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CHROMATIC ENUMERATION FORROOTED
OUTERPLANAR MAPS™
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Abstraet

‘Let G(m,s, t; Ajbe the number of ways of A-coloring all ‘the rooted nonseparable
outerplanar maps which are simple and have the edge number m, the valency s of the
root-face, and the valency ¢ of the root—vertex. The chromatic enumerating. function

9z, vy, L A)~m>1,:1>22,;>2 G(m,s, t; A)zmy'st

is determined. Meanwhile, a number of explicit formulae for enumera,tmg thls kmdof

ma,ps in general case and in kipartite case are provided. .
§ 1. Introduction

On chromatio enumera bion, the first paper which was pubhshed in 1973 by W,
T. Tutte'is for rooted planar triangulations. Ten years later, ‘the author genera-
lized the theory into that for rooted nonseparable planar maps cai, Very recently,
‘the author also found the funcbional equation for the chromatic enumeration of
roobed cubic planar maps®. However, up o now, no explicit expression hag ever
been atlained of any ohroma,tie enumerating function except' only for the one of
rooted plane trees which is an eagy case to some extent, This paper presenis an
explicif éxpressmn of the chromatlo entimerating funomon for Tooted outerplanar
‘maps. In consequence, a number of exphclt formulae forenumeratmg outerpla,na,r
maps in general and in blpar’olte cases are algo revealed.

. For a set of maps .#, rooted of course we write o
94, 9y 2 &) = 35 P(M; R)am0yatetah - (@D

which ig sa1d o be ohro-enu-funotlon (chromatic enumerating functlon) of .l or
the chromatio sum funotion of .# in Tutbe's terminelogy, where '
" P(M; A): the chromatio polynomial of M;
m(M): the edge number of M; -
s(M): the valenoy of the root-face of M;
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#(M): the valenoy of the root—vertex of M.
‘Lot o7 be the set of all rooted nonseparable outerplanar maps without mulfi-
~ edge. Here, we notice that the vertex map and the loop map. are no’o J.noluded in 7.
The main purpoge of this paper is to determine
{ 9P =gu(m, ¥, 5 A); fP=9s(0 1, & 7&): 1.2
dP=ga(m, y, 15 A); hP=g.(x1, 1;4).
Now, we introduce two well known formulae on’chromatie polynomials of maps
for further use. The first one is
P(4; \)=P(A—R; k) —P(4+R; A) 1.3
for any A€ 7, where R is the root-edge of 4, A-R and A.R stand for-the resultant
maps .of deleting and contracting R from 4 respeobively. -And, the gecond is
P41 4 ) =gy P4 NP DT (Y
prov1ded that A1 U Ag——K 0 the eou'espondlng graph ig the comple’ne graph of order '
%, for Ay, A€ and i>1.

’

§ 2. Functional Equations

- For A€, Let Foand Fy be the root—-face and . the non-root-face which ig
incident to the root-edge R respeotlvely And leb B(F) deno’ﬁe the boundary oi 8
face 7.

- Lemma 2. 1. Fm" Ac s, ef A is mot the link map, then A— R has at lewst one
cut—vertes,and moreover all thevertices except for ewactly the two ends of R on B(F,) are
cut-vertices of A— R. .

Proof The first statement is. true because of no multl—edges The second is
from the outerplanarity that all the verbices on B(F,) are also on B(F,).

Aocording o Lemma 2.1, we may see that .o can be partitioned into the form

as follows » ‘ S
M=ﬂo+’§4fk, ‘ 2.1)

where o7, consists of only one map, the link map; and <7y is the subset of all the
maps A such that A— R have b blocks, the maximal submaps of A—R which belong
to . For AC oy, lot Ay, -~ Ak_lbe the blocks in the order of the ooeurrences of
the edges when one moves from the root—ver’oex to the non-root-end. of R along
B(F,) NB(Fo(A— R)) From Lemma 2.1, ANB (Fi) —e¢, which is an edge and is
ireated as the root—edge of 4; for 0<é<k—1. Now, we define an opeminon on two
maps M and N as M«sN=MUN prov1ded that MNN= {fv}, Where v is- "the non—
root—end of the root~edge of M and is algo the root-verbex of N with the proper ties:
(i) The root—edge of M is ohosen 0 be the root-edge of M *N
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\11) The voot—edge of N is the suooeedmg edge of the 1oot-edge of M *N on

Further, we denote e
\ M= ﬂIO*Mi* * My, (2.2)

0<ti<k

In the form (2.2), the operation is done aocordlng %0 the nabural order from the

lefs hand side to the right because the operation is neither ecgmmutative nor asso-

' clatlve For a sel of maps .#, leb | | e the oaldlnah’oy of A.} -
Lemma2 2. For k=2, we have - .. - EERE
]Ak|~]{A|A \/ A,, Aed 0<bi<<lo— 1}'._,"' S (2 3)

Proof Let of/**={A4A|A= \/ Ai, AEM 0<i<kt—1}. For AGJka, from

0<ici—1
Lemma 2, ] we have 4— R¢ A by showmg ‘ohat the root- edge of A4=R is chosen
o be fhe edge Whloh is on B(Fl) and is mmdent to the same root-verbex of A,
, Moreover ‘we may see that 4 ig Well deﬁned from A— R by the i 1nverswn Furbhel
as any A*E /** can be Vlewed to be A - R, AE Mk can be deﬁned by means. of

adding a nevv edge Rin the root—face of. A* Thus a 1-to-1 comespondenoe between |

.9/;0 and o7 i is found This leads to the Lemma,
Lemma 2. 3. For .y we have |
9R=N=Day’s. e 9
- Proof By considering that 27, consists only of the 11nk map (the link map bas
one edge, the valency of the root—face being 2, and the valenoy of the root~vertex
being 1) and that the chromatic polynomlal of the link map is A(A—1), the lemma
" follows.
For the sake of convenience, let

\o) EJJE o = Ja{o : ' (2.5)

And accordingly, leb | N |
Jaa=9%0(, y, % 1) = ;(o’P (A — By p)amAysdigta, . (2.6)
0=000@ 4 5 M) = T P(4-By ey, (a7
Then, from (1.8), we have _ ' ' | |
9$¢).=95$?,,,+95&:3,-—9,«“., . L (2.8)

Lemma 2.4. For g,m, we have

= d(’-) (A) .
950, =an (2 dx

=i ) (2.9)
_ Proof By usmg Lemma. 2 2 a,nd the formula 1. 4) for =1 we > obtain _ |

9= p> ,;’” 3P wmmw»ywizw (s P4 iyt

v= 2 (A)( = 1d;,)k 1 wyz 2( d(a')> (A')=a;z ( .‘ d(ﬂf) )
2 N‘"l v 9'.« 4 y S2\dAy 7, 9 Ay —d 92
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The lemma, is proved., . :
In order t0 defermine ¢5),, we have to decomposite 2 further. 'Let AR =
> «fy, then we have

>3 . '
oy =l 2+ AL (2.10)
For two maps A, and 4, let 4,{|>A, stand for the resultant map of identifying the
root-edge of A, with the one of 4, such that B(Fo(AK] SA5)) = (B(Fo(41))—R1) U
(B(Fy(As)) — Rs). The root-edge of 4,<|>4, ig chosen to be the edge incident to the
Toot-verbex with the opposite direotion fo the root-edge of 4 on B(Fo(44)).
Lemma 2. 5. Let AP ={A-R|AC A2}, @ nd AP = {A[A A1<|>A2, A, A€
L}, Then, we have , L
P = e
Pfroof For AC (P, it is easy to see that the map A’ which is obtamed by
identifying the two mutl—edges eorrespondmg to the two non—root-—edges on the
“non—roob—face boundary B(F,) of a map in AP info one is in 7% Gonversely,
for A= = A{| DA, € &/0?, the unique map A’ which is obtainned by splitting the edge
corresponding to the root-edges of A, and A, into two multl—edges is a member of
., Therefore, there is a 1-to-1 correspondenoe between .537 §® and oL, ThlS
implies the Jexnma.
Lemma 2. 6. Fer /3, we have
Sy H o (212)
Proof By employing Lemma 2.5 and the formula (1.3)' for =2, we have
g.(él = A?JQP (A-RB; A) @Ay (At

=y <1§d P(B; A)g™B)ysBy-1ptB®) ( E P ( D; 7\,) wm(D) ~1ys(D)= 1)

x(x 1) o

% o¥ON
T A =1y 9"’

The lemma is proved
Lemma 9. 9. Lot AQP®={4A-R|AE (‘23}, then we have

AGO=st. (2.18)

Proof First, it is easy to-check that the set on the left hand side of (2.13) is

a subsetb of the set on the right hand side. The reasons are that for A€ ALY, AR is

. avithout mulbi-edges from B(#1) havmg at.least four edges, and that A-R is of
course a non—separable outerplanar map with the roobing rule as defined before.

Moreover, for A€ ,,Q{ we may also treat 4=A’+R', where Al ig obtamed by splltbmg

the root—vertex of A into v, and vy with bhe edge R'=<vy, 95 as bhe root~edge of A’

in the usual way §0 that both the valenoms of v; and v, are at least 2 in A’. From

Lemma 2.1, we have A€ of$). This implies ’aha,t the set on the Tight ‘hand side of
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* (2.18) is also a subset of the set on the other side. The lemma ig proved.
For AEM let v e ‘the root-vertex, (eo, 1, ***, €ma)-1) be the rotation of the

edges 1n01den13 t0 v suoh that 6o=R, ey, the edge whioh ig non-rooted on B(Fo) then

s, -, emm_l with the order of the ocourrences when one moves around v in the

determined way. We denote the map obtained by splitting v into o, and v, with a

new edge 2@1, v5> which ig ohosen 10 be the root~edge such that 01, *+*, €, are 1n01den11

to the root-virtex v, by 8,(A)for 4= 1, 2, v, m(4)—1. i C e
- Lemma 2, g, For oY @ we have

M(z)- E ’81(A), Oa (), ++) Bueay- 1(A)} ~ (2.14)

A e

Lemma 2. 9 For M@), we hwfve

e
Pfroof Aeoordlng to Lemmas 2.8-9 we have
| I = Z P(A:RB; A)gm s“”z*“”—-a:yzE s P(4 3 2o+ +z*‘4’ 1)a7”‘(‘”g/°(4’

0
Aexl;

t(A)-1
=aye 3 P(4; (1= -

)wm(A)ys(A)_ Tyz (zdfﬁ, )

Thig is whatthe lemma meany, S
Lemma 2. 10, 77, funot@on 9P with &» satisfies the following Sunctional equa-

@ _ oy o | 4@ _ 4® y ) (i)
b 7\,(?\, l)mg/z T d +ax —dD ?\.(?\ﬁl)y—l—_'l—z

(2 16)
Proof By. using (2, 8) and (2. 10), from Lemmas 2 3 2 4, 2.6 and 2. 9, the

theorem oan be derived directly,

§3. ~Solution of the Equ_ati_oh :

In thig section, we 1nvesb1gate the fune bional equation (2 16) ‘which looks fo

be & linear equation of 9% but with another fanotion 4% which is stil] unknown
~ However, ¢® ig related to g, Therefore; it can not be solved direotly, Now, we
8ee that Equation (2.16) can be expressed in the following form - ' '
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N b d _ d* Yy > Ay _ . 3.1
.(1 wz( YT e 1)y+1 z) AMA— 1oy’ — d (3.1)

In (8.1), if there is z= f ag o function of @, ¥ in the funotlon space Wl*ﬁh {1, 2, v,

., afyf, ++-}as the basis such ‘that the both gides become zero. s1mu1’saneous]y, we
may then find the expressions of » and d¥ with § as a parameter and further deter-
mine d% in thoe function space. In order to do this, we have to solve the following

equations gimultaneously: _
: 1 (n)_; zy -)=. .
1- w§< dw taenr Y TIoE 0;

MA— Doy - wyg d“’—- ‘ |

(3.2)

which are said to be the characteristio equatlons of equa hlon (2 16) or in short,

the oh—equa’slons o :
From the. seoond in (3 2) d(” is detelmmed as a functlon of £. Then, bv

-substltubmg it 1nto the ﬁrst we find @ as a funotlon of £, In oonsequence, we have

d‘“’—?u(?» 1)y——§- A -
{ § L (3.8)
B S s>2) :
For convenienoe, let us write
| <§§m>fﬂ | e
for =0, And, leb - |
L& N =BE MNYENTS o
{B(E, A) =A=1-&; o (8.5)
y (&, &) =A—1-AE. |

For X r>>0, we introduce a combinatorial number

Ay (s My = (= 1)q+fD5_1(§_<_éZ_?9_

s r(& W*
=.=> S }\f—i' A= 1)2?(—2) 277 p‘(Q’*"r =D 1! 3.6)
D DI )02 (p— Ng— i)'a'(a‘ D ©.6
In particular,
' Ak ; A) = : N‘—j ?\‘__2 k~i ')"‘70'([0"‘")" .7 1)' 3
s M= B A=) o G G- DT @)
More specifically, for A=2, we have :
. F . 2,'—-10 ’)’!(T_j.)' . 0<k< N
Ai(rs 2)———{ (r=ky1(E—1)1" ST (8.8)
O, o ~ o’ﬁherwise
Then from (3. 3), by employmg the Lagranglan mversmn we obtain o
ai =20y 32 Dt ‘Jl(jL : )( 401 RRGEDERC

By the bmomlal expansion and
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) ' (8.10)

we may find |
T L R R RS

_ (=L
AL — 1)y{wy+2”,_§x1a!(n—j)’ i

% (2j(rn, ﬁl)i')l DT (&2 (g, wn-i)}
On acoount of (3. 7), we have

N ﬁm A 2’;;""‘(-1y _(m=-D1_ -

me s'('m S)'j!

- (s— 2)' ' s SRS
(28 Mm—§—1) 1 (§—f—2)1 - ARz (2s—m—~ ~J= 1 K)yw} (8.11)

Now, we may find an explicit expression of the general ohro—enu*functon g%
without much difficulty by using the Lagranglan inversion to the form:

g = SO (3.12)

1- z<1+wy @ 5 a(g, 9\,) +wz oa(g,?»)>
which is obtained by substl’nutlng (3.8) 1nto (3 1) togethel w1th (3. 5) However
some complicated calculation would be involved o occupy unneoessary space of

this paper if we did it fu1ther Of course, it seems to be a _promising way to find a
fair simple exphclt expression of g, which has to be left to the reader, by the
Lagrangian inversion with thiee vamablos z, y, and 2 ab a time based on (8.3)
also. ' '

In what follows, wo investigate several special cages which are more important
for us to estimate the coloring average for this kind of maps thereafter.

First, let us disouss the equation satisfied by f® and A%® which can be simply
obtained by setting y=1 in (2.16). That is ' S

0 __ \ . w2® (;) < 77&') _ 'h.(ﬁ) 1 ) (A \'
f, 7\.(}\, l)a:z T hd +az Yy Ry o l)+1’—-z"' o, (3.13)

Then, we may also find the parametric expressions of £ and A% in the same way
as follows:

| @ =r0-1) ol N
{ i (3.14)
o _,5"‘1;=’,"’< §+x 1 M; - g))
from which, we derive ) e
| h5¢>=x(x-'-1>¢+m2#5,,.<x)mm, - (3.18)

where
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R - A(A—1) (m~1)1
\ Ha®) s,%n § -y sl (m—s) 1 (s—§—2)1
(28*—(:)?, 23f Y An=i(2s— m= §—1; &), (8.16)

which is bhe cage of (3 11) when y=1.
As for &, we may similarly subgtitute (3.14) into
Fo - AMA—Dag(1—£E1 z)

_ i—¢ (A—1
t-ren(1-2 oS ()

o evaluate an explicit formula by the Lagrangian inversion with one or two

(3.17)

variables, : _ .
Further, we turn oub ’she specla.l cases of A% when A=2, or 3, which mean to
determine Hm(Z), or H,, (8) for m=2, From (3.8) and (3.16), we have

_Hm(2)—ng_(m;-_l)mg%(—l)izm—ai—f( ;’ 2)(m 2.® = 2),

i=0 $—1
(8.18)
by the reason which will be shown in the next seotion,
el PN ok
P -1-(””')( T3 ) (3.19)
. mes Slmoaz) b G-—1 _ A
which is with all the terms positive From (3.7) and (3.18), we have
C B(m—1)1(s=2)1,
= —1)
M(g) S_I-Zb)ﬂ-j 2 ( 1) 8! (m 8— 1) ! (s ‘? 2) "]I
. 28—1nf3—1 329-—m—1— -1(8 '? % 2) ! .
% c=20 31 {(2s—m—j~o—1) 1 (m—s—1%)1" (3.20)

§4. T-he~Ca-se.':?L.=2

Because the vertex map does not belong to <7, the case: A=2 of A%, or more
generally, ® and g¢ are in fact corresponding o the case of enumerating rooted
nonsepara.ble smnple bipartite outerplanar maps More preolsely, let % be the sot of
all the maps of thig kind and let ' '

g.ﬁ g@(m y’ Z) Emm(B)ys(B)zt(B) S (4 1)
_Slmllﬂrly, fa=ga(z, 1, 2), da=ga(a, ¥, 1), and hg-—gﬁ(m 1 1). Then, we have
200=9%; 2f a=FD; 205 =d7; 2ha=hP ) (4.2)

whenever noticing that any blpa.rtlte map here ig uniquely 2—0_0101'3,1)19.
First, let us partltlon % into two parbs as | '
B=Bo+ By | (4.3)
where %, consists only of one map, the link map, :
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Lemma 4. 1. Let Z#®={B—R|BE %}. Then, we have .
= #®={B|B= \/ B, B.c %, 0<i<2, I>1}. (4.4)

Pa‘oof Similarly to the proof of Lemma 2.2 except for what related to the
bipartiteness.
Theorem 4. 2. For %, we have
| Jo=0y2+ar (_f%) (PR _ (4.5)1‘
Proof TFrom (4.3), we have _
' 95= Gz Y- (4.6)
Tt is eagy fo see thad
9o =0Y2 (4.7)

From Lemma 4.1, we derive

Gan= 2 aMBysERIE) '
! BE.S%
2%
=Ezym!1( 2 wm(B«)—lys(Bf)-i) . (BEEQmm(Bu)y.s(Be)"lzt{Bn))
( o — dF ) (4.8

By substituting (4.7) and (4.8) into (4.6), the theorem is obtained.
Theorem 4. 3. we have

' /8
- m K33 ('m'_]-) ! -2' —-.2 3
8= 0(m0d2) -
Proof From Theorem 4.2, by setting z= 1 in Equauon (4.5), we see
d’g-—m<y2+ = dg ) (4.10)

Then, by using the Lagrangian inversion, the theorem is derived.
Lemma 4. 4. We have

. ri —‘7
@Y _w "2'” 2 (n—1)1 _
——— == mﬂ —_—— y” fc (4.11)
- dE _—
¥ —d% ) n>24 Jdum gl (n—4)1 ‘?:+j

Proof According to (4.10), by the Lagrangian inversion, the lemma can be
derived from showing thatb

d/ &£ N & g2\
dg(y“ §“) 2@!/2(?,4 & (yz_gz) ’ (4.12)
=g ) .
Dyz§i=31(yf—£7) M= (n—26—34)1 ( . i j )9_2(1+T) , if m=gj(mod2);
0, | otherwise,

(4.13)
Theorem 4. 5. We have
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r"+9 /

w5 w2 Z(t—"-l) (m f— 1)', o S -
= 2 . 8yt
9a= wyz+2 ;s_rgq s T G=DT \ |y

§= 0(!roi2) "n"l,—-8+1
Lo (4.14)
Proof From (4.5), by expansion, we find AR
go =2y 3(a)’ (————d@dz ) N 1)

§
Then from Lemma 4.4, affer properly exehanglng the summa’ﬁlon S1gns the theo-

,rem can be obbained.
B . Theorem 4. 6. We have

A

m+2

L4 g 2(t~1) (m—t—1)1 S_q ) A S
= — : : 2 tam .
fommt B A 2, m=t=s+DIE=DT\ s P (4.16)

s
e=0{mod?2)

Proof Obtained by simply selting y=1in (4 14)
Theorem 4. 7. We have

R 7y m—1-% q’wl\"-
m»2 m
o m—123moa) 6—1 / N
Pq”oof From (4 10) by se’otlng y=1, we obtaln . .
ho= m(l—i— - §2> T C 35

From (4.18), the theorem can be denved dlreetly by us:ng the Lao‘rangmn

1nverhon : o :
Corolla.ry 4 8. We hcwe the follorwmg %dentwtws forr m>2

Lif'i—f.—gJ‘;q-ﬁuz .. 2@ 1)(m t—1)1 -——-—1
& S_r;2+,, (m—i— s—l—2)l(s 2): ¢ -

m—-s+1
—0(mod2) ' R . o . . . L . .'.E i ‘, v
— : S Lm:1] . " m_i_'z__
= "21 (m ll) ' 1 (Z . >= 2 —1—- <m>< 2 : )
L S=[2EL) (m-—s+l) (8 1) m=—s/ '.:n;—ﬂ—_:i(lmocm) A\ -1
i . 8= O(mod") « . o o _. -

(4.19)
~ Proof From (4. 16) with z=1, and from (4 9) ‘with y =1, the’ 1dent1tles hold
on $he basis of Theomm 4, 7 : P e

%5 TheCase?» :>o

In 'bhlS secinon we dlSCIlSS . e
. s QUM; ) =P (M; w7,
‘Wheze: v(M ) ig the vertex number of a map M, instead of P(M; A), the chromatm

polynomial, However, we may easily see that Q(M; w) is also a: polynomlal of w, -
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and its constant. term is 1 for any map M. In this pomt the case of A=co ig the
‘same ag the cage of 1= =0 For’ Q(M; 1), Wo may also-show that

QUL )= QUM—B w)—pQM Ry ) .. (B.1)
for any map M excepl only for the vertex ma,p, and that '
QUM )= - Qs WM W) (B

. <1w>o.m+>
if the 001respond1ng graph of MyN My is the eomplete graph of 01del k, k>1 Of
course, in our case, k>3,
Now, we go back t0 dlscuss on &, For oonvemenoe we here still write
‘“’—gd(w Yo % /«b) = 2 Q4; M)w “)ys“’z'“’ S (6.8)

and similarly,

wu%wmiux”Q“ | RNCES
o B = G 1 ) S
"Thus, our purpose here is o determine g2, fO a9, and .
_ Theorem 5. 1 9@ satisfies the followmg eqwcmon N

{ (m gd(wy 1 za P"))

99 =wy*z+ mz( d‘°’ )g“” R | (56.5)
Proof It is mmﬂar to the dlscussmn in'§ 2 with p, =0. In this case, we havo
R 9P=9Dr e (5.6)
and g Qo dlsappears from (5 1). Tt is easily seen hat .
9@ = (1~ W e =ay’e., - P (5.7)
By Lemma 2.2 and (5.2) for k=1, we have |
_ 4o
sy (T) g 6
‘Therefors, from (5.6)~(5.8), the theorem follows. . . .. . e '
Theorem 5. 2. We have
md1 ' o
o) (m—1)1 (5= 1y* .. w sare
o d‘ .- nE.m s_§31 (s—1)! (2s m— 3) ! (m s— l)l(m s)l -~ (B.9)
i Pa'oof Flom (5 5) by settmg 2=1, we may s00 .
o) e

From (5.10), by using the Lagrangian inversion, the theorem can be obtamed
Lemma 5. 3. For n>1, we have

__fﬁ.ﬁ"__)L i n(j—1) 191y ) 5
<?/“d53’ Ewi,rgﬂ'(y 01 (2e—n—)1 (j—o— n)! (6.11)

Proof Aocording #0(5.10), by Lagrangian inversion, the lemma-can be found,
Theorem 5. 4. For 99, we have ?
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LTJ m—~tdp2 : N sit C .
© — (t—1) (m—t—1) 1a™y%
o =ayet 2» 2' s_[%,, (fm,—t-—s+2)!(23 m-— 3)l(m -s+1) 1 (5‘12_)

Proof From (5.5), 99 can be expressed a8

<0)-—m/2z2 (zm)“( d(0)> C (5.18)
Subshtu’amg (5. 11) into (5.12), afber properly treatments of then idioies, we may -

obtain the theorem.

Theorem5 5 For £, we have
' m+1 -

= M2 |
. _ (t—l) (m t— i)lm .
s wz—i—m% t=22 S_Em (m t—8+2)1(28~m—38) | (m—s+1)| ° (5.14)

Ptroof Obtained directly by setbing y=1in (5.12),
Theorem 5. 6. For A, we have '

o1 "  (m=1)1(s=3) 1" '
B = ZS_EQ (s—1)1(2s—m—3) 1 (m—s— 1),(m s)! (5.15)

Proof A direot resultof Theorem 5 2,
Corollary 5. 7. We have the following identity:

m+1

L= iy _ ’
: : (¢t—~1) (m—t~1)1
t‘s:l; s=§;ﬂ (m—t—8+2)1(28—m~38)! (m—s+1)|
_ '%1 (m—1)1(s—2)1
mizan (8= 1)1 (2s—m—3) 1 (m—s— 1)l(m s)! | (6.16)

Proof Obtained from Theorems 5.5-5.6.
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