 Yurj=y;+K, vE Z, (2.1)
where my=0, m;=ry+++4r; (6=1, - n) K =ri++r,=m, And we denote by
Ty, v, Dy
S < b ) the space of periodic polynomial splines with multiplici‘vies (ry)¥
Ty, ***y Ta ]
knots (w,)l, respeehvely Further Teb A
© ser. Dy ser Ty
Mm< b ’ >—"_Dm<ﬁ ml)“S(t) SES ( >.
. T1,~"'1 T frl, s Ta
It is easy to see that
M(ry, ooe, 75) = (e, < ) for some @< -+ <@, <1-+a1}.
: T1y ***5 Ty
Lemma 1.%4 ;) If ME M, (ry, -, 7o), (1<n<m—1, b=1, <+, m). then M
has at most 2N (2N s daﬁned én (1.3)) zeros én a period.

Ly, '"y Ty, . ' . . .
it) IfMecM < ! >has ewact 2N zeiros, say by <+ <boy<L-+1y, tn @ period,

Ty, *°°, 0"?,

© then there exists o 'cycllec—armngefrﬁent @HEY of (4)3" such that

Zs:ﬂ<m7"’<2Y’-97(;P'i'1+“i-n %=11 Ty, (2.2)
where =0, ny=2(r;+ay), t=1, -, n '
» =1

iii) If all (r)} are.odd, ME M,(rs, -, 7.) has exact 2N zeros on o pervod,
then the coefficients of M Satisfy '
Wiyr-1<0, G=1, «o+ n, (2.3)

Lemma 2. Suppose thot 1<r,<m-—1, ‘ (6=1, < m), %o~i=2N—-1, fisa
”).Thm the following 6) ani i4)

conténuous fwrwt%on of 1-pertodic, s;ESn <
,rly a--’ T'n

are equivalent.
%) (@) f—s alternates at least 2N times én a pertod, and
(6) There exisi at least j+1 olternate points of f-s; ¢n each tnterval as

Wty Yisme144) -

0-0’ wﬂ

). (For

the déﬁnfz}l;f&onv of strongly unique best approsimatéon we 16 fer reader to [13]).

: . -
ii) s és the strongly unique best approvimation of f from Sm< b
g . T1, ***y Ty

Proof We denote the sequence of functions :
1 {Dn (6= @) = D3 =) Yiea, {Dm-s(G—w), j=1, +«, r;—1; 6=1, -, n} by

{u; (t)}fi’l 1. Then 8 {4,(¢)} is a base of weak Chebyshev subspace s (rr o ::),
1 %
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and for 3;< - <fgy_3<1+¢;, the condition

dot <u1! -y uzN_i)#O 2.4)

b1, ***y baw-a

holds if and only if there exists some oyolic-arrangement of (£,)i¥7%, say (61",
satisfying . |
£ <Y<y 5=1, oo+, AN —1, (2.5)
Now the lemma may be proved similar to Corollary 1.14 of [19] by using (2.5)
and Theorem 1.4 of [19]. The details are omitted.

Lemma 8. Suppose that all (1:)} are even, 1<r<m—1, :2N #§1¢4. And let »

= (o, -, @) b given, (o, €[ 7% )
ri—1, ra, ey T .
1) M(w, 8)=—Dn(s—21) —s(a, £) - (2.6)
is the solutéon of ewtremal problem (B), -
int {Ja01; MO =~ Dui-2)—5(®), sh €8 =™ 2N ®)
- 2 %%y Tal :
of and only ¢f M (w,_ §) alternates e:va,cf, 2N times in a period,
i) If (2.6) s the minimal solution of (B), then s(@, t) is the sirongly unique

. . @ ese o
best approzimation of — Dp(t—a1) from Sy < 1, D2, ***y Tn
| ’ . 1= 1! T3y ** 'y Tn

). Hence the solution of
(B) is unique.

Proof Suppose that M (w, t) alternates 2N times, and the alternate points
are (£,)?Y. Then (£,)3" are the zeros of M’(w, t). Acocording to Lemma 1, there
exists some oyolic—arrangement of (£,)5", say (£7)3", such that |

§i<yi<&ism—y, b=1, -+, 2N, ' - (2.7)
If M(w, t) is not a solution of problem (B), then there is some '

M®EM<1“””“>,
-1 , Tn

such that .
1M
8@y =M (w, 8)—M(3).
@y, B2, *°°, Tn :
-1, 7y, **? Ta
0, ('l; 1, +-«, 2N). We know from (2.7) that there existis some’ oyolic-arrangement
of (2){", say (zé)?, such that ‘ -
' Vi<t <UYigmy o=1, +--, 2N. - (2.8)
Thus (2:)3 must be isolated zeros of &(¢). This contradiots the fact that

Let

Then &%) ES’ ( ) and there exist #,€ (§;, £i.1) satisfying 8(z) =

' U1, La, *°*y Tpn . . :
Su < - 1’1. 2¢ T ) ig a 2N —1 dimensional weak-Ohebyshev space,
—1, Tgy =y Ty .
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‘fv w , ooe w . ’ .
Oonversely, since ;S‘,,,( b TR T > is a weak Chebyshev space, there exists

Tl__lr Ta, seey Ty

, @ ooc' a;” . . )
s(z, t) € Sm< " _q » . ), such that s(3) is a best approxim ation of — Dp (¥ — ;)
y T2, IR n .
’ Ty, Ta, ***, Tn = . .
from. Sm< ), and M (4) = — D, (6 — ;) —s(t) alternates 2N times in a
Ty=— 1)» rr2) R Tn .

period. Thus the alternate points (¢;)3¥ satisfy (2.7). Therefore there exist at least

j+1 alternate poinbs in each interval as (y;, y,+,,,,_1+,) By use of Lemma 2, s(¢) is
the sbrongly unique best approximation of — D, (t —a3). Hence M () =M (s, 1).
The proof is complete.

'We prove the uniqueness of the soluhon of extremal problem (B) by use of
the theory of topologmal degree, For the sake of eomple’oeness we recall some
properties of topological degree ©'7'.

» Let D be a non-empby open bounded set in RB", D and @D be the closure and

boundary of D, respeotively. Let ¢ be a continuous m@pp;ng from D into R*. Then
for ¢E¢(oD), the degree of ¢ with respect to D and ¢ is defined fo be an integer
value and denoted by deg(¢, D, ¢). It has following basic properties.

i) Suppose that ¢ is differentiable at » and that det (qS’ (@)) #0 whenever x &
D and ¢ (@) =c. Then there exist a finite number of poihts, say o€ D, ic I, where
¢(a*) =c and deg(¢p, D, ¢) = 2 gign det (¢'(z%)). '

ii) Ifdeg(¢, D, ¢) #0 bhere exists ab least one point #€ D for whioh ¢(m) =¢.
iii) Leb ¢(w, a) be continuous on Dx[0, 1], Furthermore, suppose thab
d(w, &)+#c for any x€0D, 0<a<l. Then deg(é(:, «), D, ¢) is constant
independent of «. |
“For o= (wq, *, @), 0=23<+-<w,<1, denote

Q.= {ZER™, z=(vg, ***, @), 0=03< <, <1}, (2.9)
Given even numbers (r)f, 1<ri<m—1, define mapping '
()b(w) (b2 (QI) ’ b (w)) @ E Qm (2 . 10)

where b;(@) is the coefficient @;,._y of M (w, £), the solution of minimal problem (B)
for w=(0, ). In accordance with Theorem A, the uniqueness of (B) is equivalent
0 the uniqueness of the solution of nonlinear equation .
¢ @) =0. B (2.11)
We call z € Q, satisfying (2.11) the oritical point. '
In order %o apply the topological degree, we must define an open seb D, such
that & is continuous on D and (2.11) has no solution on &D. Oonsider the open
subset Q,, of Q,, | ‘

QM={Z’€Q”, w¢+1—m;>s, ?./=1, cee, My w,..,;1‘=1}.



432 ' GHIN. ANN. OF MATH. Vol. 11 Ser.B

The following lemma shows all oritical points lie in Q,, with some &>0; therefore
‘we may define
deg (¢, Qn, 0) =lm deg(qS Quey 0)0 (2.13)

Lemma 4. Suppose that (a",,),, are odd mult@pl'bc%’bes Then MO 0Ty, oy Tn) S @

compact set, where
MO(ry, o+, To) =AM E Mpu(ry, ++, Tu); M has 9N zeros in [0, 1)}.
Thefrefoa”e thefre ewists an §>0, such that the 'bnagurzl@t%es .
Wiy —@>28, b=1, <=, 1, Tpa=1+1 (2.14)

hold for all M€ Mp(rs, =+, Tw). ‘ ,
. From Lemma 4, we know that all eritical points lie in Q,, with the & defined
in (2.14). V

Lemma 5. Suppose that even numbers (n)l satis fy I<ri<m~— l Zfr, =2N. For

§=1
fiwed o= (@1, **<, @n). consider the mfmfbmal problem
1Df{"M“<z)7 ME M, ( v, S ©
__._[_ "'2, see, Ty
awhere
o<A<l.

Then (O) has o unbgue sblutwon foq' ewoh NE 0, 1], the ménimal function M(w, 1)
has 2N zeros im @ period.

Pfroof “When A=1, the assel’ulon comes flom Lemma 3. It 0<ALl,
striotly convex norm; therefore (C) has unique solution M (@, £). Note that

M,(w, t) is a piecewise polynom ial of degree m with leading term #"/m!. Thus
M, (w, t) only has isolated ZOT08. Supposeé that for some A€ [0, 1), M +(@, ) only has

o1, Lg *°° D

2g<2N zeros, say (2,)3% in a period. Since ;S’,,,( >1s a 2N —1 dimen-

__.]_ T, ...” To
‘ | ' ) ...7 w’n
sional Weak Ohebyshev subspaoe we can oonsbruot an s(t) €8n < * 1% >’
. : - ')"2, oeey Ta
s%0, such that
s(8) « M, (w, £)=0, V4€ [0, 1).

Leh o .
M. (@, 1) =M, (@, 1) —3s(t).

Then M,(=, %) EMm< Bap Py 11y Be ) Evidently,
ri—1, re, = Tal
HM;,({B )“(n)<“1“17»(‘1’; Il

holds for sufﬁclently small 8>0. It contradiots the assump’ﬁlon of M, (, t) bemg a

minimal function. The lemma is proved.
Lemma 6. Lot ¢ be difined in (2.10). Under the assumption of Lemma B,

deg (¢, @n, 0) =(—1)" (2 18)
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Proof Aeeoding to Lemma 5, for each o= (mi, . a;,.) and A€ [0, 1], problem
(C) bas unique solution M, (=, 7). Let
F(4, o, \)=|M\(, *)
where A(w, A) is the coefficient vestor of M,(w, t)
Az, A) = (a(@, X); @y,0(@, A), =+, G1,r-2(, A); B2,0(2, ), *=*, Ggyr-1(@, A); oo
@,0(®, M)+ Guyr,-1(3, 1)), é @i,0(w, A) +1=0.
Then it is eagy to see that the mapping
: Q, %[0, 11->R*: (&, A)—>A(z, A) .
is continuous (of. Lemma 4.2 of [16]). Oongider the mapping qS defined on Q,%
[0, 1]—>R", |

)

¢ (@, &) = (bau(®), -+, bua(2)), | (2.16)
where by, () is the coeffioient @i, r1(w, A) of My(a, t), (6=2, -, m). According to.
Lemma 1 and Lemma 5, all the oritical points of equation (2.16) lie in Q,, for
each A€ [0, 1]. Thus, we may prove as in [16] that ¢(z, A) is a continuous funchion
of ,.% [0, 17. Moreover, by Lemma 5, ¢ (=, A) #0 for eaoh mE 0Q,:, and AE [_O 1]. |
On the other hand, we know from [4]
deg (-, 0), L, 0) = (=)™, L
2. By use of the homotopy invariance of topologmal degree we -

obtain
deg(¢(+, 1)y Qu, 0)=(=1)"™

Hence .
V deg(‘f’(\‘r 1)_’ Q. O) =linl:)1 deg(¢<°r 1)_: Qe O>=(_l)n—1-

Lemma 9. Suppose ihat all (1)} are even, 1<r<m—1. Then P(z) s
défferentiable at crisical points, and ' '

sgn_det(aqs(w>> (=11,

Proof Assume that o* - (wy, -+ a;,,) isa crltloal pomt of qS(a;) Then_
M. (t)=a +22% s (8= 27), |

and the mmlmal element of
. w*’ (U*. o, (IJ:
mf{uan; Me M,,,( v )
’ . ‘ . “:[r_'lv——iy (7.21 “'v /)"n
satisfies _ o L
v ai f‘_l_O '?Icl "','.-"nl.

Let h= (ha, *+, hn); With hy=0,- and Ilhl[ be the Euchdean norm of A. By Taylor
series expansmn we get S ,

‘.M,@;vsM,l'(t.>-+~o<~u-hn»>,:,-_ e

where

M=+ 5 S A D (1 et B FADu 2=
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Obviously .
of, wat+hg, *ov, zv’,ﬁ+h,,)
Irl._..l, Tay ***y Tn °
Suppose that M(¢) =M (¢*+h, ¢) is the minimal elemen? in
| <m;°, Wyt by, v, Ghthy )
m °

me Mm(

=1, 1y ooy Ta
We claim bhat- -
| M — M| =0(|2]). , (2.18)
Assume that (&) are the alternate points of M,(s), i.0. '
(=DM, (&) = |M,]w=:b, o=1or —1, (2.19)

| B‘rom (2 17) and (2.19) we know
(=DM () =b+o(|R]).
Agsume that
M, (t)—-'——Dm(t w1)~s(m t) .
Then s(a®, #) is the strongly unique best apprommatmn of —D,,,(t @) from

*

s, < m1,1w2, v, T > From (2.4), (2.5) and (2.8) we know that for each s€
T1—1, Ty *=*, Tn

wf, @%, ore, Th | o o
Sm < ! ), (s0), there exists at laest one ¢, such that (—1)'os(§.)>0.

To=~1, Ta, **+, Tu . '
Therefore, if we denote

p=min max( 1)'eS (&0),

' lsi=1
then p>0. Consequently there exists a constant 0>>0, sueh that.

max (~1)'os(E) >200sl-, v3esm< % Ty s T )

—~1, 1y oo, 1
i. e, , :
@y, @z, v, Ua
max (~1)'o (M~ 3D (g,)>20||M M., VMEM, < )
1<é<2N 1—1, 79, =0, 1y

From fhe continuity, we _qbtam

max (—1) ‘o (M1~ M)(E‘)>0||M1 M., VMEM,,,,( o1, @3, °**, Tp )

1<é<2N 1_..1, Ta, *** Tn
(2.20)
'On the other hand, we know from the definition that
| M| ><|Mle <BFo(]A])..
Henoe .
(=DM E) —o(JAD <b<(— 1)‘GM1(§¢)+0(||hll) | (2.21)
From (2 21), we conoclude thatb "
(—1)'o (M=) (€Y <o(|Al), 6=1, -, 2N. (2.22)

And (2.20) and (2.22) give the conclusion (2 18). Therefore M(a* +h )] may be
wribten in the form of
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<

’"(a;;- G 1) D-s (6 — 05 — )

= LSy

M(a&"+h, t)=w”+§]
+ 3yal oDt —ai— 1) +o(IhI)

= :!)'(“’*“‘hy t) -+ § azrt—2hiDm—?4+1<t_m:_hi) +O("h"),

where 4% _;=0, (4=1, -+, n). Obviously g'(m*+h, ¢) has no contribution to (by(a®+
k), +++, b, (a*+h)). Hence

b, .
o (@) = Ghrizy §=2, o m,

abi ( “) O 'i’y k=2; oy 1 ?’#‘7'7,

e. —Z—% (a") = (ab‘ (a;”)) . is a diagonal matrix. Since ai,_2<0 by (2.3), we
conclude that _ - ' |
sgn det( 22 (a;*))= (=),
v -
This completes the proof.

Proof of Theorem 1 By use of Theorem A, we know that to prove the
tiniqueness of solution of extremal problem (A*) we only need to prove the
nonlinear equation (2.11) has a unique solution in the case of (r;)3 being all even.
According to Lemma 6, . '
- deg(p (@), 2, 0)=(~1)",

Lemma 7 tolls us that ¢(z) is differentiable and sgn(det ¢'(2)) =(—1)""%. at each
eritical piont ». Hence the equation ¢(z)=0 has unique solution, in accordance
‘with property i) of topologloal degree Consequently, problem (A*). has unique
solution.

On the other hand, suppose that M () is a monospline wnh odd multiplicities
(r5)} knots - (w,)l, (x,=0), and M () has the oscillatory property. Then from
Lemma 8 we know that M (¢) is the minimal element in Mm( 1, oy T O ) .

: . 11, Tat1, oo, rpt-1

Therefore the knot vector of M (#) is a oritical point of equation (2.11). By the
uniqueness of critical point we know M (%) is a solubion of problem (A*), i.e. the
minimal fanotion of exiremal problem (A4*) is characterized by the oscillatory
property. The theorem is proved. |

§ 8. Proof of Theorem 3

Lemma 8.  Suppose that 1< fr-¢<~m-'- 2, and r; are all odd, 4=1, +, n. Then
for any given 0=t <lp<oo <Pox<l, there emist K< -+oo monosplines M;(t) i _
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M on(ry, =+, 14) satisfying o o
My(t) =0, =1, «, 2N; j=1, o K. (3.1)
Moreover, the number K s éndependent of the choice of poinis (¢)3, »
Lemma 9.1 Assume that r; are odd, 1<ri<m—2, (6=1, <oy ). Then thers
ewist evact K eguwl—osc@llaﬂmg monosplwnes i () in My, (11, ++-, 7o), 4. €., there eatst
(&), 2P <oer < <1 428P, such that : S
$i(2”) = (= D'oslhsllw, oy=10r ~1,
3 a4 =0, D 3.2
;(0) =0. ) |

Moreover the mumber K is defined tn Lemma 8.

Proof of Theorem 3 When at least ons of (fr,)i is equal %o m—1 or m, Theorem
3 may be Foduced to. the non—~periodic case.® ), Therefore wé may assume that 1<
r:<m—2, 6=1, --- n. First we prove that K>2L. By Lemma 8 we only need o
prove that for the special choice of (#)iV,

p=l=1 51 .. 2N, o (3.3)

2N - .
there existh at leash.2L different monOSphnes M;(8) € Mp(ry, ==+, ra) satisfying
M(#) =0. 6=1, -, 2N; j=1, -, 2L, . (8.4)
Oase (1) Assume that (ry,.-, fr,.) is noh-—oiroular i. e. k=n in Definition 1..°
A% this time 2L = 2N We know from Lemma 8 that there exists M 1(8) € My (ry, -+
r.) sabisfying (3.4). Lo Afj(t)—%Mi(i—i—-é—NL) j=2, = 2. Then My(t) € Mn(r.

., ra) and M;(¢) sahsfy (3. 4) j=2, «-, 2N. We claim that these 2 monosphnes
M; (t) are different from each obher O’ohervnse suppose thab there exigh M () and

M;(t), such that
M, (t) M; (t} 1<4, j<2N, $#j5.

Lot the multiplicities of knots of M; and M; in [0, 1) in the increasing order be
(e, v+, 1) 'and (rges, .+, Tay T4, -, T4), TOSPECHively, (0<<g<n). Since M;, M; are
obtained by translation of My, M;=M; if and only if the knots of M; and M, are
coineident. Therefore (r, , o) = (Tgszn *+*, Ty T1, =+, Tg), and (ry, ees, T,) i3 not
non-cireular, a contradiction., ' '

QOage (ii). Assume that (ry, «-, 7,) is lo—elroula,r I<kh<n. Let s= n/]o Then s

is an mteger From Case (i) wé know that there existh 2L 2 (ri+1) dliferent'

monosplines M;(#) € M, (r, -+, ry) sabisfying
m{(%=1)=0, 4, j=1, -, 2.
Let . |
. =Mj‘(~,t).=Mj(St)7 g=1; -, 2L,

- Then it is obvious that M;€ Mu(rs, e+, )i §=1, -, 2L, and they are different.
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from each other. Moreover, _
M(&)=0; 6=1, -, 2N; j=1, -, oL,

In what follows we prove that there are ab most 2L different monosplines in
M, (g, +--, 7o) Sabisfying (8.4). Otherwise, wo know from Lemma 9 that there are
K >2L different osoillatory monosplines in M, (ry, =, r,) satisfying (8.2). On the
other hand, Theorem 1 tells us that $here exists a unique oscillatory monospilnes
WE My (ry, *+ ra) With knots 0=ay< - <w,<1. Hence we can got 2N oscillatory
monosplines ;(8) € My (T, -, ra) satisfying (3.2). Similar Yo the above
disoussian of Case (i), it is nob diffioult to prove that there are ab most 2L mpj(i)
-which are different from each other. This contradiction proves our assertion.

Now bhe conclusion K =2L is obtained and the theorem is proved.,
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