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MULTIPLE PERIODIC SOLUTIONS OF ASYMPTO-
TICALLY LINEAR NONAUTONOMOUS
HAMILTONIAN SYSTEMS**

WaNG ZHIQIANG (£ & 7&)*

Abstract
This paper studies the existence of periodic solutions for nona.utonomous agymptotically
linear Hamiltonian systems. By usmg the Z, index theory some multiplicity results for-

nonautonomous systems are given, which genela,hze some results for au Lonomous systems
" due to Ammanh and Zenhder ' ' ' ' ' ’

§ 1. Introduction
In this pai)er, we consider the existence of mulbiple periodio solutions of
agymplotically linear Hamiltonian system '
2(8) =J H, (%, 2()),
| {2(0)=Z(T),
where 7'>>0 is a real number and

&= <Z1, °"%y 52,;) ER‘% (t) = dﬂ(t) S

(1.1)

0 -1, .
J= (I 0 \ is the standard symplectio structure in R* I, denotes the idenbity
n / : : ' :

matrix in R", .

The following assumptions were usually used.
‘(1) HEO’(RxR*™ R) H,(, 0)=0, and

H@+T, 2)=H(¢ z), V2ER™ {€ER, (.2)
(2) There isa 8>0 s, t..

~B<H,(, 2)<B, V({, 2) ERxXR™
(3) There exists a symmetrio and time independent mabrix
' b€ L(R™), s,t.,
JH, (¢, 2) =Jb.z+0(|2]), as '||z||—>oo, uniformly in .

Because of (8), (1.1) is nsually called an asymptotioally linear system, From
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(1), 0 is an equilibrium point. The aim is to find nontrivial T-periodio solutions.
In [1, 2, 4, 5,.9] the existence of nontrivial “olutions of '(1.1) was given under
some additional assamptions on by and .. Algo .in:[2] some existence results of '
multiple solutions were obtained with the additional assumption thas. “H is either
evenin z (i. e., H(t, 2)=H (t —#)). or of time mdependenoe (i.e., H(t, 2) =H(2)).
In [4, 5], an exigtence result of ab 1east ﬁwo nontmvml golutions for general H was
obtained under some-more restricted assumptlons on bo and b.. In the followmg,
we shall give some mulfiple existence results without the assumption of H (%, 2)=.
H(t, —¢2) or H=H(z). We agsume thab there iz an’integer p>>1 such tha}
H@+T/p, e)=H(, 2), V(@ ) ERXR>» F .- (1.8)
Obviously, (1.8) implies (1. 2) Under this condition ‘wié can easilysee ‘that
(1.1) possesses'aZ, 8ymmetry, i, e.; #isa solubion of (1 1) = Rz defined by
L . (R2) (t) -r-z(t+T/p) L | (1.4)
is also a solutlon _ DT i e
Definition 1.1. Two solutéons 2y, Zg are called geomtmcally different fof NﬁéR’za
VZEZ where RZZQ—R(RL -1 ) o L R L. e
" 'We shall seek geonzei;neally different solutions of (1.1). Under somé addﬂuonal
. assumptions on by, by, and the eigenvaluesin: “the inteval [~ -8,-B] of the lirieariza-
tion of (1.1) we can give the. mulfiple existenos of geometrically different solttions.:
The mebhod of solving the problein ds o use's’ Z;~index thesry developed in .[11,:
12]. In [12] we use this index theory to give multiple solutions . for: & nénautono-
| mous wave equation, In [7], a Z, index theory was' in depéndently given to study
subharmonio solutions, which: isonly 4 speoial case of-out index. theory, =
Finally, our method can also be used to study second: order” ‘Hamiltonian
sysbems. Some results and: further references in:thig field .can be found in [3, 6, 10,

§2 Maln Reqults and Proofs

P B A‘.
HENIAS e e

i, The 1ndex Wby By A .

‘We recall a definition of index ¢(by, b., ¥) for two symmebrm matriocs: By, b &
L{R”") and a positive number T mtroduced in:fd1, 21,7

If b€ L(B™) is symmetnc and y,>0 wo consider the quadratio form on R”"x
B, _T_deﬁned as R
T YT, 35 = By 5= b, s, @D
(@y,.@) € B x B, It is yopresented; by the majrix Q(u,. b SLR: |

wAD T ";: . Q(M,b) III(J\ " .) (Oab.&)i Siis ERC BT ard (2-2) )
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We denote by m*(-), »°(-) and m~(-) the positive, the zero and the negative
Morse index of a quadratio form or of a matrix representing this form. Now assume

the two matrices by, b. &€ L(R*) to be symmetrio and let 7=0. Define tiwo 1ntegers gt
=4*(by, b.., ¥) as follows '

i =L Im* @, ) ~m* (@0, 5.)))

AU @G, W) -m @G B (2.3)
And set . C | ' R _
5(Do, by T) =max{§+, i"yez. . (2.9

2. A result with convex nonlinearity

‘Now, let T>0. H satisfies

(Hy)y HEO?*(RXR™, R), H,(, 0)=0, and ﬁhere is an mteger 2>1 such that

H(+T/p, 2)=H(@, 2), V(@ 2)ERxR™, (2.5)

From now on, we fix p and decompose it as ‘

| | | | p=pi* pi,
Where p1<---<p, are prime factors of p and ;>0 intbegers.

For simplioity, we introduce some notations, Let N be the seb of all nonnega~
tive ihﬁegers N*=N\{0}. For m,'n€ N, {m, n)> denotes the greatest common divisor. .
'offm and n, m An=min{m, n}. For b, 1€ Z if {|k|; |1|>=1, we call ¥ relatively
prime to {. For a jeal number 'vE R, [v] Amatx{wé Z|a<v}. Now we can state our:
first result as. follows. v ' RN

Theorem 2.1, Let H sat'bsfy (H 1),, tmd .
(Hp) H(®, +) ts strictly convex fvfr each tE [o, T],
(HB) 3/8>0 such that
" =B<H.(t, 9)<B, V(, z) ERxR2”
(H4) JH, (8, 2) =Jbz+0(]2]), |2]->0,
JH, (2, 2) =Jb2+0(|2]), |z]—>00
unbformly in t for two symmetric time independent matrices by, b, € L(R™),
(Hs) seb My= {mE N

@TE<B }, assume that there eaists.a », 1<v<<s such

 that £, € N ginen by: - o o
| , | v -—max{<p m>meMa} @
satisfies S .v o
‘ [ BT]-m <t o (2.8’}
Then of 93=v}(b&, | ',,, )>0 theo e wre at Zeast @/ 2 rionconstant geometo v;cany d@ﬁeren#
T'-periodic solutions of the syste/m z—J H, (&, z), provided. o (J be) n'z, = .
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Remark 2.1. Withoub loss of generality, we assume 'B>T’ and then [—'g—g—]

>1. It follows thab
’ Ty>tye

Proof Theorem 2.1 We follow the basio frame worked out in [1, 2] and [4],
and pay attention to the appearance of Z, symmetry, And then we shall use a Z,
index theory developed in [11, 12] fo derive the result, '

It is known that the operator A defined by Au=—J u with domain 2(4) ={u¢€
HY]0, T; R”") |%(0) =u(T)} is a self*adjoint operator and has a pure point Speo bram

o(4)= Z And every e1genva1ue AE cr(A) has multiplieity 2n and the elgenSpa,oe

E(?\.) ker (A—4) is spanned by the orthogonal basis
. e M, j=1, 2, , A
where we have 1den1;1ﬁed R* ag C* and {¢;}7, 1i8 ‘vhe or’ohogonal basis of C°. In
particular, ker (4)=C", it consists of the consbant funobions.
Now, finding T-periodic solutions of the system z=JH,(t, ) is equivalent to
finding solutions of the following operator equabion . !
. =F(u), uvE€E2D(4), : (2.9)
where F (u) = H,(¢, u) is Nemytsku operator
We introduce a Z,~aotion on Z(4) ={u€ H*(0, T; Rz") | (0) =u(T)} as follows:
ut->(Bu) () =u(&+T/p). L ’ ’ (2.10)
Tt is obvious that R is a linear action and R is isometric on the inner product of
I2(0, T;R*). By Assumption {(Hz1), ‘equation (2.10) is equivariant under this

action, i. e,

ARu=RAu, F(Bu)=RF(w).. @1
On eigenspace E(A), if k———T— m, mEZ -then o |
R(e~™d¢y) = — g2/ P~y j=1, 2, (2.12)
From the assumptions, F satisfies F (9)=0 and , 4
- —Blu—ofP<<F (w) — F (v), u—od><Blu—ol? (2.13)

for any u,v€ (0, T'; R*). The following bounded symmetrio operators By, B. on
I2(0. T, R*) were introduced in [1, 27 :
 Bou(t) =bau(s), Bou(8)=bu(s).
And the condition o(J bw) n 3%’-'1 Z= Q is equiva,lent to 0o (A— B..).
By the saddle point reduction method r1,.2, 4] and the estimate (2.13) for the
nonlinearity ¥, one can reduce the problem of finding nontrivial solutions of the

equation (2.9) to the problem of finding nontrivial critical orbits of a Zy invariant
funotion defined on the following finite dimensional Z, invariant subspaoe Yc*" PIA
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(O T, R"‘") Where P ig the projection . _
onto the eigenspace of A belonging to, the elgenvalues contained in (—§f, ,8), here
i, i8 the: speotral resolutlon of the opera,tor A. We con assume that BeEa(A) We
have the following lemma. . ~ - : =

Lemma 2. 1. There give o functfborn. fe (Y, R) amd an imjective O'-map w: Y
- =>L2(0, T'; B*™) satisfying u(0) =0 and I, D(A) with the following properiies:

C(f1)-f(8)=0, f'(6) =0, and yEY is'a eritical poims of f-if and only 6f u(y) és a
solutton of the equation Au=1F (w). f is of the form:

£ =3 4u(@), w@)>= [ H G, u(y®))ds.

(f2) wis Z, equ'wwmwnt b..€.4 u(Ry) =Ru(y) for wny yEY and then f s Z,
- tnyarient, 4. e., . -

- f(By) f(y), VyE Y, -
(fs) If 0¢o(A~=B..), then f satisfies the Palaii-Smale condition.
(fs) By and B.. commute with the projection P, and them %8 @ constant >0 such
. that '

——<(A Boa)y, y>— 8<f(z/)<———<(A Boo)y, y>+8

for ewea‘g/ ye Y. Moreover
f"(é’) (4-B)ly. .

Prroof The proof of). ( fl), (fs), (fo) follows from [1 21. And ( fg) follows
from the equivarianoe (2.11). From (2.11) we can prove with a similar argument
in [12] that u(y) is Z, equivarianb. And it follows immediabely that f is Z,
invariant, o ' ; o | '

Obviously, the oritiocal orbits of 'f. correspond ﬁo' the géom_etrioa,lly difierent
solutions of (1.1), To find many oritical orbits we:need a Z, index ﬁheory developed
in [11] and [12]., We recall this theory with a sllght modlﬁeatlon o .suffice our
need, ~ : -

- Let the coordinates of C‘” R? be given by

| y= (%1 += s Zay Bair " @ons)
with 244 bemg real, j=1, 2, ---, b. A Z, action on C*x R’ is uﬂ;roduced by
u—>Ru = (e”"‘ﬂ”‘“’zl ey @A By Loty o0ty Zasn)y - (2.14)
where mgaéO are mtegers j=1, 2, ‘ o o B
. Recall that p is given by (2.6). A.;nd gotb

Hy={n€ N*|In,€ N j=1, 2, +=-, 5, 8. 4 n=pP ~-pl}. (2.18) -

F01 any n€ Hy we have an index map o E—>N U{~+o0} (cf. [11 12]), where -
Z={AcC*x R’| A is closed and RAC A}, - - (2.16)
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We denote the greatest comomn divisor and the smalles’a common multlple of
{7y | }i= Y M and m 168peot1vely, and decompose Jahem as. .
| M= Mgl - Q@an
m=m/’ > Pl pi, - (2.18)
whére M’ and m’ are relatively prime to p. AndZ E N, ;€ N. Now we fix n=p}---pj,
then n€ Hy. : ‘
Lemma 2.2. Assume that there ewists a v 1< v<s, such ‘that

a(t=1) <ry=l o @a9)

Then o, has the following propeq"tws Lt
(1) If A,, A€ 2, and there is a Z eqw&wmwnt map
YA —>A, then .
on(41) <0n(4s).
(i) If Al, 4,62, o, (A1UA2><0'n(A1)+0‘n<A2)
_ (iii) If K€3 is compact, then there is a >0 such that
crn(Na(K)) o (K),
'where N.;(K) {uEO" R"Idlst (u, K)<8
(iv) If K€ 2 and KﬂR?’——Q, then |
o o (K) <+oco.
(v) For any u¢ R, o.([u])=1.
(vi) If 1<o.(4)<~+oo, then A contagns infinitly many orbits.

(vii) If W O*x RV isa Z ? enwmwnt subspace and W (] R’={g}, then for any -
Y

bounded irwariant open ne@ghbouq‘hood QCW of the origin,

Proof (i)—(iii) is the same as in [11 12], and (iv)— —(vii) can be proved by
an obvious modification of the proof in [12]. We omit it. :
Now, the subspace ¥ = PLQ(O T, BR™). glven previously is.a Zj mvarlant

subspace, and .. : - ‘ ,
Y= @E(x) | . ;.(2-.20):

lal<g

Since ?u=—2Tﬂ m for a certain rmE__Z, and the _aotionvof Z;, on K (7\,). is givenS by

(2.12), we know that B (0) =ker (4) = R™ belongs to the fixed points space for the.
sction of Z,. So we ¢an 1dent1fy Y as O“xR” b =2n, and a= dlme O E(?\.) By

(2 12), for ?\4=-1—7—~m
R(e -ia.t(;bj) =6-im2vv/93—i&t¢j, j=1, 2, , n

‘When we set L
M=G. 0. D. of {meN* —T—rm<,8}
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- it follows that M =1, And we set
m=8. 0. M. of {mE e

7 m<t}

m:_-m'fpi‘-n :3’, .. . ) (2.21)
where m' i8 relatively prime to p..
Assumption (Hps) implies that

and decompose it as

ty=t:<'ry
and from (2.8) '
BT 1,
[_2_7;.] 1ty <1y
We may note that | _
Ll BT 7, -
“~d1nco<lm<aE(x) [_2?--] . L (?.22)

So we obtain (note =0, j=1, 2, +, 5) o

w(t —1) <ry—1,. o - (2.23)

And then, when we fix n={p%-..pfs ag in (2 21), o, has all the p1 operties of Lemma,
2.2 on the space ¥ =PL*(0, T'; R™). '

Now, we need an existence theorem of many oritical orbits for Zy mva.rla,nt.
funotionals.

For ¢€ R, set o ) o
E,={u€Y | f(u) =o, f'(u) =0},
- fo={u€Y|f(w)<c}.
For k€ N*, define
Ay={AcZ|0.(4) =k}
and if 4y, define. . : .
el ii&f gggf(w. - (2.24)
Obviously, 61(f ) <ea(f)<---.

Lemma 2.8, “*  For each 706 N*, ev(f)is a critical value of f provided —oo<
Gk(f) < + 0,

Lemma 2.4.%%  Assume that thea'e are b, 1E N* such that

2000 (f) =ua(F) = =0uu(f) <-too.
Then o, (K o) =>1+1. Moreover, if 0w (K ) <400, K, contains infinitely mtmy orb@ts

Lemma 2.6. Assume f as above with f(8) =0. Assume that

(1) there ewist @ h-dimensional (real) Zg irwariant subspace ¥ satisfying H(0) )
¥ =16} and a constant o such thwt

f IYJ->05;

()] tlw're ewisis A€ 4, 1>k and AN E(0) = such that

sup f (®) <0.
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Then —oo<e;(f) <0, for j=k+1, <=, 1. Moreover, f has at least 1—k critical orbits
provided | ' ‘ _
K,NEQ0)= Q, j=k+1, o, 1.
Pfroof It follows from (2) that ¢,<0, for 1 < g<l To prove Gue™>—o° W6
firstly prove that if Ac3 with o,(4)=k+1 and AN E(0)=J, then
ANY =g,
If not .Anf"l g sob y=(yy, ¥a), WET, y2€7l Then VyEA yﬁéO There-

fore when we set Q: Y—>¥, the orthogonal projection which is eqmvana,n’a we have

QAT \16}.
Deﬁne 0:QA—->F vy plys) = “ “ Then p is also equivariant and

p(Q4A) S ={m€¥ ||yl =1}
Since ¥ N B (0) ={#}, from (i), (vii) of Lemma 2.2, we have
O'n(A)<cr,.(p(QA))<0',.(S) =k,
a contradiction,
It follows from this and. (1) ’ﬁhat
Crp1 220> — O,

Now if K, ,NEO)=0, j=Fk+1, -, 1, by (1V) of Lemma 2.2,

o‘,.(K.,d)<+oo j=k+1, -, L, '
since K,, is compaot from the (P. 8.) condition. ‘

If 61 <---<<e;, then f has I—F oritical values, and then at least Z b oritical
orbits, If some of {¢;}}=;.+1 are the same, from lemma 2.4, f has infinitely many
oritical orbits. A

Remark 2.8. The above resulb is a Z, version of the similar results in [2, 8}
aboub Z, and §* symmetry. This result is also a generalization of Theorem 2.3 in
- ; ‘ s et

Now, we apply Lemma. 2.5 to ﬁmsh the proof of Thaorem 2.1. We first assume

§=4% (bo, b,,, _ )>O a.nd apply Lemma. 2.5 to -—f For A= g Eo(.A) with j>1,

there is an orthogonal basis (real) of B (A): . _
coshe,+sinds Jop, b=1,2, -, 20, (2.25)
where {ek} ', 'i9 the standard basis of R, And {¢;}rq, the complex basis, was -
obtained by
Gi=65+00nss j=1,2, =
From (2 28), we have o
" BEQ)@E(—A) ={cos My1+smM ys, 0<b<T |91, ¥s€ R},
By a direot caloulation, one-can notice thab the restriotion of the operator A-
B, (resp. A=B,) onto the subspace B(2)@H(—4) defines a quadratic form which:
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" (resp. b=b,,). From Lemma 12.3 in [1] ¢(B0) =0(dy), 0(B.)=0(d,). And by
assumption (Hs) o (b,) c[-g, Bl,e(b.) =[-8, B]. So it follows from the definition
of 4* and the above observations-that : :

agrees Wl‘bh $he quadlatlo form Q(w, b) deﬁned by (2. 2) for p= § == and b=1b,

m* (4= By) |z) —m*((4 - Bw)ly)—-w(bo,b 2””),

Now, ehoose Y the subspaoe on which A—B,, is posmvely deﬁmte By (iv) of
Lemma 2,1, for yE ¥ l

—f<y>>_—11- <(A=BLyy, 1y=3

=L 5 ly|®~0 for some s>0
‘ L =-0. : : .
From the convexness of H in z we know b,>0, b.>0. So it follows that E(0)
NY ={6}. Again set W =the sub-space on which 4- B, is positively definite.
From (fy) of Lemma 2.1, — f’(é?) =— (A Bo) [y Then we ma,y take >0 small
snough so thab
. ~f (y)<0 "Vyé S's;
where §,= {yEWHIyII——s} ' . o
, By bo>0 E'(O) ﬂ W ={6}. By virtue of (vu) of Lemma, 2 2,

0 (S; ) —-—dlmRW
Now applylng Lemma 2 b, we conclude that
-°°<0,( ~ ) <0, for 5 dlmR Y<g\—— dlmRW

We need to show K, E(O) . Let yo€ HE(O)N ng( f) then o€ Ker(A)
By virtue of Lemma 7 in [2] we know u(yo) =yo and u(yo) i9-a constant perlodm ,
..solumon henee a zero pomt of H, (§, 2). But since H is s’nrlctly convex in z we
obtain yo-—O * henoe ulyo) =0, and f (yo) =0. This coniradiots 0;<0. Therefore
Ko,(—f)NE(0) =. Applying Lemma 2.5 again, we prove bhat —f has at least

——dlmRW—a——dlmRY—-—[m*((A Bo)ly) m*((A B»)IY)]

=5 <”°’ b 2”)
1.

oritical orbits. By (i) of Lémma 2. 1 we obbaln at leasgh -§-® (bo, bw, T ) geometn
cally dzﬂ'erenﬁ nonoonstant T—penodm soluiuons of the system z J H o (t z)

~ For the case of 4~ (bo, be, 217,”)>0 we may a.pply the-dual version of Lemma
2.8 to —f. We omit thé details. . ST e L ey 1 |
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Remark 2.3. Condition (2 8) can be satisfied for the case that there isay, I<

v<<s, 8. 1
’ <ow m>=1, ..Vme,.Ms.-_

In fact, in this case 4} -0,

Corollary 21 Let H swt'bsfy (H 9) (Ha) (H 4) Then ﬂwm ds a. P>0. such
‘thwt of H sat@sﬁes, on wddfbt'bon :

(A=Y, "He O*(BRx B™ R) H,(:; O) 0 and for ap>P
H(t+T/p, 2)=H(, 2), V@, z) ERXR”"

there are at least ¢/2 nonconstant geometmmlly d@ﬁ'erent T—peo”%ad@a solutions o f tlze
system z=J H, (%, 2). . '

Proof Set M=8.0.M. of {mEM B} and write it as M =git---g¥, where g1 <+ <
¢ are prime factors and 6;>0, j=1, 2, --; L. For PE N*, 1f there exists a factor 7 | P
such that {p, My=1 and H satlsﬁes (H 1) 9 bhen by the above remark we can apply

Theorem 2.1 to reaoh the conelus:mn Otherw1se we may assume p gi‘ Seﬁ
BT
. *f"[—-‘gﬁ Jomt
and o P
P=qil...qgl.

Then if p> P with the form gite-+g7t, there éﬁisfs a ;), ‘1<V<Z, stich ﬁmf;
,BT . _ . R L
5= ] “'9*”"?""“

Again using Theorem 2, 1 we obtain the resulb,
8. A result without convexness agsumption. AR

The next result we W111 glve does not need the convexness of the nonhneamty
H, ’

Theorem 2.2. Assume that H samsjws ‘

(Hy)y HEOz(RxR”” R, H,(t,8) =0 and for wa N*, p>1 with form (2 6),

H(ﬁ—% z) HG, 2, YV &)€RxR"

(Hy) 3 constanis a<B satisfying a°,3>'0 such that
: a<sz(t7 Z) <131 V(t; Z) E-RXR% -
- withowt loss of generality assume «, B¢ o(4). |

(Hs) d6EZ and §>0 such that =~
ko H (%, z) (k+1)ow
- + A - -~ 8,
l| ll” T
umformly in t € [0, T] _ ,
ol ,81'

(H,) Set My, 5= {mG Z l—-< <5 } Asswm,e that there o5 a », 1<v<s

such that t, Z*E N given by

p = max{(p m) l mE M [ m}'

¥
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py =min{{py, my|mE My, qa}

([E2T-[Z])-w ety <n—E:

Then 6f H,, (8, ) <-—— ‘%l , foran 1€ Z, 1<k (or H,z(t 0)> 2 l>k+1) there

satisfy

are at least (k—1+1)n (0’)" (I—k)n) geometrically differens nonconstwnt T-periodic

solutions of the system é———J H(t, 2).
Proof The idea is essentially the same as Theorem 2.1, Put

- p- JdEM Y —PI*(0, T; B™),

then similar to Lemma 2.1, we have
Lemma 2.8. There are a funciion f co(Y, R) and an injective O'-map w: ¥
—I2(0, T; B™) satisfying u(d) =8 and Imuc D(A) with the following properides:
(fy)  f@) =0, f’(e) 0 and yEY s a critical point of f if and only ¢f w(y) is
T—pemod@c solution of z=JH, (%, 2). f s of the form '

£y =< Au (), w(@)>— [ Houly®))ds,
(f2) u s Zy equivariant, .e., u(Ry) Ru(y) for any y€Y, tmd then fis Zg

- dmvariant, . e., .
FRy) =f(y), Vye¥,.
(fs) f satisfies (P. 8) condition.

(fo) 3 a constant 3>0 such that for any y€Y,

2<( 2(]“"1)“ +28)y. y>—3<f(y)'

<H{a-Te-s)a e

fs) If Ha(, 0><3‘-”-"-(m~ H..(, a>> 2””) then

@438 (o (a2 ).
Now, Y= @ E(A). Obviously (assume B>a>0),

T amren((82)-[2))

Since the Z, action R on E(A) is given by <1f A=m 2T T , mEZ )
B<3_M't¢j) =6—2imm:/pe-iz.t¢’ j= 1’ 2‘ ove,

: fvvhen we write ,
M=@. 0. D. of {|m||mE My, q},
m=8, Q. M. of {|m|mE Mg}

:and decompose them as
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: M =M. ph- ~ple,  me=mn o pi--pl.
Where M’ and m' are relatively prime to p, by assumption (H 4), ,

Z = Z:’ tp = t:
and '
Z,,<t,,<fr,,.

So, if we fix m=pf---pl, by Lemma 2.2, o, has all the properties in Lemma 2.2,

In this situation, Fix, Y 163}. Assume in the assumption I<k. Set
F= span{ "”dn, j=1,2, _nl?»e [-ﬁ’”—*—:;)—%”i B] No(4) }
Then by (ﬁ)-ofLemm'a, 2.6, ' E S
| —f(®) |#:>—8>—co,
And sob |
- At g ) 2ZW 21 A
W=span { e, j=1, 2+, nr€ [2E, g]no (@)},

Se={yeWllyl=¢}.
Then by (fs) of Lemma 2.6, for 6>0 small enough -

v ) —-f@<0. Vy€ES..
Applying Lemma 2.5, — f has ab least

2l Sk
-5 <z.< -

a,.(S,)-——dlmRY————(dlmRW dlmRY)=—-d1mR @ 5O

= (b~ l+1)n
oritioal orbits which are not zero, And they correspond to the geometrloally dlﬁ'er-
ent nonconstant T'-periodic solutions of z2=JH,(%, 2). -
Remark 2.4. A result similar to Corollary 2.1 can be obtained.
4. Second order Hamiltonian systems - ‘ '
The same method as above can be used to study the following second order
differential equations, .
| —G=F,(4, ), o€R,n>1,
{w(0)=m(2w), o A : - (2.28)
(0) = (2a), | o
~ where FEO?(RXR", R), F(t+2m, o) =F (¢, @), V(, o) ERXR".
Theorem 2.3. Assume that F satisfies |
(Fy)y Por a ceriain pE N*, p>1 with form (2.6),

| F<t+%v-,w) F (s, ?), V(i @) ERX R,

(F,,) 3 constants 0<a<<fB such that

a<F.,@ o)<B VY( o) ERXR"
(Fg) 3 KEN* and >0 such that
: F(, o)

1
=+ :
2 STl

<= (k+1)”-— 8, [|w||-—->00.
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(Fo) 8ot My n={m€N*|a<m?< B} (without loss of g'enemléty, assume  oise

m?, B+m? YmE N, Assumeé is a v, 1<r<s, suc/z that &5, 15 - given by -

satisfy |

p? =max {<Pv m) I m E My.m})
pf,z = min{(p,’,”, m) lm€E My, m}

(L8]~ [a])ene (= 1) <ru—Bi.

Then if there is VE N* such that Fas(s, 0) <U<I(or  Ful(t, 6)>1>(b+1)?), thers
are at least (k—1+1) n (or (Z k)n) nonconstant geometricallry défferent 2w—p9r'bodw
soluttons of the system (2. 26)

The proof of this resulb is qulte similar to the proof of Theorem 2.2, We do not

give it here in order o shorten the paper.
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