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PERIODIC SOLUTIONS AND ALM@ST PERIODIC
SOLUTIONS OF THE SCALAR ORDINARY
DIFFERENTIAL EQUATION

CHEN YIYUAN (& — )"

Abstract

This paper deveiops'a method which enables us to study the number, existence and
stability of periodic solutions and almost periodic solutions of the scalar ordinary
differential equation. Some applications of ‘the method are also given.

§1. Introduction

In this paper we study the non—autonomous differential equation
_ dw/dt=f(3, ©), (1.1)
where f(¢, #) € C*(Rx R; R), a scalar function, almost periodic in 3 uniformly for
@ in compach sets or pel'lOle in ¢ with perlod T. Additional hypotheses on f are
given in Sections 3 and 4. - | |
We now develop a method which is similar fo the Llapunov funotion method
in the stability and the Dulac function method in the qualitative theory of plane
.autonomous differential systems™, The method enables us to study the number,
existence and stability of periodic solutions and almost periodic solutions of
-equation (1.1) if we can find a suitable funotion B (s, #). Some applications of the -
‘method are also given. - ' '

§ 2. Preliminaries

For the scalar equation

dw/dt=F(, ©), f(, o) e01<R><R R), C@.1)
:and a given funotlon B(4, ) CO*(Rx x B; R), we define a function |
A= fOB/dw-+0B]0i— Baf/ o, | . (2.2)

e.and sets ,
H={( #)| B, o) =0, (1 2) €RY,

W={G 2)4G, 2)=0, (t o) € B}
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It is obvious that equation (2.1) can be considered as an autonomous system
in the (%, w)—;plane: : : |
' du/ds=f(t, ©), di/ds=1, - (2.3)
We state our main hypotheses
H1: 4>0 in the (¢, #)-plane; .
H2: The sets H and W have no two-dimensional subsets, HNW has no
accumulation points in plane and H has no the isolated points,

Under the above hypotheses we prove Lemmas 1—3 and Theorem 1.

Lemma 1. Let Ic H be o segment without the muliiple poinis. Then function B
has défferent signs on the two sides of I (in a neighborhood of I).

Proof If B has the same sign on the two sides of I, then B ta,kes mammal or
minimal values at all points of I. 8o 0B/dx=0B/%t=0 on I and (2.2) means 4=0
onl i e, I cHAW. It contradicts H2 and the proof is complete,’

Lemma 2. The set of the multiple points of the curves tn H has no accumulatwon ~

points in plane.

Proof At the multiple points of the curves in H we have B=0, dB/dz=0B/o%
=0 and so 4=0 ((2.2)). Henoce the set of the multiple points iy contained in H [
W and has no acoumulation points in plane (H2).

Lemma 8. The curves in H have no the multiple points. . :

~ Proof 1If A is a multiple point of the curves in H, then there is a neighborhood
U of :A such that no other multiple points in U and the curves in H passing 4
divide U inte several parts. Funotion B does not change its sign in each part
- Lemma 1 means B has different signs in two adjacent parts,
On H we have ((2.2))
dB/ds| 2.5 =foB/ 6a;+6B/3t =40,

Notlclng that H W has no accumulation poinls and the lemima in § 8 of [1]
(that lemma holds if we take a segment I, the sides (in a neighborhood) of I instead
of simple closed ourve, the interior and exterior in the lemma respeclively). We
know that in U the trajectories meeting HNU~ {4} of (2.8) go from the parts in

which B is negative into the parts in whioch B is positive. It shows that 4 is a

singular point of (2.8). The fact that (2.3) has no singular points completes the
proof, : :

Theorem 1. The cwrves in H are d@sjo@nted and they divide the (%, w) —plcme,

tnto several parts. B has different stgns én two adjacent parts.
 Proof The conclusion follows immediately from Lemmas 1 and 3.
Corollary 1. - Thers are no closed curves in H.
Prdof The OODGIUSJOD follows from Theorem 1 and ‘the faot tha,t (2 3) has no



fepefo0

No. 4 Chen, Y. ¥. ALMOST PERIODIC SOLUTIONS OF SCALAR ODE 447

singular points.
Corollary 2. Ewery trajectory of (2.8) meets a curve in H at most once.

§ 8. Almost Periodic Solutions

Consider the soalar system : '

: da/dt=f(, ) (3.1)
where f(¢, #) €O*(RX R; R), a scalar function, almost periodio in 4 uniformly for
« in compact sets. ‘

Definition 1. For system (3.1) of there is a function B(}, #) CO'(RXR; R)
whichis almost periodic tn ¢ unbformly for @ in compact sets and satis fies the following
conditions: .

(1) hypotheses H1 and H2 hold,

(2) the curves tn H defined by B(¢, @) =0 are almost periodic in 3,
then system (3.1) s called @ P-system with Function B.

Definition 2. Let (3.1) be @ P-system with function B. A solution o(t) of (3.1)
deﬁnecl on (—o0, +c0) és far from zero of B if there exists a constant >0 such ﬁmt

, |B(t, o(3)) | =m>0 for € (—o0, +00).

Theorem 2. Lot (3.1) be a P-system with funciéon B and satisfy the following
conditions: ' '

(1) H has n almost periodic curves o= @), =1, 2,

(2) all bounded solutions of (3 1) defined on (—oo, +oo) wh@ch can not .meet H
are far from zero of B;

(8) 4 s almost periodiec im ¢ umformly for @ in compact sets, and there ewist
constamis ty and A>0 such that :

_ A (b, @) =A>0 for s& (—o0, +00)

Then (8.1) has at most n+1 almost periodic solutions and the almost periodic
solutions dn the region where B>0 (B<0) are asymptotically stable (unstable).

In the proof of Theorem 2 we need the following lemmas, which can be obtained
directly from the definition of almost periodio function, '

- Lemma 4. For almost periodic functéon b (8), it s Smpossible that ¢(e) =0,
$ () <0 for t<ec and ¢(4)>0 for t>e.
- Lemma 5.  For almost pemodw functwn 16 >O (s£0), it is @mposs%ble thwt
Yim () =0.

Proof of Theorem 2. We firsh prove that every bounded solution in the region
‘where B>0 (B<0) is asymptotically stable (mnstable). Co

. Let =¢ (%) bea hounded solubion of (3.1) defined on (-—oo +oc0) and lie in
the region where B>0, i. e., B(%, qS(t))>0 for $€ (=00, +oo) Then we have

OQ
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(@.2) | |
9f/9w=— 4/ B+ (foB/ow+0B/2t) /B for v=¢(8), t€ (=00, +00).
[, @rreny 6, 4@y a=— (W/B) G, $@)t+1n B, ) =1nBO, $(0)).
(3.2)
The condition (2) of Theorem 2 and the boundedness of z=¢ (¢) implies that

In B(%, $(#)) is bounded on (—oo, +o0).
Since B(¢, ¢(¢)) is bounded on (—oo, +oo), there exists an M>0 such thatb
0<B(, ¢(t))<M on (—oo, +o0). So we have-

3 t
L (4/B) G4, () di=(1/ M) LA@, B(8))dt for 0. (3.3)
We now prove lim 4(¢, ¢(¢)) <0. Suppose that is not true, there is an N >0
> e00

such that ‘ ,
4@, () <A/4 for t>N. (3.4

Since 4(%, a;) ig almost periodic in # uniformly for & in compact sebs, there
exishs a 7> N — ¢, such that ,

|A(t+'v b (t+w)) — A8, (b(t+'v'))[<?\,/4fortC(—oo +oo),
- especially
| | (o7, ¢ (tat7)) — Alte, PlHa+7)) | <A/4.
Noticing that {y+7>N and (3.4), we have |
A, $(to+7))<A/2.
It contradiots the condltlon (8) of Theorem 2. Hence
Jim 4(, 95(1”))#0 ‘

andj 4(t, $(4))dt=+o0(4(4, ) is uniformly continuous on R for # in compact

gets. ) From (3.3), (8. 2) and the boundedness of In B (t qS(t)) , We conclude that

f 0f/28 (6, $(8))di= —oo. o 38)
Let y=ax— ¢(t), equablon (8.1) becomes R
 dy/ds=0f/on(t, $(8))y+h. o. b, e

(8.5) means that the trivial solution y=0 of (3 6) and hence the solutlon =
¢ () of (3.1) are asympbotlowlly stable. o o

Similarly, we can prove thab every bounded solutlon in bhe reglon Whele B <0
is asymptotlca,lly unstable. ' ‘ o

Next we prove that every almost perlodlc solution of (3.1) can not meet theg_
ourvesn:\.H : . o e ' ‘ e

If 2=¢ () is an almosb perlodlc solu’slon of (3 1) and meets a curve = ll':o ().
1< < n, at(e, $(e)) in the (4, @)~plane, then (c; $(c)) is the unique intersection
point of the two curves (Corollary-2 of Theorem 1) and F (3) =% (i (¢) — p(8)) are:
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almost periodic. Ib contradicts - Lemma 4. So every. almost periodio solution of
(3.1) can not meeb the curves in H. L ' '

The curves o=;(), =1, 2, ==+, m, divide the (¢, »)-plane into (n+1) sbrips.
We now show that in each strip (8.1) ‘has at most one almost periodic solution.

If s=¢p4(¢) and w=s(4) are the almost periodic solutions of (8.1) in a strip D
and B>0 in the interior D. Then the two curves do not meeb each ofher in the
(¢, @)-plane. Without loss of ‘generality, we suppose ¢1(8) > h2(8). In the (3, o)~
‘plane all the solutions yhrough {0} X [¢2(0), ¢1(0)] are bounded on (—o0, -+oo)
and far from zero of B. Hence for these solutions, - (8.5) holds, - i. e., they are
asymptotically stable, and so

Jim (ba() = pa(8)) =0- | 3D

It contradicts Lemma 5. Therefore (3.1) hag ab most one almost periodic solution
in the sbrip D. If B<O in the interior of D the proof is similar. The proof of
Theorem 2 is complete. :

We now give some applications of Theorem 2. For simplioity let AP(R) ={f Ki
is a real almost periodic function on (— oo, +o0)}.

Haample 1 Consider the Ricoabi equation

do/di=*+g (Dt (), g FE€ AP(R). (3.8)

Let B(¢, o) =—a—9(3). So we have
4G, @) = (o+g®)* = (F@)+g @), where g=dg/ds. |
If there is a consbant « such that f+ g<a<0, then (3.8) isa P-gystem and H
has unique curve z=—¢g. In addition, if g€ AP(R), then A(%, &) is almosb periodio
in ¢ uniformly for @ in compact sets and the condition (3) of Theorem 2 is satisfied.
We now have to check the condition (2) of Theor em 2. '
‘We choose go>0 so small that |
Feg+e+f+g<a/2, 0<e<so.
In the set {(t, @) | —g() +ee<m, 1€ (—0, +00)} (resp. {¢, o) |—g@) —eo>w,
1€ (— oo, +o0)}) the function B(f, @) =— (z+g(3)) takes its maximal value —é&
(resp. minimal value &) at o= — g(8)+eo (resp. m=—g(#) — &0).
Noticing that on the curves o= - g(t) xe, 0<<e<<sy,
dB/dt| o= xe9— &~ f—g>—a/2,
we know that every solution of (3.8) which mee?
| o=—g (&) téo
must meeb w=—g(t). Hence all the solutions which can not meet H are in the
region where |B|>g,>0 and we come %o the following conclusion:
If f+g<a<0 and g€ AP(R), then (8.8) has at most two almosb periodioc

golutions.
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If we take B(t w) =g, then 4= —g?+ f(t) Similarly, we can prove that if
there is a constant o such that f(t)<a<0 then (3.8) has at most two almost
’ pel'J.Ole solutions,

- Bwample 2 Consider

do/dt = o+ (- gin? £ — 3)o(t) c(t)EAP(R) ~ (3.9)
We take B(%, w) =2®—gin’$—3, then ,
4%, ) =o*+sin?t+3— sin2t>2 ‘ (3.10)

H has two curves o= (sin?5-+3)¥2, We need. o check the condition (2) of
Theorem 2 only. But we can do it just as Example 1. So (8.9) has at most three
almost periodic solutions.

Emmple 3 Consider <
do/dt=a(8)2*+ b(t)m2+c(t), ‘ (8.11)
where w(t), b(%), e(t) €EAP(R), b(t) >0 and ¢(3) >a>0, « is a constant.

We take B(s, @) =a°, then 4= #° (ba®+8e). - .

Ohoose £o>>0 80 small that 4 as®+ bs?+e=>a/2, 0<e<ey. Then on = +¢, 0<s
< &, ‘ ' S
dB/dt|s. 115—382(+a63+bs +¢) =>¢&%a3/2,

Hence all the solutions which can 1ot meob »=0 are in the region where IB[
84>0, 4>3ase}, and (3.11) has at most one almost periodic solution in {G, o) |o>
&, $€ (—oo, +00)} or {@, @) |o<— g, $E (=00, +o0)} (Using Theorem 2 in those
sets). On the other hand, dw/d le=o=0¢(#)=>0a>0 means (8. 11) has no almost

periodio solution which meets =0 (Lemma 4). Therefore (3. 11) has abt most Hwo

~ almost periodie solutions.

Theorem 3 I f (8.1) satisfies the Following cond%twons

1) of/ow is wlmost pertodic n & uniformly for o in- compact sets and fE O?(R X
‘R R)?

2 all the curves defined by df/ow ¢ m) =0 are almost pemodw i b and @ =1, (t),
¢=1, 2, -, m, are such curves,

3) 1@, P () )0°f/ 0a* (3, i (%)) +8°f/ owdi (s, ¢@(t))>0 (0’03]0' <0), ¢=1, 2, -,
n, and: the equality kolds in a set which has no accumulation pomts %n R,
then (3.1) has at most n-+1 almost pertodic solutions.

Pa*ooj‘ We now take B=29f/0w (resp. B=—af/dxs). The curves o= i (t), 6=1,
2, ++, m, divide the (¢, ) ~plane into n+1 gtrips. The condition (8) of Theorem 3
imphes 420 on a=1fy, 6=1, 2, -, m, i. e., on s=1(t), we have

| 4B/t (5.4 = 4=0.

Henoe all the conclusions in Section 2 are true. As in the proof of Theorem 2 we
asgert that every almost periodic solution of (3. 1) can not meeb the curves o= P (3),

L e=1 2 -
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Suppose o=1(t) and o= p,() are the almost iperiodio solutions of (3.1) in a
strip D and 9f/02>0 in the interior of D. We may assume ¢(¢)>¢a(t). So we

have

@) =F(, ¢1_(t)) —f(t, $2())>0

and

lim (1/T) ﬁ"a (4)d#>0 (G(z) € AP(R) and Theorem 3.8 in [2]),

i. e.., ' :
+ oo

L G- () dt = +o0,

‘On the other hand, we have

$1(8) = $1() = (0) — $a(0) + [ G 8.

It contradiots the boundedness of ¢1(£) — ¢a(t) . Hence (3.1) has ab most one almost
periodio solution in the strip D. If '6f/ d5<0 in the interior of D, the proof is
gimilar. Therefore (3.1) has at most n-+1 almost periodic solutions. The proof of
Theorem 3 is complete. ’

If we consider

da/dt = g(o) +p(8), g€ O*(R; BR) and p(¢) € AP(R), (8.12)
$hen the conolusion of Theorem 3 can be strengthened. A

Corollary. If dg/do=0 has n solutions w=a;, t=1, 2, - o, and  (g(a;) +

p(8)) d?g/da? (@) =0 (resp. <0), ¢=1, 2, oo, m, where the equality only holds on @ set
which has no accumulaiion points on R, then (3.12) has r almoss persodic solutions,
where n—1<r<n+1 for n3=1 and 0<r<1 for n=0.

Proof From Theorem 3 we know thab (3.12) has ab mosb ('rb+1) almost
periodio solubions. We now show that (8.12) has at least n—1 almost periodio
solutions for n=>1.

The n lines s=a;, 5=1, 2, +-, n, divide the (§, #)-plane into n+1 sbrips and
n—1 strips a<o<ai, 6=1, 2, *, n—1, (here we assume @y <<+ <ay.) are |
bounded for x. On the line z=a,,

- d(dg/dw)/db) @1 = (9(a) +p())dg/de? (a:) >0 (resp. <0).

Tt means that any solution of (3.12) meeting the line w=a; or &=a:.1 goes into the
srip ay<o<a4i from the outside of the strip as ¢ increases (resp. decreases) if
dg/dx>0 in the strip. Noticing that g(@) is striotly monotonous in all the strips,
‘we agsert that (8.12) has ab least one almost periodie solution in each sirip a;<eo<
g, 5=1, 2, ++, n—1. (Theorem 12.9 in [2]). It completes the proof of Corollary, .

§ 4. Periodic Solutions

Congider the scalar equation
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_ dm/dt = f(t, ), : - (4.1)
where f (t @) €O(R x R: R), a scalar function, periodio in ¢ with period 7',
Equivalently, we have the system
do/ds=f (4, @), dt/ds=1, (4 o) ES*X R, (4.2)
where §*X B is a oylinder obtained from [0, T] xR by identifying poinbs (0, w)
and (T, ), € R, or more conveni ently the oylinder is viewed as the entire (3, @)~
plane in which the poinbs (34, #1) and (f,, mz) are considered identical if and only if
(4.~14) /T is an integer and w;=w,.

I+t is obvious that (4.1) has periodio solution o= x(3) with period T if and only
if the cylinder differential equatlons (4 2) has permdlc golution (s, «(s)) with.
perlod T.

I$ is known that (4.1) has ho nonconstant periodic solubion with period obher
than T '

Definition 3. For equation (4.1), ¢f ihem s @ fwrwt'bon B(t, v) EO*(RX R; R),
which is persodic én ¢ with pertod T' and satisfies the following.condittons:

(1) hypotheses H1 and HE hold; |

(2). the curves defined by B(t, ©) =0 are periodic in ¢ with pemod T,
then equation (4.1) (or (4.2)) is called & P-system with function B,

Theorem 4. If (4.1) is @ P-system with functbon B and satis-fies the following
conditions: |

(1) (4.1) has no periodic. solutions in W; .

(2) set H has n periodic curves w=1(£), 6=1, 2, +-+, n, then (4.1) has r periodic
solutsons, where n—1<r<n-+1 for n>1 and 0<r<1 for n=0. Moreover, the periodic
solutton én the regéon where B>0 (resp. B<O) are siable (resp. unstable).

Proof From Theorem 1 and its Corollary 2, we know thab the curves @=1;
®=1, 2, -+ m, are disjointed and the periodic solutions of (4.1) can nol meet them.
The curves &=y, (¢), =1, 2, ==, m, divide the oylinder §'X R info n-+1 regions,
‘and the n—1 regions of them are D;={(%, o) | (¢) <a<{n.i(¥), 1€ [0, T1}, ¢=1, 2,
oee, m—1. .(here we assume iy <thp<++<tf,). '

On o= (8), b=1, 2, -, m,

" dB/ds| 4.0 =40.
It means that every trajectory of (4.2) meeting the curve m—-nﬁ #) or o= ¢,+1(t),

$€ [0, T'], goes into the region D; as s increases if B>0 in D; (or decreases if B<0

in D).

If B>0 in D;, then every trajectory gb(t 0, &) of (4. 2) starting at (0, §) € A=
{0} % [:(0), 141 (0)] must meelB,={I'} X {{u(T), Pira (M) ={T} % [ 0), $i20)]
at (T, ({)(T 0, £)). Henoe we can-define a continuous mapping P: 4,~B;, (0, §)
—(T, $(T; 0, £)). Nobicing that 4; and B are identical, we assery that there existy
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at leagt one point (0, &) € A4, such that &=¢(T; 0, &) (Brouwer fixed point.
theorem), i. e., (4.2) has at least one periodio trajectory in D;. If B<0 in J; then.

the proof is similar. Hence (4.2) has at least n—1 periodio trajectories and (4.1)
has at leagh n— 1 periodic solutions.

'We now show that (4 2) has at most one periodic trajectory in each of bhe-

(n+1) regions.
In each of the (n+1) regions B0, henoe we have ((2.2))
| 0f/6w=— 4/ B+ ( foB/ou-+2B/ot)/B.
If = (%) is a periodio brajectory of (4.2), then

[Tof/a0ts, pw)a=~[7 (/B4 $a))d. 48

On the other hand, by means of Poincaré mapping we assert that if
j 8f/0w(t, $())d<0 (resp. >0),

then o= (%) is stable (resp. unstable) ([11). Henoe (4.3) and the condition 1)
of Theorem 4 imply that the periodic trajectories in the regions where B>0 (resp.
B<0) are stable (resp. unstable). ”

Noticing that in the cylinder two adjacent peviodie trajectories of (4.2) have
different stability, we know thab .(4.2)_ has at most one periodic trajectory in each of
the n+1 regions. The proof is comple‘ué. |

In Examples 1~ 38, if we assume that f(4, @) is periodic in #, then we can obtain.
the number, existence and stability of periodio solutions by Theorem 4.

Ewample 4. Consider
do/dt=1—a*+oeini.. ' _ (4.4)

We take B (¢, &) =exp(~cos ), then 4=3z"exp(~—cost). By Theorem 4, equé,tion'
(4.4) bas at mos¥ one stable periodioc solution.

On the other hand

/b | peo=1 and dw/dt|s-5=0;
hence every solution of (4.4) mesting the set
{(4, @) |o=0, t€ [0, 21} or {(¢, @) |v=2, ¢€ [0, 2w]}

goes into {(¢, @) |0<o<?2, € [0, 2w]} as ¢ inoreages. As in the proof of Theorem $
we know that (4.4) has one periodio solution. Therefore (4.4) has a unique stable

periodic solution.

I am sinocerely grateful to Professor Ye Yangian for hig advice.
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