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ON THE EXISTENCE OF NONTRIVIAL PERIODIC
SOLUTIONS OF DIFFERENTIAL
DIFFERENCE EQUATIONS™

Wane Ke(E  #£)°

Abstract

This paper cosiders the existence of mnontrivial periodic solutions of the differential
difference equations '
7 (t)=—f(z(=1)), ;
&' (t)=— (f(z(t-1) +f(w(t-2))),
{w '(¥) —f(fv(t), y(1), #(¢~1), y(t-1)),
¥ (1) =g(z(t), y(&), s(t—1), y(t 1)).
Some new ex1stence eriteria are obtained. :

and

In the recent yeai's, ’ﬁhe existence of non-trivial peroibic solutions of
differential difference equations has at bracted much atbention of mathematioians™-t,
Fixed point theorems are the prinocipal tool to conclude the existence of such
~ golutions, Using the technique of [4, 6], in this paper we obtain some new results
withoutany fixed point theorems. L

Woe consider the differential difference equation

| o' (8) = — f(=(), a(t—1)). : 1
We suppose : : _

. f:R*>R is continuous, vf(y, ©)>0, forz+#0, yE R,

. f(~y, &) =f(y, @), f(y, —2)=—F(y @),
. |f(y, #)| <r(|@|), where r(s)=>0 is continuous in s with r(0) =0 and r(s)

- >0, for $>0,
4°, I:f(y, @)de = -+oo, for any fixed yC R,

B°. there is a constant M >0 such that
| Mf(ys, #)|=| (92 @)|, for y1>y>2>0 or 0>ya>ys.
We construct the coupled system of ordinary differential equation :
. { '=—f(, ¥), @)
"=f(y, ). _
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Lemma 1, Al solutions of (2) are periodic. '

Proof If (wo, %o)# (0, 0), say, wo#0, and f(wo, go)=F(y0, @)=0, then
wof (Yo, ) =0; this is a contradiction, so the point (0, 0) is the unique singular
point of (2). From the symmetry of bhé field of directions defined by equation (2),

it suffices to prove that there is no unbounded trajectory of (2). | _

If the positive half-trajectory (w(#), y(t)) of (2) passing through the point
(a, 0), d>0, is unbounded on the first quadrant, it must have a vertical asymptote
o=b, 0<b<a. That is, x(t)—>b, as t—>+oco, Since &' () = — f(x (%), y(3)),

0@ —a(t) | =| - [ @), y@&)at|=[ s, y)a

b y)
b, y(4))dt == J i)
f F & y(®) Fa, o)) ¥
Sy 4
>__
M Tale)) Y
where %—'?/(to), y= y(ﬂ) t>#0 .
There is a >0 such thal |r(s) —r ()| <q~(b)/2 for |s—b| <3. Taking 50>0 s0
large that x(3) — <8 for $3>1,, we have

|(8) —@(%) | = L» Zé:(yy))) dy= 3%1 JZ) f (b, y)dy—>-+o0, ag t—>+ o0,

and this is a contradiction.

Ifthe negative half-trajectory ((¥), y(3)) of (2) passing through the point
0, a), a>0, is unbounded on the firsh quadrant, it must have a horizontal
asymptote y=>5, 0<<b<<a. That is, y(t)—>b, as t—>—co. We have

V@ =y | =] $w@), s@)asmg[ 0, a0)as

_Lft_fGo®)
ML —~f(z(®), y(@)) ( f(“’(’»: y(3))dt

oA fG, 3
M. f(a, @/(w))

M . 4{((;( cv))) d:v, where zy=w(%), v=a().

‘The remainder of the argument process as above.
The other case can be proved by the same argument,

- Lemma 2. Suppose L is a simple closed curve on R?, and the omgm is n the
-Gnterior of the region G+ enclosed by L. Let T: R*—>R? be a rotation tmnsformwtmm, and
the center of rotatton be the origin. Then TLN L+ Q.

Proof The region enclosed by TL is TG. It TLNL=¢, since (0, 0) EGNTE,
‘we have LCTG provided any point of L belongs to T'G. Thus, the area of TG is
‘more than the one of G, and this is a contradiotion for the areas of them are equal,
If TLc@, the proof is the same as above.
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Lemma 3. If («(%), y(8))is a 4w—periodic solution of (2), w>0, then y(t) =
o(t—w). .
Proof Since (—a($)'=—a'()=f((®), y@®)=—Ff(-2(), —y() and
(=y®))' ==y &) =~ fy®),e®) =Ff(~y#), —a(2)), we see that (~a(t), —y())
is also a solution of (2). From Lemma 2, we assert that the two solutions ((¢),
y(®)) and (—2(#), —y(¢) )have the same trajectory, so there exishs A>0, A€ (0, 4fw)A
such that «(3-—A)=—a(f), s(—20)=—o(¢—A)=0(t). Hence, A=2w, that is,
o(t—2w) = ~a(t). Since y' (8) =f(y(8), #(®)) =~ f(~y@®), —~o(®)) and (~2@)) =
—o' (&) =f(z(t), y(&)) =f(—a(), y(&)), we sée that (y(¢), —a(t)) is a solution of
(2). By the same argument, the solution (y(£), —« (%)) has the same trajectory as
(w(8), y(®)) and (—a (), —y()) have, so there is a ¢>0, o€ (0, 4w) such that
cw(t—0) =y(t), 8(t—20) =y(4—0) = —w(t). Therefore, 20 =4nw-+2w, and oc=w or
o =3w. By examining the order of maxima and minime as guaranteed by (2), we
have o=w. The Lemma is proved. o _

- Let X (¢ M)=(a(4, A), y(4 A)), A=>0, denote the trajectory of (2) passing

through the point (A, A). Suppose the period of X (¢, A) is T\. '

Lemma & If |

o= llm f(y ) , B=lim L T f(’l/y “’)

20 z->00
then we have , .
12w/, A—>0, of a0,
T—>c0, A0, if =0,
T,—>2m/8, A—>00, &f B0,
T,—>o00, A—>o0, ¢f B=0.
Proof Define

| _ w(t, M)
0u(6) =axotg{ - £10 5 )-
We have

K () = ot M fy(, A, o0, ?»))+y(ﬁ M f(a(2, ?») y(, M)
dt. " 22(¢, A) +° (4, L)
def.

—=R(a( A), y(& A).

It follows that '
: T, Ta .
2W=J ‘9'(t)dﬁ=j R(a(s, A), gt A))ds

e ! Ww’“} D11 f<w<ty?t>, Ay
- d
° GG

E(trwa | o - ®

If 0<oa<+oo we have
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J:‘ T (3) dt——( +LM T (8)dt.

It is easy %o see that

and o
limL Ju@ds=0.

A-»0 J &

Ther efore, for any given &¢>0, there is a >0 such bhat

Ta
[ 7 a
and for e<a/2, there is a 8>O such that

v

<e, |J.() ~a| <e, for A<3,

a.ITx—2av/ai =1],., o:dtl
i (Ta Ta )
- ‘ﬂ / (a—JW(t))dH—L / T(@)d| <|Ti=2m/al +a,
w0 /o
and

1

(a—¢) T%—gﬂ‘<s, T, — ’ 28

~ o _ o

that is, lim T,h—-—
A0 o
If @=0, from (3) for any s>0, there is a 8>>0 such that
Ta
UO J. (%) cZi——_Zav' <e, for A8,

Noticing (4), we see thab for e<<m, there is a §>-0 such thab

2 — s<f J () dt< el 7, 2" >%,

'bha:-b iS 1]m T;L’-'
A0
If a=+oo, from (4) for any glven g>0, there is a >0 such that J.(f)>s™*
for A<<d. From (8), for <1 there is a >0 such that

Ta . :
%QL_L(t)dt<2w+s, for A<9,

v < (2w +6)e< (2w +1)e,
that is, lin(ﬁ)l T,=0,
A—>

By the same argument, we can prove the limits when 2 tends to 4o,
Theorem 1. Let & be @ non—negative tnteger, if
. L (4h+1D)mw/2< B, or B (dh+ 1w /2o R 5)
Tken (1) has @ non-irivial peréodic solutton with period 4/ (4%k-+1). '
Proof Accoding to the given condibions, we can.suppose

a<(4k+1)av/2<ﬁ
and hence _
2m 4 2
N VS

Tim .Jx(i) =g, | )
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‘From Lemma 4, it follows that (2) has a 4w-periodic solﬁtion where w=
(4k+1)"t, Now we have y(3)=a(t—w)= m(t—(%-&-l)w) o(t— 1), g0 o'(f) =
- f(@(8), 2(3~1)).

Corollary 1. If |a—pB|>2m, (1) has at least one non—trivial persodic solusion.

Corollary 2. If |a—B|>2nw (n s @ natural number), (1) has at least n non—

trivial periodic sobutions.

Proof It is easy to see that in (e, 8) or (8, a) there exist at least n points: .

bww+w/2, +, 2k,mw-+mw/2, where k&, *>+, K, are different inbegers, that is, tlere
exist at leagt n different integérs that satiify (5). With the aid of Theorem 1, we
can complete the proof. |
Corollary 3. If a=oco, B#oo (or B=co, aaéoo), then (1) has rmﬁmte non—
trivial peréodéc solutions.
Remmak. When k=1 and f(y, o) is mdependenb of 4, Theorem 1 beoomes
Theorem 1.1 in [4] by Kaplan and Yorke,

Egample 1. The equation
o (£) = 132 (¢ —1)
T @tcosw () Far(i— 1) -
has at leagt two non—trlvwl pe.'L'IOle solutions,

Proo f Here \
Bl N 132° -
F@ o) ~ (@+cosy) +a?"
It is easy to see that conditions 1°, 2° are satisfied. And
18|x|?

|#(y, @) |<=fpr—=13l2],

80 condition 3° is satbisfied,

- Bince
18|@|?® 3 138|«]® 13|a|®
2 2 2 27 -
and oo -
00 13 @ 3 _
Jo T o=t

condifion 4° is satisfied. And
18| ]® 18|x]3®
1+4* >(2+cosy)+w2 [f@, )],
80 condl’ulon B° is satisfied, It is ObVIOU.S that @=0 and 8=13, and 2(2x) = 12 57<

=|a—8

Now, we conmder the equatlon with several fime lags

o' (8) =F (o(t), w(—1), -, a(t—n)), (6)

where F (4, g, *++, ®py1) i8 continuous on Rt :
Let f(y) a’)=—F(y1 v, —Y, =, Y, @ _yr - &, "')° SUPPOSO that f(y) m)
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satisfies conditions 1°—5°_,
Theorem 2. If

o f D) i L)
1)hm-—zr——a,hm-zil—ﬂ

@0 >0 |

2) miﬁ(a, B) <-—0-2'5-<max(a, B),

then (6) has @ non—trivial periodic solutéon with perdod 4.
Proof Construoct the coupled system |
(oS 9. o
y'=f(y, ).
From Lemmas 3 and 4, there is a non-trivial periodio solution (z(t), y(@&)) of (7)
with period 4, and from the proof of Lemma 3, we have w(t—1)=y(#), s(4—2) =
—2(). a(¢—3) = .—?/(f), o(t—4) =2(t), #(t—5) =o(i—1) =y(t), 2(4—6) =2(t~2) =
—a(t), -+, Therefore, L ' ' .
& (8) = —f(a(®), y(&) o
- =F(a;(t)., y(®), —a(®), —y@®), o), v(®), ")
=F(2(t), o(t—1), 2(4-2), z(1—38), o(t—4), #(¢—5), Yo
Thus, v==(t) is a non-trivial periodio solution of (6) with period 4,
Egample 2. The equation ’

o (8) = B 3p(t— 1wt~ 3)s(t—5)
_ _ (2+cos(w(t)w(t—2)w(t—4)))+w2(t—1)
has a non—trivial periodio solution.

Proof Here

358 |
f(?/) m>=T2+oosgf”)+w 4

Similar to the proof of example 1, it is easy to prove that f (y, ») satisfies conditions
1°—5°, and «=0, 8=38. From Theorem 2. this exa_ﬁaple is true. '

Qorollary. Suppose that f (o) G5 continuous odd and satisfies of (z) >0 for o#0.
Suppose that |

a=1im f(z)/, p=lim j(z) /=
ewist (allowing either to be 0 or ). Suppose |
| F (o) =J:f(s)ds->+oo as a—>00,

- Suppose ihat '

. min(a, B) <m/2<max(e, B).

Then both the equations ) :

o (1) =~ (f(=(®)) + f(@(t— 1)) +f(@(—2)) ++-o f(@(8— (4n—1))) 8

and ' '
2 () = — (F@(i—1)) +F@(E=2)) +f @ (=) -+ f(alt= (dnt1))) ON

hawe non—trivial periodioc soluttons.



444 4 ' CHIN. ANN. OF MATH. Vol. 11 Ser.B

Proof For equatious (8) and (9), we have F(y, ») = f(»), so this oorollary ig
“immediately from Theorem 2.
By our method, we can consider not only the retarded type equations, but also
‘the advanced type equations and mixed type equations. For example, we can
-consider the equation : .
o' (1) =F (2(3), ¥(6—1), +, a(t—n), a(+1), -, wlt4+m)), “(10)
sand give some theorems which are like the ones we obtained above, but here we
‘will omit them, If is very interesting that even thouth we do not know exactly
‘what ig the solution of initial value problem of (10), we can still find its non-
¥rivial periodic solutions. |
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