STRONG SOLUTIONS AND PATHWISE CONTROL FOR NON-LINEAR STOCHASTIC SYSTEM WITH POISSON JUMPS IN N-DIMENSIONAL SPACE**

SITU RONG (司徒荣)*

Abstract

The existence of a pathwise unique strong solution for the stochastic differential equation (S. D. E.) with Poisson jumps in n-dimensional space without continuity assumption on drift coefficient, which even can be greater than linear growth, and without Lipschitz condition on diffusion coefficients is obtained. Then the existence of a pathwise stochastic optimal Bang-Bang control for a very much non-linear systemwith Poisson jumps in n-dimensional space is derived. The result is also applied to obtain a maximum likelihood estimate (MLE) of parameter for some continuous, S. D. E. with non-Lipschitz coefficients in n-dimensional space.

§ 1. Introduction

Recently, some results on the existence of the S. D. E. with non-Lipschitz coefficients in 1-dimensional space have been obtained $(^{[1,2]})$. But up to now the results in n-dimensional space need more restriction. (For S. D. E. with respect to (w. r. t.) Brownian Motion process $(B. M.)^{[3]}$, and w. r. t. martingale $^{[4,5]}$. Usually, some monotone condition on the whole coefficients and some continuous, less than linear growth condition on the drift coefficients are required. Moreover, it seems that non-result has been appeared yet for the existence of strong solution to the S. D. E. with Poisson jumps in n-dimensional space without the assumption on the continuity for the drift coefficients, and without condition on the Lipschitzianess of the diffusion coefficients $\sigma(t, x)$ or integrability of $(\partial \sigma/\partial x)^2$ $^{[18,19]}$. Here we weaken such condition on σ , and the usual monotone condition on the whole coefficients and exclude the continuous assumption on drift, and also replace the less than linear growth condition by a much weaker one on it to get the existence of strong solution for S. D. E. with Poisson jumps in n-dimensional space.

Manuscript received October 6, 1987. Revised October 28, 1988.

^{*} Department of Mathematics, Zhongshan University Guangzhou, Guangdong, China.

^{**} This work is supported in part by the Foundation of Zhongshan University Advanced Research Center, And it is presented by the author at the Sino-American Statistical Meeting on August 31-Septemper 2. 1987, in Beijing, China.

Then the result is used to obtain the existence of a pathwise optimal Bang-Bang stochastic control for a non-linear stochastic system with Poisson jumps in n-dimensional space, which implies the results for the pathwise control on linear system for continuous case and in 1-dimensional space got by [6] and [7], By the way, some useful results on Yamada-Watanabe theorem, pathwise uniqueness, and comparison theorem for such S. D. E. (the last one is in 1-dimentional space) are also obtained. Some interesting examples are also given (See Remark 2 of Theorem 1, Remarks 1^{0} — 5^{0} of Theorem 2), At last, the result is also applied to derive a maximum likelihood estimate of parameter for some continuous stochastic system with non-Lipschitz coefficients in n-dimensional space, which is better than [9] and [17] in some sense (In [9] $\sigma = 1$, $b_2 = 0$; in [17] Lipschitz condition is needed: and in both cases it is considered in 1-dimensional space).

§ 2. Strong Solutions and Elliptic Bang-Bang Control

Consider S. D. E. (for $x \in R^n$, $t \in [0, T]$)

$$x_{t} = x + \int_{0}^{t} b(s, x_{s}) ds + \int_{0}^{t} \sigma(s, x_{s}) dw_{s} + \int_{0}^{t} \int_{z} c(s, x_{s}, z) q(ds, dz), \qquad (2.1)$$

where w_i -n-dimensional standard Brownian Motion process (B. M.),

$$q(ds,\ dz) = p(ds,\ dz) - \pi(dz)ds,\ Z = R^{n} - \{0\}, \pi(dz) = dz/|z|^{n+1}.$$

p(ds, dz)-1-dimensional Poisson random point measure with compensator $\pi(dz)ds$, p(0, Z) = 0, $\sigma(t, x)$ - $n \times n$ matrix, defined on $[0, T] \times R^n$, b(t, x), c(t, x, z)-n-dimensional vector, defined on $[0, T] \times R^n$ and $[0, T] \times R^n \times Z$, respectively. They are all jointly measurable such that the right hand side of (2.1) makes sense. Let us make some remarks on the assumption first.

Remark 1. Here
$$\int_0^t$$
 always means $\int_{(0,t)} p(t, \Gamma) = \int_0^t \int_{\Gamma} p(ds, dz)$.

Remark 2. Since the compensator of q(ds, dz) is $\pi(dz)ds$, by the proof of Lemma 5.5 in chapter 5 of [9] (pp. 176) for c(s, x, z), which is jointly measurable and for all $x_t(\omega) - \mathcal{F}_t$ measurable such that

$$E\int_{0}^{T}\int_{z}|c(s, x_{s}, z)|^{2}(\pi dz)ds < +\infty,$$

the stochastic integral $\int_0^t \int_{\mathbf{z}} c(s, x_s, z) \ q(ds, dz)$ is well defined.

Now we introduce some condition for discussing the existence of strong solutions. We say that a Borel measurable function k(u) > 0, u > 0, satisfies Condition K. If for any Lebesgue measurable function $x(t) \ge 0$, $t \in [0, T]$, let

$$y(t) = \int_0^t k(x(s)) ds,$$

$$t_0 = \sup(t: y(t) = 0, t \in [0, T]),$$

if $t_0 < T$, then there exists $t \in (t_0, T]$ such that

$$\int_{0+}^{y(t)} ds/k(s) > t - t_0.$$

Example 1. If k(u) > 0, u > 0, satisfies

$$\int_{0+} du/k(u) = \infty,$$

then k(u) satisfies condition K. (Cond-K).

For the existence of the pathwise unique strong solution to (2.1) we have **Theorem 1.** Assume that for all $t \in [0, T]$, $x \in R^n$, there exists a constant k_0 such

that (denote by $\langle \cdot, \cdot \rangle$ the inner product in \mathbb{R}^n , $|\sigma(t, x)|^2 = \sum_{i,j=1}^u |\sigma_{ij}(t, x)|^2$)

(i) there exist constants $d \ge 1$ and m > 0 such that

$$\langle x, b(t, x) \rangle + |\sigma(t, x)|^2 (2n+1)$$

 $\leq k_0 (1+|x|^2 \ln(1+|x|^{2d}) \ln(1+\ln(1+\ln(1+|x|^m))),$

where b(t, x) and $\sigma(t, x)$ are locally bounded. i. e., for each r>0 there exists a constant k_r such that as $|x| \le r$

$$|b(t, x)| + |\sigma(t, x)| \leq k_r$$

(ii)
$$\int_{z} |c(t, x, x)|^{t} \pi(dz) \leq k_{0}, \ \dot{v} = 1, 2.$$

$$\lambda^* \sigma \sigma^* \lambda \gg \delta |\lambda|^2$$
, for all $\lambda \in \mathbb{R}^n$

where $\delta > 0$ is a constant, $\sigma \sigma^*(t, x)$ is continuous for x uniformly $w.r.t.t \in [0, T]$, and σ is the symmetric positive definite square root of $\sigma \sigma^*$,

(iii) there exist $d^{N}(t, \omega) \geqslant 0$ and $k^{N}(u) > 0$, u > 0; $k^{N}(u)$ satisfies Cond-K, and

$$E\int_0^T d^N(t, \omega)dt < \infty$$

and $k^{N}(u)$ is increasing, concave such that for |x|, $|y| \leq N$

$$2\langle x-y, b(t, x) - b(t, y) \rangle + |\sigma(t, x) - \sigma(t, y)|^{2} + \int_{z} |c(t, x, z) - c(t, y, z)|^{2} \pi(dz)$$

$$\leq d^{N}(t, \omega) k^{N}(|x-y|^{2}). \tag{2.2}$$

(iv)
$$\lim_{x\to y} \int_{z} |c(t, x, z) - c(t, y, z)|^{2} \pi(dz) = 0$$
, for all $t \in [0, T]$

Then S. D. E. (2.1) has a pathwise unique strong solution.

Remark 1.
$$k(u) = \begin{cases} u \ln(1/u), \text{ as } 0 \le u \le a \le e^{-1} < 1, \\ a(\ln(1/a)) + (d/du)k(a-) \cdot (u-a), \text{ as } u \ge a, \end{cases}$$

where a is a constant, then k(u) satisfies Cond-K.

Remark 2. Theorem 1 implies Theorem 4.12 in [4] (also [3] and [5]) in some sense. Moreover, drift coefficient in system can be discontinuous and very much non-linear now, e. g., set

$$b_i(t, x) = \begin{cases} -x_i/|x| - x_i|x|^N & \text{as } x \neq 0, \ N \text{ is any positive number,} \\ 0, & \text{as } x = 0. \end{cases}$$

Then $\langle x, b(t, x) \rangle \leq 0$, and by Schwarz inequality (as $x, y \neq 0$)

$$\langle x-y, b(t, x)-b(t, y)\rangle = -|x|-|y|+\langle x, y\rangle(|x|^{-1}+|y|^{-1}) -|x|^{N+2}-|y|^{N+2}+\langle x, y\rangle(|x|^{N}+|y|^{N})$$

$$\leq (|x|-|y|)(|y|^{N+1}-|x|^{N+1}) \leq 0.$$

Remark 3. Condition for b(t, x) can not be weakened to

$$|b(t, x)| \leq k_0 (1+|x|^{1+\delta}),$$

where $\delta > 0$ is any constant. Indeed, in this case Mckean ([111], p.67) has shown that the explosion of the solution x_t , $t \ge 0$, will happen. Now let us give an sxample for b(t, x), which is discontinuous, but condition (iii) is satisfied. This example will be useful for the elliptic Bang-Bang control later.

Example 2. For S. D. E. (2.1) with $(A, A^0, A^1-n\times n \text{ matrices}, b^1-n-\dim$. vector)

$$b(t, x) = A^{0}(t)x + A(t)u(t, x) + A^{1}(t)b^{1}(t, x)$$
 (2.3)

assume that conditions (i)—(iv) in Theorem 1 for b^1 , σ , c is satisfied, moreover, $A^i(t)$, i=0, 1, and A(t) are bounded Borel measurable w. r. t. $t \in [0, T]$ and non-random; $u(t, x) = (u_1(t, x), \dots, u_n(t, x))$, where $(A^*$ -transposition of A)

$$u_{i}(t, x) = \begin{cases} -a_{i}\widetilde{x}_{i}/|\widetilde{x}|, & \text{as } |\widetilde{x}| \neq 0, \ 0 \leqslant a_{i} - \text{constant}, \\ 0, & \text{as } |\widetilde{x}| = 0; & a_{1} + \dots + a_{n} > 0; \end{cases}$$

$$\widetilde{x} = (\widetilde{x}_{1}, \dots, \widetilde{x}_{n}), \ \widetilde{x}_{i} = a_{i}(A^{*}(t)x)_{i}, \ \dot{t} = 1, \dots, \ n.$$

$$(2.4)$$

Then (2.1) has a pathwise unique strong solution.

Proof Clearly. (i) in Theorem 1 is satisfied. We only need to prove that (iii) in Theorem 1 holds. After simple evaluation for $x, y \neq 0$

$$\langle x-y, A(t)(u(t, x)-u(t, y))\rangle = -|\tilde{x}|-|\tilde{y}|+\langle \tilde{x}, \tilde{y}\rangle \cdot (|\tilde{x}|^{-1}+|\tilde{y}|^{-1}) \leq 0.$$
 For $x=0, y\neq 0$ we will have

$$\langle x-y, A(t)(u(t, x)-u(t, y))\rangle = -|\tilde{y}| \leq 0.$$

Applying Theorem 1 we can get the existence of stochastic Bang-Bang control for the bounded controls with elliptic bundary. Suppose we want to minimize

$$J(u, v) = E \int_0^T |x_t^{u,v}|^2 dt, \qquad (2.5)$$

where $x_t^{u,v}$ is a strong solution of S. D. E. (2.6), which is pathwise unique,

$$x_{t}^{u,v} = x_{0} + \int_{0}^{t} \left(A_{s}^{0} x_{s}^{u,v} + A_{s}^{1} g(s, |x_{s}^{u,v}|^{2}) x_{s}^{u,v} + B_{s}^{1} v_{s} + B_{s}^{2} u^{s} + B_{s}^{2} h(s, x_{s}^{u,v}) \right) ds + \int_{0}^{t} \left(C_{s}^{0} + C_{s}^{1} Q(s, |x_{s}^{u,v}|) \right) dw_{s} + \int_{0}^{t} \int_{z} D(s, |x_{s}^{u,v}|^{2}, z) x_{s}^{u,v} q(ds, dz),$$

$$t \in [0, T].$$

$$(2.6)$$

 A_t^i , B_t^i , C_t^i , D(t, x, z) are bounded real nonrandom measurable, where the 1st three functions do not depend on x; and h(t, x) is defined by an n-dimensional vector as

$$h(t, x) = (h_1(t, x), h_2(t, x), 0, \dots, 0);$$

$$h_i(t, x) = \begin{cases} a_i^2 x_i / (a_1^2 x_1^2 + a_2^2 x_2^2)^{1/2}, & \text{as } a_1^2 x_1^2 + a_2^2 x_2^2 \neq 0, \\ 0, & \text{as } a_1^2 x_1^2 + a_2^2 x_2^2 = 0, \text{ as } i = 1, 2; \end{cases}$$

$$(2.7)$$

and a_i , i=1, 2, are positive constants. Let $(\mathcal{U}, \mathcal{V})$ be the admissible control set: $(\mathcal{U}, \mathcal{V}) = \{u=u(t, x) \in \mathcal{U}, v=v(t, x) \in \mathcal{V}: u(t, x)=u(t, x_1, x_2) \text{ is jointly measurable on } [0, T] \times \mathbb{R}^2, v(t, x) \text{ is jointly measurable on } [0, T] \times \mathbb{R}^n \text{ such that}$

$$u_1^2(t, x)/a_1^2+u_2^2(t, x)/a_2^2 \le 1, \quad u_i = 0, \ i = 3, \ 4, \ \cdots, \ n;$$
 $v_1^2(t, x)+\cdots+v_n^2(t, x) \le 1.$

Moreover, u(t, x) and v(t, x) are such that (2.6) has a pathwise unique strong solution $x_t^{u,v}$.

Theorem 2. Assume that

(i) $A_t' \leqslant 0$, $B_t^i \geqslant 0$, i=1, 2, $C_t^0 \cdot C_t^1 \leqslant 0$, $C_t^0 + C_t^1 Q(t, |x|) \geqslant \delta > 0$; $g(t, x) \geqslant 0$, $t \geqslant 0$, $x \geqslant 0$, is locally bounded and there exist common points $x_1^0, x_2^0, \dots, x_m^0$ such that

 $|(\partial/\partial x_i)g(t, x)| \leq k_N$, as $|x| \leq N$, N=1, 2, ... for all $x \neq x_i^0$, i=1, ..., m, where k_N is a constant depending only on N. Moreover, there exist constants $d \geq 1$, m > 0 such that

$$g(t, |x|^2) \le k_0(1 + \ln(1 + |x|^{4d}) \ln(1 + \ln(1 + \ln(1 + |x|^m)));$$

(ii)
$$\int_{Z} |D(s, |x|^2, z) |x|^i \pi(dz) \le k_0 (1 + |x|^i), i = 1, 2; \text{ for all } s \in [0, T], x \in \mathbb{R}^n;$$

(iii) For any $x, y \in R^1$, $x \geqslant y \Rightarrow (2 + D(t, x^+, z))D(t, x^+, z)x^+ + x \geqslant (2 + D(t, y^+, z))D(t, y^+, z)y^+ + y$;

$$\begin{array}{c} \text{(iv)} \quad \int_{Z} |\, x D(s, \,\, |x\,|^{2}, \,\, z) \, -y D(s, \,\, |y\,|^{2}, \,\, z) \, |^{2} \, (dz) \leqslant k^{\,N} (\, |x-y\,|^{\,2}), \\ \\ x, \,\, y \in R^{n}, \,\, |x\,|, \,\, |y\,| \leqslant N; \\ \\ \left| \int_{Z} (D(t, \,\, x^{+}, \,\, z)^{\,2} x^{+} - D(t, \,\, y^{+}, \,\, z)^{\,2} y^{+}) \pi(dz) \, \right| \leqslant k^{\,N} (\, |x-y\,|), \\ \\ x, \,\, y \in R^{n}, \,\, |x\,|, \,\, |y\,| \leqslant N; \end{array}$$

where $k^{N}(u)$, u>0, is positive, increasing, concave and satisfies $\int_{0+}^{\infty} du/k^{N}(u) = \infty$.

$$\begin{array}{ll} (\text{v}\) & |Q(t,\ |x|) - Q(t,\ |y|) | \leqslant \rho^{N}(|x-y|),\ x,\ y \in R^{n},\ |x|,\ |y| \leqslant N, \\ & |Q(t,\ |x|)^{2} - Q(t,\ |y|)^{2} | \leqslant k^{N}(|\,|x|^{2} - |y|^{2}|),\ x,\ y \in R^{n},\ |x|,\ |y| \leqslant N, \end{array}$$

where $\rho^{\mathbb{N}}(u) > 0$, as u > 0; $\rho^{\mathbb{N}}(0) = 0$, and it is such that

$$(\rho^{N}(u))^{2} \leq k^{N}(u^{2}), \int_{0+} du/\rho^{N}(u) = +\infty,$$

 $k^{\mathbf{x}}(u)$ is defined in (iv), and $Q(t, x) \leq Q(t, y)$, as $0 \leq x \leq y$; $|Q(t, x)| \leq k_0(1+|x|)$. Then there exists an admissible control $u^0 \in \mathcal{U}$, $v^0 \in \mathcal{V}$ such that

$$J(u^0, v^0) = \operatorname{Min}(J(u, v): u \in \mathcal{U}, v \in \mathcal{V}),$$

where
$$u^{0}(t, x) = -h(t, x)$$
 is defined in (2.7) above, and v^{0} is such that $v^{0}(t, x) = -x/|x|$, as $|x| \neq 0$; $v^{0}(t, x) = 0$, as $|x| = 0$; (2.8)

and x_t^0 is the pathwise unique strong solution of (2.6) with u^0 , v^0 ; $u^0(t) = u^0(t, x^0(t))$

is called an elliptic Bang-Bang control, $v^0(t) = v^0(t, x^0(t))$ a circle Bang-Bang control, since they satisfies

$$\sum_{i=1}^{2} u_i^0(t)^2 / a_i^2 = 1, \text{ as } |x^0(t)|^2 \neq 0; |v^0(t)| = 1, \text{ as } x^0(t) \neq 0.$$

Remark. 1º If $B_t^2 = 0$, $A_t^i = 0$, i = 0, 1; $C^1(t) = 0$, then we get the usual Bang-Bang control, which implies [6, 7, 12, 13]. Moreover, let

$$g(t, x) = -x$$
, for $t \geqslant 0$, $x \geqslant 0$.

Then we get a very much non-linear system, which satisfies (i) for g_{\circ} 2° Set

$$\rho^{N}(u) = u(\ln u^{-2})^{1/2}, \ k^{N}(u) = u \ln(1/u).$$

Then $\rho^{N}(u)$ and $k^{N}(u)$ meet the requirement in (v).

3º Set

$$Q(t, |x|) = \begin{cases} 1/R, & \text{as } |x| < 1/R, \\ |x|, & \text{as } |x| \ge 1/R, \text{ where } 0 < R \text{ is a constant;} \end{cases}$$

and assume that $C_t^0 + C_t^1/R \ge \delta > 0$. Then Q(t, |x|) satisfies condition (v).

4° If $\pi(Z) < \infty$, let $D(s, |x|^2, z) = 1$, then conditions (ii)—(iv) are all satisfied (For example, as $\pi(dz) = dz/|z|^{n+1}$, let

$$Z=R^n-\underset{i}{\times}(-\varepsilon, s)$$
, $(-\varepsilon, s)$, is the interval in the *i*th coordinate space)

$$5^{\circ} \text{ Let } \pi(z) = dz/|z|^{n+1},$$

$$D(s, |x|^2, z) = f(z)^2 |x|^2 / (1 + f(z)|x|^2)$$
 for $s \ge 0, x \in \mathbb{R}^n, z \in \mathbb{Z}$,

where $(\varepsilon > 0$ is a constant)

$$f(z) = \begin{cases} |z|^{(n+1+s)}, & \text{as } |z| \leq 1, \\ 1, & \text{as } |z| \geqslant 1. \end{cases}$$

Then it is easily seen that conditions (ii)—(iv) are satisfied.

§ 3, Theorems on Uniqueness and Comparison of Strong Solutions and Yamada-Watanabe Theorem

In order to prove Theorems 1 and 2 we need some auxillary theorems. Actually, they are of interest on their own.

Theorem 3. (Uniqueness). Assume that $0 \le x(t)$ is Lebesgue measurable, $t \in [0, T]$, which satisfies

$$0 \leqslant x(t) \leqslant \int_0^t k(x(s)) ds$$
, for all $t \in [0, T]$,

where k(u) > 0, u > 0, is increasing and satisfies Cond-K. Then

$$x(t) = 0$$
, for all $t \in [0, T]$.

Theorem 4. If condition (iii) in Theorem 1 holds, then the pathwise uniqueness for S. D. E. (2.1) holds.

Corollary. Theorems 3 and 4 hold for S. D. E. defined on $t \ge 0$, if conditions in them for $t \in [0, T]$ are replaced by conditions for $t \ge 0$.

The proofs of Theorems 3 and 4 are omitted here, or one can prove them as that in [20] and [16] similarly.

Now assume that $x_i(t)$, i=1, 2, are two Cadlag processes satisfying

$$x_{i}(t) = x_{i}(0) + \int_{0}^{t} \beta_{i}(s, x_{i}(s), \omega) ds + \int_{0}^{t} \sigma(s, x_{i}(s)) dw(s) + \int_{0}^{t} \int_{z} c(s, x_{i}(s), z) q(ds, dz), t \in [0, T],$$
(3.2)

where all processes are in 1-dimensional space, w, q are defined in (2.1), but they are also 1-dimensional processes. Then we have

Theorem 5. (Tanaka formula). Assume that for $N=1, 2, \cdots$

(i) $|\sigma(t, x) - \sigma(t, y)| \leq d_N(t) \cdot \rho^N(|x-y|)$, as $|x|, |y| \leq N$, where $\rho^N(u), u > 0$, is local integrable, $\int_{0+}^{\infty} du/\rho^N(u)^2 = \infty$, and $\int_0^{\pi} d_N(s)^2 ds < \infty$,

(ii) $\sigma(t, x)$ and c(t, x, z) are jointly measurable, $\beta_i(t, x_i(t), \omega)$ is \mathscr{F}_t -adapted, for every eadlag process $x_i(t)$, and there exists a continuous g(x) such that

$$|\beta_{i}(t, x, \omega)| + |\sigma(t, x)| + \sum_{j=1}^{2} \int_{Z} |c_{i}(t, x, z)|^{j} \pi(dz) \leq |g(x)|.$$

(iii) $x \geqslant y \Rightarrow c(t, x, z) + x \geqslant c(t, y, z) + y$.

Then for all $t \in [0, T]$

$$|x_1(t) - x_2(t)| = |x_1(0) - x_2(0)| + \int_0^t \operatorname{sgn}(x_1(s) - x_2(s)) d(x_1(s) - x_2(s)).$$
 (3.3)

We omit the proof here. Or we can refer the reader to [16].

Remark. Formula (3.3) actually is a generalization of the Tanaka formula from the continuous case [14, 8] to the case with Poisson jumps.

Suppose that there exists a 1-dimensional cadlag process y_t^i satisfying

$$y_{t}^{i} = y_{0}^{i} + \int_{0}^{t} b^{i}(\mathbf{s}, y_{s}^{i}, x_{s}^{i}) d\mathbf{s} + \int_{0}^{t} \sigma(\mathbf{s}, y_{s}^{i}) dw_{s} + \int_{0}^{t} \int_{\mathbf{z}} c(\mathbf{s}, y_{s}^{i}, z) q(d\mathbf{s}, dz), \quad t \in [0, T], \ \dot{\mathbf{s}} = 1, 2,$$

$$(3.3)$$

where y_t^i , w_t and $q(t, \cdot)$ are all in 1-dimensional space, which are random process, B. M. and centralized Poisson random measure, respectively, but x_t^i is a cadlag process in n-dimensional space, i=1, 2.

Theorem 6. (Comparison Theorem). For i=1, 2 set $\beta^i(t, y_t^i(\omega), \omega) = b^i(t, y_t^i(\omega), x_t^i(\omega))$. Assume that conditions (i)—(iii) in Theorem 5 for β^i , σ , σ are fulfilled, and

- (iv) $y_0^1 \leqslant y_0^2$,
- (v) $b^{i}(t, y, x)$ is jointly measurable on $(t, y, x) \in [0, T] \times R^{1} \times R^{n}$,
- (vi) $b^{1}(t, y, x) \leq b^{2}(t, y, x)$, for all $(t, y, x) \in [0, T] \times R^{1} \times R^{n}$.

(vii) $sgn(y^1-y^2)(b^1(t, y^1, x^1)-b^1(t, y^2, x^2)) \le d_N(t)\rho_N(|y^1-y^2|), y^i=f(x^i), for all <math>t \in [0, T], |y^1|, |y^2| \le N;$ where f is some given function, $d_N(t) \ge 0$, and $\rho_N(u) > 0$, as u > 0, and $\rho_N(u)$ is increasing, concave and such that

$$\int_{0}^{t} d_{N}(s) ds < \infty, \int_{0+} ds / \rho_{N}(u) = \infty, N = 1, 2, \dots,$$

Then P-a. s.

$$y_t^1 \leqslant y_t^2$$
, for all $T \in [0, T]$.

We omit the proof here. Or we can refer the reader to [16].

Corollary. Theorem 6 holds, if replace (vii) by

(vii)' σ and c satisfy conditions (i)—(iv) in Theorem 1, and $b^i(t, y) = b^i(t, y, x)$, i=1, 2, are jointly, continuous and do not depend on x, moreover,

$$b^{1}(t, y) < b^{2}(t, y), \text{ for all } (t, y) \in [0, T] \times \mathbb{R}^{1}.$$

Proof In this case there exists a Lipschitz continuous function $b^3(t, y)$ $b^1 < b^3 < b^2$.

Now let us generalize the Yamada-Watanabe theorem $(Y-W thm)^{(8)}$ to the case for S. D. E. with Poisson jumps. We say that x_t is a weak solution of (2.1) iff x_t satisfies (2.1) defined on some probability space with some B. M. and Poisson random point process but with the same original compensator $\pi(dz)dt$. Then we have (The proof of the following theorems is similar to [16])

Theorem 7 (Y-W thm). If the pathwise uniqueness holds for (2.1) and there exists a weak solution for (2.1), then (2.1) has a pathwise unique strong solution.

Theorem 8. If $(x_t^i, w_t^i, q_t^i(\cdot))$, i=1, 2, are two wark solutions of (2.1), then there exists a probability space $(\widetilde{\Omega}, \widetilde{\mathscr{F}}, \widetilde{\mathscr{F}}_t, \widetilde{P})$ and a B. M. \widetilde{w}_t , a Poisson random point measure $\widetilde{p}(t, \Gamma, \omega)$ with compensator $\pi(\Gamma)$ dt on it such that $(\widetilde{x}_t^1, \widetilde{x}_t^2, \widetilde{w}_t, \widetilde{q}_t(\cdot))$ is adapted to $(\widetilde{\Omega}, \widetilde{\mathscr{F}}, \widetilde{\mathscr{F}}_t, \widetilde{p})$, where $\widetilde{q}(dt, dz) = \widetilde{p}(dt, dz) - \pi(dz)dt$, and the probability law of $(\widetilde{x}_t^1, \widetilde{w}_t, \widetilde{q}_t(\cdot))$ and $(\widetilde{x}_t^2, \widetilde{w}_t, \widetilde{q}_t(\cdot))$ coincides with that of $(x_t^1, w_t^1, q_t^1(\cdot))$ and $(x_t^2, w_t^2, q_t^2(\cdot))$, respectively.

§ 4. Proofs of Theorems 1 and 2

Let us introduce a proposition without proof first.

Proposition 1. For $x = (x_1, x_2)$ set (a_1, a_2) are positive constants)

$$u^{0}=u^{0}(t, x)=\begin{cases} (-a_{1}^{2}x_{1}/(a_{1}^{2}x_{1}^{2}+a_{2}^{2}x_{2}^{2})^{1/2}, & -a_{2}^{2}x_{2}/(a_{1}^{2}x_{1}^{2}+a_{2}^{2}x_{2}^{2})^{1/2}), & x\neq 6, \\ (0, 0), & \text{as } x=0. \end{cases}$$

Then

$$\langle x, u^0 \rangle \leqslant \langle x, u \rangle$$

for all x, and u satisfying $(u_1^2/a_1^2) + (u_2^2/a_2^2) \le 1$.

Proof of Theorem 1, Let us extend the definition of b(t, x), $\sigma(t, x)$ and c(t, x)

x, z) to $t \in (T, T_1]$, where $T_1 > T$ is a constant, by

$$b(t, x) = b(T, x), \text{ as } t \in (T, T_1],$$

etc. And denote $b^{N}(t, x)$ and $\sigma^{N}(t, x)$ as [5] such that condition (iii) still holes for b^{N} , σ^{N} , c and

$$h^{N}(t, x) = \begin{cases} h(t, x), & \text{as } |x| \leq N, \\ 0, & \text{as } |x| < N+3; |h^{N}| \leq |h|, \text{ as } h=b, \sigma. \end{cases}$$

Then by [15] and Theorem 7 there exists a pathwise unique strong solution x_t for the following S. D. E. as $T_1 \ge t \ge 0$, $N=1, 2, \cdots$

$$x_t^N = x_0 + \int_0^t b^N(s, x_s^N) ds + \int_0^t \sigma^N(s, x_s^N) dw_s + \int_0^t \int_Z c(s, x_s^N, z) q(ds, dz). \tag{4.1}$$

Now set

$$x_t = x_t^N$$
, as $t \in [0, \tau_N(x^N))$, (4.2)

where for arbitrary $x(\cdot) \in D$, $\tau_N(x) = T_1$, as $\sup_{0 < t < T} |x(t)| \le N$; and

$$\tau_N(x) = \inf(t: |x(t)| > N).$$

It is not difficult to show that it is well defined. Similarly to [1] one has

$$P(\tau_N(x^N) < T_1) \rightarrow 0$$
, as $N \rightarrow \infty$, (4.3)

where one needs to apply that (denote $f(x) = 1 + \ln(1 + |x|^{2d})$)

$$\begin{split} &\int_{Z} \left| f(x+c(t, x, z)) - f(x) - \sum_{i=1}^{n} (\partial f/\partial x_{i})(x) c_{i}(t, x, z) \right| \pi(dz) \leqslant \\ &= \int_{Z} \frac{1}{2} \sum_{i,j} \left| (\partial^{2} f/\partial x_{i} \partial y_{j})(x+\theta c(t, x, z)) \cdot \left| c_{i}(t, x, z) \right|^{2} \pi(dz) \leqslant k'. \end{split}$$

By (4.3) it is not difficult to derive that

$$\lim \tau_N(x^N) = T_1, P-a. s.$$

From this by Theorem 4 it is obtained that x_t is the pathwise unique strong solution of (2.1).

Proof of Theorem 2 Firstly, by Example 2 it is easily seen that condition (iii) in Theorem 1 holds. Hence as the proof of Theorem $1(u^0, v^0) \in (\mathcal{U}, \mathscr{V})$. Second ly, for $(u, v) \in (\mathcal{U}, \mathscr{V})$ follow the approach in the proof of Theorem 2.1 in [8] but apply Theorem 8 here. We have that after applying Ito formula

$$\begin{split} Y_t &= |x_0|^2 + \int_0^t \left(2(A_s^0 Y_s + A_s^1 Y_s g(s, Y_s) + B_s^1 x_s^{u,v} \hat{v_s} + B^2 x_s^{u,v} h(s, \hat{x_s^{u,v}}) + B_s^2 \hat{x_s^{u,v}} \hat{u_s} \right. \\ &+ n (O_s^0 + O_s^1 Q(s, Y_s^{1/2}))^2 + \int_Z D(s, Y_s, z)^2 Y_s \pi(dz)) ds + \int_0^t 2(C_s^0 + O_s^1 Q(s, Y_s^{1/2})) \\ & \circ Y_s^{1/2} d\hat{w_s^1} + \int_0^t \int_Z (D(s, Y_s, z)^2 + 2D(s, Y_s, z)) Y_s \hat{q}(ds, dz), \ t \in [0, T], \\ X_t &= |x_0|^2 + \int_0^t \left(2(A_s^0 X_s + A_s^1 X_s g(s, X_s) - B_s^1 X_s^{1/2}) + n(C_s^0 + C_s^1 Q(s, X_s^{1/2}))^2 \right. \\ & + \int_Z D(s, X_s, z)^2 X_s \pi(dz)) ds + \int_0^t 2(C_s^0 + C_s^1 Q(s, X_s^{1/2})) X_s^{1/2} d\hat{w_s^1} \end{split}$$

$$+ \int_0^t \int_{\mathbf{z}} (D(\mathbf{s}, X_{\mathbf{s}}, z)^2 + 2D(\mathbf{s}, X_{\mathbf{s}}, z)) X_{\mathbf{s}} \hat{q}(d\mathbf{s}, dz), \ t \in [0, T],$$

where \hat{w}_t^1 is a 1-dimensional B. M. which is the first component of *n*-dimensional B. M. $\hat{w}_t = (\hat{w}_t^1, \dots, \hat{w}_t^n), \ \hat{p}_t(\cdot)$ is 1-dimensional Poisson random point measure with compensator $\pi(dz)dt$, $\hat{p}(dt, dz) = \hat{q}(dt, dz) - \pi(dz)dt$, $Y_t = |\hat{x}_t^{u,v}|^2$, $X_t = |\hat{x}_t^0|^2$, and the probability law of \hat{x}_t^0 , \hat{w}_t , $\hat{p}_t(\cdot)$ and $\hat{x}_t^{u,v}$, \hat{w}_t , $\hat{p}_t(\cdot)$ coincides with that of \hat{x}_t^0 , \hat{w}_t^0 , $p_t(\cdot)$ and $\hat{x}_t^{u,v}$, $\hat{w}_t^{u,v}$, $\hat{w}_t^{u,v}$, $\hat{v}_t^{u,v}$, \hat{v}_t

$$\overline{w}_{t}^{u,v} = \int_{0}^{t} P(x_{s}^{u,v}) dw_{s}, \ \overline{w}_{t}^{0} = \int_{0}^{t} P(x_{s}^{0}) dw_{s}, \ \hat{u}_{t} = u(t, \hat{x}^{u,v}(t)), \ \hat{v}_{t} = v(t, \hat{x}^{u,v}(t))$$

and P(x), $x \in \mathbb{R}^n$, is an $n \times n$ matrix, which is orthogonal and Borel measurable (See [8]). Note that

$$-\operatorname{sgn}(X-Y)(F((X^{+})^{1/2})-F((Y^{+})^{1/2})) \leq 0, \ F(x)=x, Q(t, x);$$

$$\operatorname{sgn}(X-Y)(Q(t, (X^{+})^{1/2})^{2}-Q(t, (Y^{+})^{1/2})^{2}) \leq k^{N}(|X^{+}-Y^{+}|) \leq k^{N}(|X-Y|);$$

$$|Q(t, (X^{+})^{1/2})-Q(t, (Y^{+})^{1/2})|^{2} \leq \rho^{N}(|(X^{+})^{1/2}-(Y^{+})^{1/2}|)^{2}$$

$$\leq k^{N}(|(X^{+})^{1/2}-(Y^{+})^{1/2}|^{2})$$

$$\leq k^{N}(|X^{+}-Y^{+}|) \leq k^{N}(|X-Y|).$$

Hence applying Proposition 1 and Theorem 6 we obtain that P-a. s.

$$X_t \leqslant Y_t$$
, for all $t \in [0, T]$.

§5. Application to Parameter Estimation

Theorem 1 can also be applied to search the maximum likelihood estimate (MLE) of some parameter in some general stochastic systems.

Consider S. D. E. in n-dimensional space:

$$x_{t} = x_{0} + \int_{0}^{t} (\theta b_{1}(s, x_{s}) + b_{2}(s, x_{s})) ds + \int_{0}^{t} \sigma(s, x_{s}) dw_{s}, \ t \in [0, T].$$
 (5.1)

Assume that

- (i) condition (i) in Theorem 1 for b_1 with σ and b_2 with σ , and σ itself is satisfied, respectively; conditions (ii) and (iii) in Theorem 1 hold with c=0;
- (ii) $P\left(\int_0^x |\sigma^{-1}b_1(s, x_s)|^2 ds > 0\right) = 1$, where x_t is the strong solution of (5.1); and $-\infty < \theta < \infty$ is a real constant parameter.

Theorem 9. The MLE of θ is (denote $a = \sigma \sigma^*$)

$$\hat{\theta}_{T}(x) = \left(\int_{0}^{T} \langle a^{-1}b_{1}(s, x_{s}), dx_{s} \rangle - \int_{0}^{T} \langle a^{-1}b_{1}(s, x_{s}), b_{2}(s, x_{s}) \rangle ds\right) / \int_{0}^{T} |\sigma^{-1}b_{1}|^{2} ds.$$

In order to prove Theorem 9 we need the following lemma, which can be shown as [1].

Lemma 1. Under the assumption of Theorem 9

$$E\Phi(y(\cdot))=1,$$

where we denote $b = \theta b_1 + b_2$, and

$$\Phi(y(\cdot)) = \exp\left(\int_0^T \langle a^{-1}b(s, y_s), dy_s \rangle - \frac{1}{2} \int_0^T |\sigma^{-1}b(s, y_s)|^2 ds\right),$$

and yt is the pathwise unique strong solution of

$$y_t = x_0 + \int_0^t \sigma(s, y_s) dw_s, \quad t \in [0, T].$$

Proof of Theorem 9 By Lemma 1 and Girsanov theorem y_t also satisfies (5.1) with \overline{w}_t , where $\overline{w}_t = w_t - \int_0^t \sigma^{-1}b(s, y_s)ds$ is a B. M. under probability measure $d\overline{P} = \Phi(y(\cdot))dP$. Since the pathwise uniqueness holds for (5.1), we have for $\Gamma \in \mathcal{B}(\mathscr{C})$ $\mu_{\sigma(\cdot)}(\Gamma) = P(\omega: x(\omega, \cdot) \in \Gamma) = \overline{P}(\omega: y(\omega, \cdot) \in \Gamma) = \int_{y(\cdot) \in \Gamma} \Phi(y(\cdot))dP = \int_{\Gamma} \Phi(x)d\mu_{y(\cdot)}(x)$. Therefore $(d\mu_{\sigma(\cdot)}/d\mu_{y(\cdot)})(x) = \Phi(x)$, and $(d\mu_{\sigma(\cdot)}/d\mu_{y(\cdot)})(x(\cdot)) = \Phi(x(\cdot))$, where $\Phi(x(\cdot)) = \exp\left(\int_0^T \langle \sigma^{-1}(\theta b_1(s, x_s) + b_2(s, x_s)), dx_s \rangle - \frac{1}{2} \int_0^T |\sigma^{-1}(\theta b_1 + b_2)|^2 ds\right)$.

So the log likelihood function is (cf. [17]).

$$L(\theta) = \int_0^T \langle a^{-1}(\theta_1 b(s, x_s) + b_2(s, x_s)), dx_s \rangle - \frac{1}{2} \int_0^T |\sigma^{-1}(\theta b_1 + b_2)|^2 ds.$$

Hence the MLE $\hat{\theta}_T(x)$ of θ satisfies the equation

$$\int_{0}^{T} \langle a^{-1}b_{1}(s,x_{s}), dx_{s} \rangle - \theta \int_{0}^{T} |\sigma^{-1}b_{1}(s,x_{s})|^{2} ds - \int_{0}^{T} \langle a^{-1}b_{1}, b_{2} \rangle ds = 0.$$

References

- Situ Rong, On strong solutions and stochastic (pathwise) Bang-Bang control for a non-linear system, 9th World Congress of IFAC, 3 (1985), 1433—1438. Ed. A. Titli, etc. Pergamom Press.
- [2] Kleptsenar, M. L., On strong solutions of stochastic equations with degenerated coefficients, *Theory Probab. Appl.*, 24: 2 (1984), 392—396 (in Russian).
- [3] Rozovskii, R. L., A note on strong solutions of stochastic differential equations with random coefficients, Lecture Notes in Control and Inf. Sci., 25 (1980), Springer-Verlag, 287—296.
- [4] Jacod J. & Memin. J., Weak and strong solutions of stochastic differential equations: existence and stability, Lec. Notes in Math., 851 (1981), 169—212.
- [5] Gyongy I. & Krylov., N. V., On stochastic equations with respect to semi-martingales I, Stochastic, 4, (1980), 1—21.
- [6] Balakrishnan, A. V., On stochastic Bang Bang control, Appl. Math. Optim., 6 (1980), 91-96.
- [7] Ruzicka, J., On the separation Principle with bounded controls, Appl. Math. Optim., 5, (1977) 243—261
- [8] Ikeda, N. & Watanabe, S. Stochastic Differential Equations and Diffusion Processes, North-Holland/ Kodansha, (1981).
- [9] Liptser. R. S. & Shiryayev, A. N., Statistics of Random Processes, Vol. I. Springer-Verlag (1977).
- [10] Jacod, J. Calcul Stochastique et Problemes de Martingales, Lect. Notes in Math., 714 (1979), Springer-Verlag.
- [11] Mckean, M. P., Stochastic Integrals, Academic Press, N. Y. (1969).
- [12] Ikeda N. & Watanabe, S., A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619—633.
- [13] Benes, V. E., & Karatzas, I., Examples of optimal control for partial observable system; comparison, classical, and martingale methods, *Stochastic*, 5, (1981) 43—64.
- [14] Barlow, V. E. & Yor. M, (Semi-) Martingale inequalities and local times, Z. Wahr. verw. Geb., 55 (1981), 237—354.
- [15] Mahno, S. Ja., On weak solutions of stochastic differential equations, Probability Theory and Mathematical Statistics-Contiguous Natural Sciences Collection, Vol. 13, Publicated by Kiev National

- University, Kiev, (1975), 106-115 (in Russian).
- [16] Situ Rong, On strong solution, uniqueness, stability, and comparison theorems for stochastic system with Poisson jumps, Proceedings of the 2nd-International Conference on Control Theory for Distributed Parameter Systems and Applications, (1984), Lect. Notes in Control and Inform. Sciences 75, 352—381, Springer Verlag, N. Y. (1985).
- [17] Sorensen, M., On Maximum likelihood estimation in randomly stopped diffusion type processes, *Intern. Statist. Review*, **51** (1983), 93—110.
- [18] Situ Rong, Strong solutions and pathwise control for multidimensional nonlinear stochastic system with jumps, Fourth IFAC Symposium on Control of Distributed Parameter Systems, LA. Ca lifornia, USA June 30-Julá 2, 1986.
- [19] Veretennikov, A. Yu., On strong solutions of stochastic Ito equations with jumps. *Probab*, Th., Appl., 32(1987), 159—163 (in Russian).
- [20] Situ Rong, On strong solutions, absolute continuity between solution measures and Bayes formula for stochastic differential equations with non-Lipschitz coefficients, Math. & Mech. Res. Report (Preprint), Zhongshan Univ. No. 1 Dec. 1981, 75—198.