Chin. Ann, of Math.
11B: 4 (1990), 454~466.

AN ELASTOPLASTIC PROBLEM WITH FRICTIONS
Ton Qi1(i#  +)*

. Absf’ragt

This poper discusses on elastoplastic problem with frictions given on a part of the
boundary. Assuming that friction follows simplified Coulom’s law, the author gives an
sxplicit relaxation of energy and proves that the solution exists.

§1. Introduction

We congider a frioion problem in the geometrically linear eléstoplastioity
{Hencky’s plasticity) theory. The general mathematical formulation of Coulomb’s
law was given in [7] while the general theory of Hgncky’s’ plasticity was given in
[17]. We combine the two theories here' to establish an appropriate variational
formulation and prove the existence result by “reléxing” the problem reasonably.

It is now well known that the strain golutions of the Hencky’s plasticity
problems are not in, the Sobolev spaces W1? in the sense that their strain tensor
components are bounded Hadon measures mstead of I? funotions (of. [17]). A
consequence of this result is that the solutions we obtained by minimizabion of
energy are, as a matter of fach, not the solutions of the original problem in the
following sense: Firstly, the functions that minimize the potential of energy ocan
no more he proved to satlsfy the Euler-Lagrange equations without further
regularity Tesults being obtamed Secondly, if any boundary condition of Dirichlet
type wp, =up i imposed in the original problem, we can not expect it t0 be satisfied
by the minimizer (for details of this, see [17] and the following seotions) and this
is justified to be physically reasonable. The first difficulty is ignored at the moment
beaause of the phyéical nature of the problem. The second was mathematically
explained in [17] by an argument of “relaxation. of energy”’ which was motlva,ted
by the following phllosophy $he boundary eondition is NOT preserved but the
difference between the expected boundary condition and the actual boundary
displacement should minimize the “energy” in some sense. We will see the
mathematical representation of thig in the following. In the friction problems, the
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same thing happens: due %o plasﬁcity, we can not “hold” the maberial tightly on -
the boundary fo satisfy the displacement boundary condition imposed, so neither
should we expeot that we ocan “hold” the material on the boundary to satisfy
Comlomb’'s law. Therefore, the existence result should also be established on some
kind of relaxation principal. It is not eagy to guess by direct observations what
the relaxation prlnelpal is. '

‘However, it is well known from physios that plasticity can be understood to
mean the layers of molecules of the material satisfy a kind of friotion law similar |
to that of Coulomb. According to a personal communication between the author
and N. Q. Son, the friotion effects in plasticity can therefore be visualized
physically as follows: on the boundary of contact, we stick another Diece of material
which obeys the same Hencky’s plasticity law togei;her with another internal
firotion law which can be expressed mathematically as the Coulomb’s law between
its layers of molecules. Considering the material formed by the two pieces as a
whole, we can gel a relaxation of energy and establish the existence result. This
paper is, as a matter of fact, a mathematioal reahza,ﬁon of the above physma,l
arguments. _ :

It should ‘be pointed out that the results of this artiole have an interesbing
connection with the recent paper by E. De Giorgi et al (of. [4]) though the
settings of the problems are different. This work was partially supported by a
Chinese national post—doetorié,l ‘research grant when I worked in Fudan
University, Shanghai, PRO. I would like to express my indebtedness to my
. collegues in the Institube of Mathematics, Fudan Umversﬂiy for their continuous.
encouragement and invaluable help

' §2. Mathematical Formulation of the Problem

To establish the mathematical formulation of Coulomb’s law in linearized
elastioity—plas‘aioiﬁy problems, we follow formally the friction theory developed in
[7] and [8] and the elastioity—plastioity theory developed in [17]: Find

uEHl(Q R?), O'EL”(Q E) such that A
-¢(u)=Ao-+\in Q, @

dive+f(#) =0 in Q, | | 2)

A (p—0)<0 a. o, in Q for all € L*(Q: H), ,
such that |$2(2) | <P a. e, . @)
ulm=uo, o : (4) '
onlr=g, o G

(O"I’b),.lz'va=-'.F,,, _ ‘ ‘ (6)
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| (o) | <I=>u,=0 on I, ¢))

| (on) | =1=>T¢g>0 such that u,= —g(om), on I's, (8)

where  is a bounded, open, O subset of R% H is Ry and EP={{€ H: {3+t

£33=0}; ¢ is the linearized deformation operator from H(Q; R®) into L*(Q; H)
such that for any v € H*(Q; R?),

e@-,-(u)=< au, )/2 for %, 9=1, 2 3;

A is a linear operator from E 1nto E suoh that for any O‘E H,
. Ao =0,00+Dby trol

with b;, by>0, tr G=011+q22+033, I=identity in H and O'D=o*———§- trol; Iy, Iy,

I'y are O* open subsets of I, T UT,yTs=TI, I';NT;is empty for all 6+4; 1 and &
are positive physiocal oonsta,n’ns ug is the traoce of an H* funchion; g€ L“(Z‘z, R®);
F, is in W22~ D(I') for some p€ (1, 3/2); fEL~(Q; B).

If we let I's be empty, then the problem beoomes an isolropio homogeneous
elasto-plastio problem which has been studied in [2] and [17]. To simplify the
arguments in the follovving, we suppose that Q is connected. We will write simply
We2(Q; R®) as W*?(Q) in the following when there is no confusion.

§ 3. Variational Formulation and Limit Analysis Problems

As the expressions (1)-(8) are very.complicated, it is not easy to see how %o
‘prove the existence of a solution by using that formulation. Duvaut, Lions, and
more sucoesfully, Temam, had proposed to solve the plasticity problem by using
variational minimization method. We follow the same method and transform 1)-
(8) into a pair of formally equivalent variational problems:

Pin f{[g gb(e(u))dw—i—jpa 1| df—Jgf(m)u(m)dw—ymu-gdf——J‘pa‘Fﬂ(uoﬁ)dl’}

(9)
subject to u € A={u€ H*(Q), u|r,=uo} and

P Sup{—JQ Ao:o clcz:—i—L1l (am)uodl‘} (10)

| subject to o€ A*={c € L*(2; H), |o”(2)|<k a. o, div o (@) +f(z) =0, on|r,=g,
{on)o| py="Fn, | (on) | .| <.} With |
| (&) =Supié: n—An: ; 1€ B, | 1P| <k} - (11)
for all £€ E and we have the following
Proposition 8. 1. If u is a solution of P, o a solution of &, then (u, 0‘)
satisfies the relations (1)—(8) and vice versa.
The proof of this proposition follows from bhe results established in [8]. We
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just have f0 notice thab in this proposition we have assumed that w€ H! in
advance. It is in this sensc we meant that & and #* were formally equivalent to
(1)-(8) at the begmnmg of this section. | '

Propositon 3. 2. The fumtfaon P defined in (11) satwsﬁes the following

~ properies:
01(bré)?+ea( |§D| -1 <4’(§)<02(tr§)2+04( Ed +1), (12)

$(£)=0, $(0)=0, (13)
with 61, Coy Csy Ca be'z}ﬂg posttive constants (¢f. [171).

Proposition 3. 8. Inf#=sup#*(ef. [9]).

It follows from Proposﬂuon 3.2 that has only linear growth a¥ infinity with
respect to £ € EP. So in general, we do not have any result ensuring that Inf&>
—co, Therefore, a condition which can guaraniee that the functional is bounded
below is desirable. In [17], one such condition called the limib ana.lysm hypo’ohesm
was given via the following problem: :

PLA: Inf{fnlpm(ev(u))dwjnzlug[dr_}n o (14)

subject to u€ AL-——-{uE HY(Q) u|ry=0, Jaf(_c_v)u(zv) +‘L geu dl"’—l—L F,(usn)dl =
1, divu=0.} with (£2) = thm P(4£P) /4 for any £€ H. Its dual problem is

PLA*: Sup{A} ' (15)
subject to 0'6 AL*={cc€I?(Q2; E); |oP(z)|<Fk a. o, divo-+Af(e) =0; on|pn=Ag;
(on)n| rs=AFw; | (om)#| <V on I's} and we have, similar to Proposition 8.3, that

InfPLA=Sup ,?LA* ’ (16)
The limib analysis will be given in detail later for technical reasons. ' '

§4. Funcfibn Spaces and Limit Analysis Hypothe-sis

As we have noticed in the previous section, the function of potential of energy
has only linear growth at infinity with respeob o some part of its variables. We
can antieipate from bhis fach that any estimate concerning the minimizing
soquence {un} obtained from the energy can nob be expected to be better than

o |62 () | 2200; >+ | A1V U] oy cOmSE,
in general. This kind of estimate does not guaranfee, in general, the.boundedness
and nelther the weak oonvergenoe of the minimizing sequenoce in any Sobolev space
of type Wt?. Therefore, we have to 1n15roduoe new fanotion. spaces. Mosb resulés of
this sechon oome from [16].
Definitions 4. 1. Let M (92) denote the spcwe of boumled Radon measures and we

define
B_D(Q) = {u€L*Q), o(u) EM(Q; B)}r
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o U(Q) {uEBD(Q), dlquL”(Q)}
. whth the followwng norms

lMlM(m SUPU ¢,w,¢€00({2) |<;S(m)]<1} |

Iu]Bn(m |u|L1+|9(U) | womy
o Nwlner=|v|zo@+ |div ufmar. -

Deﬁmtlons 4. 2 ' The “fwewk” topology of

i) BD(Q) is defined as: u,—u in BD(Q) 'bf and only 'bf u—>y tn L'(Q) and
e(u,,)—->e (w) tn M(Q; E) weak-star: = -

(i) U(Q) is defined as: un—u in U(.Q) iof wnd only fzzfu,,—»u in BD(Q) amd d1v Uy,
~divu fn L?(Q) (én usual LP spacss, “—" denotes wealk convergence).
.- From the above definitions, we can draw the following consequences: U(R2) .is
embedded eontinuously in BD(Q); the embedding BD(2)«>L?(Q) is continuous' for
.any p& [1, /2] and is compact for any p& [1, 8/ 2); froru any bounded sequenee of
BD(Q) or U(Q), we can ex’sraot a subsequence which eonverges weakly in BD (.Q)
or U (Q) respectivly. : o ,

~ Definitions 4:3: . For amy finite number. of conves - functbons {Y.} 7y which

satisfy the esttmates of type 12 and (13), we deﬁne an entermedwte topology on.
U(Q) given by the following distance

[REIN eD<v>|>l+ j @v@—o)ya]”

dlu )= lu | oyt

3| me@ —weo|. - an
‘We have also the followmg results: For any u € BD(Q), the tra,ce operator .
4 € BD(Q)>u| € L (2Q) | @8

is well defined and is confinuous with respect to the fopology defined by (17).
H(Q) is dense in U(Q) with- respect o the topology deﬁiied by (17). We just
point out here that the definiti on of lll (e(w)) in (17) as a bounded measure for any
S U(.Q) is given in [6] :
. Now, as all the proper funetlon spaees have been deﬁned we glve exphoﬂ:ly the
limit analysis hypothesm and make clear 1ts mathematma,l sugmﬁoanee '
Hypothes1s 4. 4. Inf @LA>1 _
_ Proposrtlon 4.5. Unoleo H ypothes%s 4.4 ‘the pfroblefm P admils @ umgue
sobution and any minimizing sequence o f P will stay. in @ bounded set of U(.Q)
P'roo_f The fact that &* admitbs 2 unlque solutlon under Hypothesis 4. 4 is

easy to see by applying the theory of convex analysis on I? and by nobicing tha’& _
the underlymg function set is nonempty (see also 9. As for the second

conclusion, when meas (F1) >0 i ‘was provedin [17]. We do not dlseuss the ocase
meas (I'y) =0 with I'y nonempty for there is no proper-trace theorem in this case,
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‘What left therefore is the case ‘where I'y is empty By Hypothems 4.4 we have
L Vs | 47>t PLA- U f(w)u(a;)dw+f g«udr-:-f Fu(ur n)dl" (19)

.For all u€ % = {w/\zv—i—b a, bER'}. As Z s a. finite dlmensmnal spaoe it follows
from [8] that

ol [[@u@ant |, guare | P | [=olulue  @0)

for all ¥€ Z and ¢ is some ‘positive constant It is denved in [17] that if {u,} is
minimizing sequence then Hypothesis 4.4 1mp11es that '

L leD<um>|+J 4ivunda+ [ Yuslal <oonst 1)

Now the conolusion that |%m | 7@ < const follows directly from (20)-and 1),
§ 5. Relaxation

In the preceding section, we showed tha.t under Hypothesm 4.4, the mmnmzmg
sequenoe of & is bounded in U(2) and; therefore, contains a subsequence which
eonverges in U(Q) weakly. We want to show fhat the limi} funotion obtained is a
solution of $he problem. To show this, we fhave two bhmgs to explam and verify,
The first is that  the weak convergence in - U(.Q) does not guarantee that the
boundary ‘condition can be maintained. It is also physwally reasonable o -haveé
“solutions” that do not preserve the displacement boundary condition imposed in
advance. So we have to find a compromise to say that the limit funotlon is a
solution in some sense. The second is bhat, following that eompromlse we have 1;0
justify that the funotional congidered is 1.'s. o. with resPeet to the convergenee
available. ' o

The first thing has been sbudied in [17]. Wo recall the ma,m facts here in
adaptmg to our situation. The second problem will be treated in the nextseo’mon
for our particular problem. The boundary condition is relaxed to unl p,—uo-n and
the problem is relaxed to .

PR Inf{j :,b(e(u))+J lpm(fD(uoru“))errJ Zluy]df

-—J‘ f(m)u(m)dm—fﬁ u«gdl"—f F, (u'n)dl"} PR 7 (22)
subject to u€ AR={u€ H*(Q), u *n|,=ugen], where .7 is the lincar opera,tor from
I(2Q) into L' (8Q; E) defined by 7~ (@)= Cugmg+um;) /2 We' know that PR is a

relaxatmn of & in the followmg sense _
) Inf PR =Int P, |
i) any minimizing sequence of & is also a minimizing sequence of X,
We note now that the third integral in the expresion '(22) ‘has no relation with
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the potential of energy while the relaxation of the displacement houndary condition

brings us a term linked direotly with . The philosophy in proving the existence

results of plasticity problems suggests that we relax it further under the res’omotlon.
$hat the minimum value of energy is not affected.
Let us define | | : ‘
| , O={¢CH: VnERS, |n| =1, |én— (n)n|<B. (23)
Proposition §5.1. O=REI +0P where. OP is a bounded convew subset .of E”
contatning @ netghbourhood of 0. " - o
Proof Noting that {n— (nTén)n= § rnr’"é”n, we conclude easily that O=RI
40P with OPc EP. To show that 0P is bounded, let § be in 0% M, Mg, As e its

threeeignvalues. It is easy to see that -
3

2%»;::0.

=1
T4 follows from (23) that
: max{|M—As| }<2L.

Therefore I}\. |<4l/ 8 for 4=1, 2, 8 is olear. So OP is bounded. The fact that O is a
convex seb is easy to see. Fmally, O® contains a neighborhood of 0 follows from the
fach that |én— (nTén)n| < |én|<|E].

In the following, we denote s () =Sup {£: n—An: = nE C} and tﬁ(f ) =the
convexification of min{:1(£), P(§)} and we have

Proposition 6. 2. § (€) satisfies the estimates (12) and (18).

Proof Take

O=1{£€H, |&2|<kNOC, C= {O'EL2<T3, ED), o(z) €C a. e} - (24)

Tt is then easy to see that §(€)=sup{é: n—An: n; € C'}. It is also easy to verify
that §(€) < (£). So the estimates follow directly.

Proposition 5. 8. For any u€ H(Q), we hawe

e T@ar=| wlar. @
Proof Following the same method of proof as in [11], we geb
J l[!m( TP(ug)) = Sup‘[ —0: TP2(ug)dl

gubject t0 o€ LA(I's; BP) and €0 a. e.. 8o it is easy %o see that (25) holds. We

want §(— I (us)) to be the relaxation of I|uy| in the expression of potential of

energy and so we try fo give its explioib expression. o
Proposition 5. 4. For any u€ H*(Q), we have

[ (=TT =S [ ~o: oGl )

subject $0 o€ O (ses (24)). :
~ Proof To show (26), we just have to show that!
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~ | . (€) =Sup{o: £}
subject to 0'66 for all (&€ EP. By the definition of g, it is easy to verify that
o (€) =Sup{o: & cc} for all £C EP, To show the inverse inequality, by [9], we
just have to prove that if we note i (§) =min (Y (§), Y(€)), then ‘
2 () =Sup{§: 0—4do: 02 0€ C3. - (27
Since i =y3* by the definition, we geb the desired result, As a matber of faot,
Wi (o) =Supfé: o—ya(£); £€ B} o
~Sup{max(¢: o—$1(€), & o—(¢)); EE T}
<max(Sup{{: o—¢1(£); € B}, Sup{é: o—(§); € EY)
Ao: o if o€ C’
{—{-oo if not.

It is then easy to see that (27) is true. .
- We can now give the relaxed problem of % and show thab it does nob
influence the minimum value of energy.

2%: InfU ¢(e(u))+f lpw(,w(uog—u,))drﬁ lp“( f”(ug))d['

-, F(@yu(@ydo— Jsg-udl"f—LaF,.(uwm)cll‘} L e®

subjeot to u€ AR. When we compare 2% with #Z%, it is easy to see that any
addmissible funetion of #Z is one of 2% and Inf W,%’>Inf .Q.% So we have to show
that ’ SR
Inf PE=Int 2%, ’ o (29)
By the generalized duality (ef. [11]), for any » which is % admlssﬂole o Whlch
is #* admissible, we have ' '

I ¢<e(u))+j ¢m(.7‘u(uog—ug))dT+I Ju(~ .7D<ug))¢zr-f f(m)u(a;)das

—Jm g°u dF_J‘m Fn(uvn)df>—JQACf: o dw+Jm (on) suo d.,

which implies that Inf 2% >Sup #*=Inf PZ%. So (29) holds.

As we have already observed that H* is not the proper space that we want to
work on, we now extend the definition domain of the pi'oblem 9% so that the
funotion space in which the minimizing sequence is bounded coincides with the one
on which the problem is defined.

2: Inf{[ Po@)+[ du(T2w))+[ T (- fb(ug))

—J'Df-(m)u(a;)da;—-J'P-ir g-u al' — L" F”(u'n)df}

subject to u€{u€U(R), uen|r,=up*n}. The relation between 2 and P ig thab
Inf #=1Inf2 and any admissible function of £ is one of 2.
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8 6 Lx1stence Theorem in Stram Problem

In this seobion, we follow the main ideas of [17 1 to show that for any sequence
{u,,,}c:U(.Q) which converges woakly in U(Q) to ‘u, with each wu, being 2
admigsible, we have ‘

i et +f $oLT Clor = ) 'd'lT +[, J“'G?%”w))dl‘
__j F ()t () deo j gerndT = J n(umn)dl“} Ty

Moo

{

>f ¢(e(u>)+j nlr»(f“’(uoy—uy>)d1‘+f ow( fD(ug))dl’

—J F(@)u(o)do— f goudl — f Jwn)dl. (30)

Theorem 6.1. If (30) ds tfrue then undor H ypothesos 4.4, the pr oblem 2
admits at least one solution. ,

Proof For any mlmmlzmg sequence {u,}, We can suppose thab i} converges
weakly in U (2) toa function w. It is easy B0 see ’oha’o un| r,=%o*n and by (30) we
know that  is a solution of 2,

Now we give a proof of (80). We need at first, more results concerning convex
functional of measures. : ' :

Lemma 6. 2. If 4;, BEP—>R*{ {0} for 4=1, 2 suoh that

1) e(lpl =<y (p)<c¢(|p|+1) with oy, 6;>>0, pEED i=1, 2;

i) iy s conmvewn;

i) Pa( P)<¢s(p);

then, &f Q is @ bounded regular. open subset of RB® with boundary F I‘o os @ regular
closed subset of I' amd of {,Lb,.}C:M (R?; ED) such thwt ‘ '

i) supp w.C0,
i) p>p in M (R‘”’ ED) rwewk—smr

we have

n_m[ th(,u/,.)-l-J' Waeo (i Ino [tﬁ(,u/)+f Lpzw(y,[po),

with | p, bebng the pars of measure of w supporsed by I'o for any €M (R“” EPy,

Proof We notify first that for any w€M(R% EP), ()€ M(R?) (cf. [6])
Seo—ondly, since w,—>w in M (R%HEP) weak-satr, we know that supp,u,t:[) Finally,

" if we pub I'y={o€ R?, dist(w, I'g) <8}, we geb the following estimate:

AR MR PAESES SRACAES MEACSE

By the standard 1. s. o. property of convex funoiuonal of - measuros (of. [6]); we
have : : :
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1_1;13 {f 1 (i) +Jz',, 4’200(#'»"0)}}]» a\ﬁa‘bﬂ(ﬁ)o-' - o (81)
~ By letting 8—>0 in the right hand side of (81), we get the desired inequality.
Now we are ready to prove (80). The main idea follows from that in (11
except the friction term. So we g’i\fe_ only an outline of the proof.
Theorem 6. 3. (30) _ holds undefr the hypotheses given at the begé)ﬁn@ng of tha
section,. S -
Pfroof Deﬁne a funoblon BEC™ (R) suoh thatb
0 if |tl<1
8O={, 6|52,
0<8(t)<1 for all $€ R.
"~ We put (Dai(a;) B(dist(w, I'yUT's)/8) and Bse(w) = ,B(dlst(m T1U I’z)/ﬁ) with §>
0. It is easy to know that @, are. regular functions (at leasy o). We also know
that under our setting of the problem, () ——c(tr§)2+¢vb (fD) for all & € E where ¢
is a posﬂuve consbant. ¢ is a function defined on E” satlsfylng the eondltlons of
Lemma 6.2 and. ®(¢) =0 for any £CEP, FERE T
Suppose that o is any admissible funeiuon of Problem P, {um} is as in the
beginning of the seolion. Then we have -

@)+ (TP o= thne?) AT+ [ G T2ty

-—J f(m\um(fé)dw—f g°umdf—f Fo(timen)dl
=L) e(div um)"—-——- (tra) (dlvum)]dw—l—L uog(cm) 0L

) [ P@@N+[ T upar

(TP oo —s)) AT~ [ 07: P ()

—J‘T’o (’Moy“?ﬁnﬁ) (00%)5'*‘[1‘, umg(&‘@y; S R . : (32)

We know that the firsh term on the right hand side of (32) is 1. s. o. since div Ui

- eonverges o divy in L?(Q) weakly So we study only ’ohe Tesb part of bhe rlght
hand side of (82): '

© Test> j P (a.sﬂen(u,,.)) j lpD@MeD(uo)) fan e”(um) @314

N @n(%y‘ ’Mmy) (‘T ‘"’) 7= f (1 @61) WW" “mﬂ') (0 '"‘)’

[ d-tyor w”(%)fk‘fnlll’? (1= Bia) P ()

o/

"';1,. (1;¢6;)u,;,(&n) g%—fm Jg(y‘vb(.-_‘%g') (1;'@31):). 4. -
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+Jr, !Pﬂ((l;iﬁai)jn(uw—_umy)) . .
Lt [ 421 B Buse® (i) + [ T (1= Bi) B2 T ()
+ ”a Y2 (L~ Byz) (1~ Bag)e® (thm) ) +L'. oo (1~ Pi1) (1= Bs2) T (—tms) )

- ”9 @1y (1= Bi1)0P: 62 (tt) — L B (L~ Bt (51)
- Fr Byo (1 — D) (Uhog — dmﬂ) (b ) g f 2 (1 - @62) (1 —Bp1)oP: P (Uy)
- ﬂl_‘ (1~ ®s3) (1 —Dsy) ;It;,,g (on) g~ J‘.n (1 —@By3) (L= Dy1) (og — Umg) (00) &

+J r P2 ((1 - Qﬁi) @52"7‘1) (thog — YUmz) )

00 (- 8 72 n) (33)
with | | |
L= [, 4902 - j 5 WD () - [ o ) i
"'J 91541(%03 um.?) (o rﬂ')y,
where _
Uy = _
Up X € RS\Q,
and :
A {um AS Q,
" losc B3\Q.
Now the 1. 5. 0. property in the lash expression in (33) follows from [17] exceph

that

of the term

[ 4P~ Bi) B )+, Tl (L= 00)BosT > (~tins))

whioh is proved in Lemma 6.2,

f1]
2]

T3]
[4]
5]
6]
€7l
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