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STRONG SOLUTIONS AND PATHWISE CONTROL
FOR NON-LINEAR STOCHASTIC SYSTEM WITH
POISSON JUMPS IN N—DIMENSIONAL SPACE*

Siru RON’G .' (é]j;téfc)*

Abstract

The existence of & pathwxse unique strong solution for the stochastlc differential
eq:ua,tlon (S. D. B. ) with Poigson jumps in nr‘dlmensmnal space without continuity
assumption on drift coefficient, which even can be greater than linear growth, and
without Lipschitz condition on diffusion coefficients is obtained, Then the existence of a
pathmse stochastic optlma,l Bang-Bang control for a very much non-linear systemwith
Poisson jumps in n—dlmensmna,l space is derived. The result is also applied to obtain a -
maximum likelihood esti'ma,te (MLE) of parameter for some continuous, -S. D. H. with

non~Lipschitz . cefficients in n—-dimensgional space.

§1. Introduction

Recently, some results on the existence of ths S. D. E. with non-Lipschitz
coefficients in 1-dimensional space have been obtained (*+#). But up.to now the
results in n-dimensional space need more restriotion. (For 8. D. E. with respect to
(w. r. 5.) Brownian Motion process (B. M. )™, and w. r. . martingale [4,51
Usually, some monotone condition on $hs whole coefficients and some continuour,
less than linear growth condition on the drif coefficients are required. Moreover, it

seems that non—result has been appeared yeb for the exisbence of strong solution to -

the 8. D. E. with Poisjon jumps in n-dimensional space without the assumption
on the continuity for bthe drift cosfficients, and-without condition on the Lipschit-
zianess of the diffusion ooefficionts o (¢, ) or integrability of (do/dz)? U819,

Here we weaken such condition on o, and the usual monotone condition on the
whole coefficients and exclude 'the_oontinuous assumptbion on drift, and also replace
the less than linear growth condition by a much weakor one on it to gob the exist-
ence of strong solution for 8. D. E. with Poisson jumps in n—dimensional space.
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Then the result is used o obtain the existence of pathwise optimal Bang-Bang
stochastic control for a non-linear stochas fic system with Poisson jumps in n—
dimensional space, which impliesthe results for the pathwise control on linear
system. for continuous case and in 1-dimensional space got by [6] and [7], By the
way, some useful results on Yamada—Watanabe theorem, pa,thwwe uniqueness, and
- comparison theorem for such 8. D. E. (the last one is in 1-dimentional space) are
also obtained. Some interesting examples are algo given (See Remark 2 of Theorem
1, Remarks 1°—5° of Theorem 2), At last, the result is also applied to derive a
maximum li kelihood estimate of parameter. for some conlinuous stochastic system
with non-‘Lipsohitz coefficients in n—dimensional space, which is betber than [9]
and [17] in some sense (In [9] o= =1, bs=0; in [17] Lipschitz condl’olon is needed:

and in both cages it is conmdered in 1-dimensional space).

§ 2 Strong Solutlons and Elhptlc Bang——Bang ContrOI

Oonsuder S. D. E. (for € R” té [0, 7D
" v _ o .
zvt=w+fob(s, 5) ds—l—Joo-(s, a:s)dfws-l-jofzc(s, ws, 2)q(ds, dz), = (2.1)
where wt—n—dimensional standard Brownian Motion process (B. M.),
q(ds, de) =p(ds, de) —w (de)ds, Z=R"—{0},w(dz) =de/ |2 |
p(ds, dz)-1-dimensional Poisson random point measure with - compensator
: ~av(dz)ds 2(0, Z2) =0, o(%, )-nXn matrix, defined on [0, TIx R 8(3, @), ¢(t, o, 2)-
n~dimensional veotor, defined on [0, T]X R*and [0, T] X R"X Z, respectively. They
are.all joinily measurable such that the right hand side of (2.1) makes sense. Let

s make some remarks on the assumption firss,
7
Rema.rk 1. Here jo always meansf p(t M= J J p(ds, dg),

Remark 2. Smee ‘the compensator of g(ds, dz) is w(dz)ds, by the proof of
Lemma 5.5 in chapter 5 of [9] (pp. 176) for ¢(s, =, 2), Wh_leh is JOln'bly measurable
and for all a;t(a,) & measurable such that

EJ,[ lo(s’ s, 2) |* (mlz)ds<+°o

the stochastm mtegralj’ (8, s, 2) g(ds dz) is well defined.

- Now we introduce some condltlon for dlscussmg the existence of strong solu~
tions; We say that a Borel measurable functlon la(u) >0, 4>0, satisfies Condition
K, If for any Lebesgue measurable funchion a;(t) =0, tE [O T], let

V@)= [ b
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ty=sup(t: y(¢) =0, €0, T'),
if to<T,then there exists $€ (f, T'] such thatb
) y(®)
jo ds/b () >t~ to.
Ezample 1. If k(u)>o, u>_0, satisfies

' J0+ du/k(u) =

then % (u) satisfies condition K. (Cond-K).
For the existence of the pathwise'ﬁniq‘ue strong solution to (2.1) we have
Theorem 1. Assume that for all te [0, T, € R, there ewists a constant ko such

that (denote by <=, <> the tnner product. in B, |0t o) |2 2 |0t w) 1%

(i) there ewist constants d=>1 and m>0 such that
{o, b(t, 0)>+ |a(t, 2)|?(2n+1)
<ko(1+ |o|*In(1+ |m|2")ln(1+ln(1+1n(1+ l2|™))),
where b(¢, ©) and o(t, ©) are locwlly bounded. 6. e., for each v>>0 there exists a constant
¥, such that as |o|<r .
|6, o) |+ |o(t, co) |<k,

(i) J‘ lc(t @, m)l‘w(dz)<loo, b=1, 2,

A ocr*?\,>8|?\.|2 for all AE R
where 8>>0 is a constant,oo* (4, @) s continuous for umfoo*mly w.r. § €0, T], and
o s the symmetric positive definite square root of oo®,
(iii) there ewist & (¢, @) =0 and kY (u) >O u>0 E(w) swtfbsﬁes Oond~K wnd

J a (¢, w)dt<oo

and &Y (w) is ’éncq;eas?)ng, concave such that for I,wl’ ]y[ <N _

2o—y, b, x);b(t, y)>+o@, o) —o(t, y) !2+J; le(t, 4 z)—o(t, y, 2) |*m(de)
<d¥ (s, cﬁ)k&(lm—-gl%, . o - | o (2.2)

(iv) lm_lljnj let, o, z) —c(t,. ¥, 2)

Then 8. D. E. (2.1) has a pathwise untque strong solutéon.

295 (de) =0, for all € [0, T')a

_Remark 1. #(u) = {“1’1(1/ u), a8 O<u<a<e <,
w(ln(l/w))+(d/du)k(w ) (u— w), a8 u>w,
where @ i8 a constant, then k(u) satisfies Cond-K, .
Remark 2. Theorem 1 implies Theorem 4. 12 in [4] (also [8] and [B]) in
some sense. ‘Moreover, drift coefficient in system can be dlsoontmuous and -very
much non-linear now, e. g., set.- :
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——ecy..

bi(t, 2)= { o/ |o] —a;|®|Y  as w0, N is any posﬂuve number,
0, asaz=0, -
Then <z, b{%, #)><0, and by Sohwa,r.z_ineqliali’oy V(as @, yqéO)
@=9, bG 2) =B 1)) =~ || =~ |y +<o, 4> (|a] +]y] ) "
— o 2= |y [ Y2+ Lo, > ([o] T |y[)
<(la| = y]) (Jy|**= o] "9 <0,
Remark 3. Uondition for b(4, #) can not be weakened to
8, @) [<ho(L+ |a] ),
where >0 is any oonstant Indeed, in this cage. Mokean (C1,0.8) hag showny
that the explosion of the SO]IlblOIl a;, $0, W111 happen. Now let us give an s:zample-
for (¢, «), whiok is dlseontmuous but condltlon (iii) ‘is sablsﬁed Thig example.
will be useful for the elliptio Bang-Bang control later,
Ezample 2, For S D. E. (2.1) Wﬂih (4, A° Ai—-an matrices, - b*-n~dim.
vector) L '
" . b(t,‘ w) = A°(t)fv+A(t)u(t a;)—{-Ai(t)bi(t w) . (2.3)
assume that conditions (i)—(iv) in Theorem 1 for 8% o, ¢ is satisfied, moreover,
Ai(t), =0, 1, and A(#) are hounded Borel measurable w. r. 4. £€ [0, 7] and non— :
random; u (%, @) = (uy(t, @), -, u,(¢, x)), where. (A*—tra,nsposutlon of 4) '

@ ,/lx] as ]x]aéO O<w,——consbant
ui(t7 w) { .
0, as |z|=0; gt ta,>0;
o Ié:(%j_, ooy E”), 5,—=w,-(A*(t)m)i, ’l;=.’., "‘,.'fbo
Then (2.1) has a pathwise unique strong solution.

2.4).

“Proof "Clearly. (i) in Theorem 1 is satisfied, We only need to prove bhat.
(iii) in Theorem 1 holds, Affer simple evaluabion. for o, y #0

@y, AOlh 9)—ut, )=~ (5]~ {1+, D3+ 171 <o.
For =0, y+40 we will have . .o :

. @—y, A®) (ut, o) —u(t, )=~ |§|<0.
Applying Theorem 1 we can get the existence of stochastic Bang—Bang control for
the bounded controls with elliptic bundary. Suppose we want to minimize - -

' J(“} 'v) =-EJ(:IQ7?'"|2(Z#, - <2'5)
where 2 i8 a strong solution of 8, D. E. (2.6), which is pathwise unique,

[ 2. . . .
oY =, +JO (AJap o+ Azg (s, la@?|)ato 4 Blvy-+B2us+ B2h(s, @) )ds+

J:_(02+O§Q(s. o)) dw+ tj DG, lwg»vﬁ 2) avq(ds, da),

. i€ o, 1. (2.8)
i, Bt D(t @, 2) are bounded real nonrandom measurable, where the 1st three -
funomons d_o not depend on &; and h(t, @) is defined by an n~-dimensional vector as
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T b o= Ol @), e ), 0,5 005 o @D
atw;/ (Bad+adel)'/?,  as alwl—i—wga;f,éO '

h(t w) {
O, as w1w1+a2mo=0 as 4=1, 2;

and @;, =1, 2, are p0511:1ve constants, Let (%, 7°) be the adm1s31ble control set:
(U, V) ={u=u(t, 5) €U, v=2(% ®) €Y u(t, @) =u(l, o1, 2) 18 jointly measura-
ble on [0, T] x R® w(t, ) is jointly measurable on [0, 71 %< R" such that
ul(t z)/ai+ud(t, o) /as<l;. wi=0, =38, 4,
‘ vi (4, a;)—k w02t o)<l
Moreover, u(%, «) and fv(t a;) are sueh that (2. 6) has a pa.thwme unique strong
solution a}"}. '
Theorem 2. Assume that - ‘ : : :
(i) Al<0, Bi=0, i=1, 2, 0?-0i<0, 0°+01Q(t |m|)>8>0 g(t w)>0 =0,
@3>0, os locally bounded and there ewist common pomts 22, @l oev, @ suoh that
!(8/3w¢)g(t o) | <k, as|o|<N, N=1,2 - for all waf, 6=1,
where by 98 @ cornstamt dependfmg only on N. Moreover, there exist constwnts ol>1 m>>
0 such that ‘ o
| 9@, lw|2)<ko(1+1n(1+| I‘-"d) 1n(1+1n(1+1n(1+| @|™)));

- (i) I lD(s |w|2, 2) wl‘av(dz)</co(1+| I‘),fb 1, 2; for all s€ [0, 71, a;ER"
(iii) For any w, y€ RY, fv>y=>(2+1)(t at, z))D(t z*, z)w++w>(2+D(t v+,
2)DG, v, DY Y
(@) [, 1aDG. lal%, H=vDG, lo )@ <b¥ (o=l
s, yE R |al, |yI<N;
[, (DG, 2%, %% =D, v, 2% )wl@n) | <k (o= —ub
@, yE B, |a|, |y|<N;

where k” (u), >0, &8 poswwe, fmcrewsmg, 0onoave and swt'bsﬁesf du/ o (u) =o0,

W) 196G, 1s))-QG, ) | <e¥(|o—y1), o, vER, |a], lyl<N,
190G, 1o))2—QG, 1y <k (||a*=1y[*D, & yE B, =], |y|<N
where p¥ (u)>0, as u>0; p¥ (O) =0, and ot s such that g

(0% ()P <HF (), | du/p"(@) =-+o0,
B¥ (u) s defined in(iv), and Q(, 2)<QE v), as 0<o<y; |QC, @) | <ko(L+|2]).
Then there ewists an admbssible control u’E U, W E V" such that '
J (u®, °) =Min(J (4, v): vE%, vE v,
where u° (t ) = —h(t, @) is-defined in (2.7) above, and v° s such that ~
) W0, o) =—w/|o|, as |o} £0; 0, ) =0,.as |o| = 0 (2.8)
and @ s the pathwise unique sirong solutbon of (2.6) with u® o u°(t) =u®(4, 2°(8))
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is called an elliptéc Bang-Bang control, v°(¢) =2°(¢, °(#)) @ circle Bang-Bang conirot,
simce they sabisfies ' .
STu()*/al=1, as|o0(t) [240; |008) | =1, as a9(2) #0. |
Remark, 1° If Bf=0, A§=0, =0, 1; O%(¢) =0, then we got the usual Bang—-
- Bang control, which implies [6, 7, 12, 18]. Moreover, let
' . 9@, 8)=—az, fort=>0, =0,
Then we get a very much non-linear system which satisfies (1) for g.
20 Set ‘
p”(u) =u(Ilnu™2)Y2 k¥ (y)=uln (l/u).
Then p¥ (w) and %¥(4) meo$ the requirement in (v).
3 Set e A
(t | = {1/1?, as [a;l<1/R, -
|@|, as|z|>1/R, where 0<R is a constant;
and assume that OP+0}/R>5>>0. Then Q(¢, |«|) satisfies condition (V).
4° If w(Z) <oo, lot D(s, |@|?, £) =1,then conditions (ii)—(iv) are all satisfied
(For example, a8 o (dz) =dz/|z|"**?, let
Z=R- X (—e, s) » (—s, s); iy the interval in the wth coordmate space)

5° Let au(z) =de/ |z|™*,

DGs, |al?, 9)=F @ 0|/ (1+£@) o] fors>0, o €, #€7,
~where (6>0 is a constant)
lzl(“+1+3)' as 'zl<1’

Z) =
F@ {1, as |z|>1.
Then it is easily seen thab conditions (ii)—(iv) are satisfied.

§ 3, Theorems on Umqueness and Comparlson of S‘trong'
Solutions and Yamada—Watanabe Theorem

In order fo prove. Theorems 1 and 2 we need some auxillary ’oheorems.ﬂAo’ﬁua,lly,
they are of interest on their own. :

Theorem 3. (Uniqueness). Assume that 0<a;(t) s Lebesque measwmble, i€ [0,
T], wh@oh sat'zo fies

0<a)< [ h(@()ds, for all 1€ 0, T1,
-where Io(u) -0, u>0 és tnereasing and- satisfios Oond-K., Then
: x(t)=0, . for all t€ [O ..

Theorem 4. If cond%twon (iii) in Theorem 1 holds, thefm the pwth'w%se UNGQUEness
Jor S.D. E. (2.1) holds. '
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Corollary. Theorems 3 and 4 hold for-8. D. E. defined on t>0 fz,f conditions in
them for $€ [0, T are replaced by conditions for $=0.

The proofs of Theorems 3 and 4 are omitted here, or one can prove them as thab
in [20] and [16] similarly. L . '

Now assume that #;(¢), =1, 2, are two Cadlag processes satisfying

o () =, (0) + j Bi(s, w(s), w)ds+j’a(s, 2(®))duw ()
+f! j ofs, o4(s), Dg(ds, de), s€10, T, 3.2)

where all prOGesses are in 1——d1mensmna1 spaoce, w, ¢ are deﬁned in (2 1), but they
are also 1-dimensional processes. Then we have

Theorem 5. (Tanaka formula). Assume that for N=1, 2,

(1) lcr(t ©) —o (b, y) | <dy () 0 (|o—yl), as ], lyl<N where o¥ (u), u>0, is

local éntegrable, J du/ ¥ (u)? = oo, amzj die(s)*ds <00

(11) o, ») cmd o(t @, z) are Joinitly measufrable ,8 (t, wﬁ(t), w) is F t—adapbed
for every cadlag process a; (t), and there exmts a continuous ¢(x) such that

|B:(¢, =, w)[+la(t w)|+zj le: (¢, =, z)l’av(dz)<!g(m)l

(iii) m>y=>o(t w, 2)+a=o(t, y, 2)+y.
Then for all ¢E [0 TY S

|m1(t) wz(t) l = Imi(O) 402(0) |+f sgn(a;i(s) 972(3))‘1(5171@) "‘972(3)) (33)

We omit ’uhe proof here. Or we can refor the reader to [16]. A
Remark, Formula (8.3) actually isa generé,liza’sion of the Tanaka formula.

from the continuous cage [14, 8] to the case with Poisson jumps.
Suppose that there exists a 1-dimensional cadlag process yt satisfying

t b o
yi=yi+ Lb"(s, s, wi)ds+Jocr(s, ys ) daws

[ o0 0 D@ i), 1EDTLEmE 6

where g}, w; and g(§, ) are all in 1-dimensional space, which are random process,
B. M. and centralized P01sson random measure, respeotlvely, but ot is a cadlag
process in n—dlmensmna,l spaoe, 4=1, 2, "

Theorem 8. (Comparison Theorem). For 6=1, 2 set. B’(t s (w), ) =bi(t,
(@), @i (w)). Assume that conditions (1)—(iii) in Theorem B for B, o, ¢ are
fulfilled, and | I

(iv) ?lo<!/¢2» : L

(V) bi(s, Y, ) i yomtly mewsumble on (t g/, ) € [0, TIXR*x R,

(v1) bi(t Y, m)<b2(t y, ), for all ¢y, @) €O, T] X Bt % R
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(vii) sgn(y*—y?) (B*G, o', o) =@, ¢*, @°)) <dy B px(ly'— 92D, ¥'=F(a"), for

al $€ 10, T, |yt|, |92| <N; where f is some given function, dy($)=0, and py(u)>

0, as u>0, and py(u) is increasing, concave and such that
.[:dlv (s)ds<oo, L+ ds/pn(u) =00, N=1, 2, oeey
" Then P-a. s. ' h | ' S
yi<y?, for allTE 0, T,
‘We omit the proof here. Or we can refer the reader fo [16].
" CQorollary. Theorem 6 holds, if replace (vii) by
" (vii)’ o and ¢ satisfy conditions (6)— (i) in Theorem 1, and b*(4, y) = b‘(i v, w),
$=1, 2, are jointly, continuous and do not depend on @, moreover,
Tb(¢, y)<bz(t y), forall (¢ y) €0, T'] %X R%
" Proof ‘In this case there exists a Llpschl’uz continuous funetlon b3, v)
br<BP<BA
Now let us generalize the Yamada-Watanabe theorem (Y—W $hm) to the cage
for 8. D. E. with Poisson jumps. We say that o, is a weak solubion of 2.1) iff a,
satisfies (2.1) defined on some probability space with some B, M. and Poisson
random point process but with the same original compensator m(dz)ds. Then we
have (The proof of the following theorems. is similar to [16])
Theorem 7 (Y-W thm), If the pathwise uniqueness holds Sfor (2.1) and there
eists @ weak solution for (2.1), then (2.1) has o pathwise unique sirong solution.
Theorem 8. If (af, wi, gt( ), ¢=1,-2, are two wark solutdons of (2.1), then
there ewists a probability-space (O, F F, P) and @ B. M. w;, a Poisson random point
measure p(¢, I', ®) with compensator w(I") dt on @ such that (&, T3, Wy, qi()) s
adapted to (O, F, Z ., p), where q (d¢, de) =p(dt, de) —w(de)dt, and the probability
law of (&%, by, 7:(*)) and (22, w:, q:(+)) coincides with that of (@, wi, ¢i()) and
(@?, w}, ¢3(+)), respectively. |

§ 4. Proofs of Theorems 1 and 2

Let us introduce a proposition without proof firsh.
Proposition 1. For o= (@1, 32) set (a1, ag are posjtive constants) -~
" (— adwy/ (a3l +aded)™?, — adws/ (afaf + adw3)'/?), w#6,
u=u (t m) { ‘
, (O, 0), asaz=0.
Then
| . <@, u) <o, u)
for all ©, and w sasisfying (uf/af) + (uz/ad) <1. R :
Ptroof 0 f Theorem 1, Let us extend the definition. of b(t w), o-(t m) and ¢($,
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@, &) b0 ¢E (T T1], -where T,>T is a constan$, by

b(4, @) =b(T, z), as t€ (T 7.1,
eto And deno’ﬁe oy (ﬁ a;) and o (t a:) as [5] sueh that condltlon (111) stlll holoes
for b¥, o¥, ¢ and ' o3 : ‘ -

WG o)= {h(t @) o lal <V,

0, as|o|<N+38; |W¥|<|h|, ash= b o,
Then by [15] and Theorem 7 there exists a pa.thmse unique strong solubion w; for
the followmgS D. E. as Ty >t> 0, N=1, 2, '

. "
x} =mo+jo b¥ (s, @Y )ds +Joa“(s, @) dw,+ LL c(s, a¥, 2)g(ds, dz),  (4.1)

Now set

' wy=al, a8 tE[O 'vN(a; )), - (4.2)

where for arbitrary (- )E D, vy(a) =T, as Sap Iw(t) |<N and
vy () =inf(s: Im(t) |>N)
It is not difficult to show thab it is'well defined. Similarly to [1] one has
Pry(@¥) <Ty)~>0, as N—»co, - 4.3
where one needs to apply that (denote f(a) =141In(1+|z|*))

J If("w+0(t{ @, 2)) —f(@) —ﬁ(af/ams) (@e, o, 2) |w(de) <

~[, 3 B @s1000u) et 2|6t 5, ) (@) <.

- By (4.8) it is not difficult to derive that '
limvy(2¥)=T;, P— a.s.

N ~yoo

From this’ by Theorem 4 it is obtained that o, is the pathmse unique strong solu-
tion of (2.1).

Proof of Theorem 2 Firstly, by Example 2 it is ersily seen that condition
(iii) in Theorem 1 holds. Hence as the proof-of Theorém 1(u’, v°) € (%, ¥"). Second
ly, for(u, v)€ (%,v") follow the approach in the proof of Theorem 2.1 in [8] but
apply Theorem 8 here. We have that after applying Ito formula

Y= |ao|?+ Jo (2 (A3Y3+4§ stq (s, Ys) +B}w§f‘ ”_ms+B?m,‘,""h(s,_ z?) —vl'-Bfé;‘,’,"‘t’.ﬁ, |
+n(03-+01Qs, P3%))*+ sz<s, Y, 2)* a,;w(ézz))ozw j 2(09+-01Q(s, Y1)
voaii+ [ [ (DG, V., £)2+2D, Vo ) YY.d(ds, d2). 4€ [0, T,

Xi=|a |”+j: (2(AX,+ 41X ,g(s, Xo) = BiXy/D) +n(00+01Q(s, X1%))*

+L D(s, X, 2) X (de))ds-+ j :2(02+0}Q(s, XU XAdw:
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H (D(s, X, )2+2D(s X, #)) X 3(ds, dz), €10, T,

where wt ig a 1~dimensional B. M. which.is the first oomponent of n-dimensional
B. M. w;= (w,, R N N OK. 1—d1mensmna.1 Poisson random point measure wﬂsh
compensator av(dz)dt p(dt dz) = q(dt dz)-—m:(dz)dt Y,—-|a: 0|2 X,==|29|% and the
probablllty law of 20, W, 2:(+) and Y % wt, p,( ) comcldes with that of 29, @2, p:(+ )
and aP?, wh?, p,( ), respectively, Where : : -

‘ fw‘ J P(a¥*)dws, w= J P(a;s)dfws, ut—u(t w“'”(t)), = (3, cv“"’(t))

~ and P(2), € R" is an n X% matnx ~which is orthogona,l and Borel measurable (See
[8]). Note that
: —sgn(X-T) (FUXHY2) - F (YY) <0, F(2) =2,Q(, 2);
sen(X-Y) QG (X))~ Qet, (THVHH <K (| X*—Y*)<k"(| X~ Yl),
|QG, (X)) - Q(t (THy/my |a<p? (| (V2= (TH¥2])E -
<kN( l <X+)1/2 <Y+) 172 lz)
‘ . <P XF=-Y*)<KH' (| X -T]).
Hende applying Proposﬂuon 1 and Theorem 6 we obtain that P-a. s.
X,<Yt, for all & [O .

§5. Application to Parameter Esti‘maltio‘n,_. |
Theorem 1 can also be applied to searth “the maximum likelithood estimate
(MLE) of some parameter in some general stochastio systems.. - .
Consider 8. D. E. in n~dimensional space:- -
oi=ant [ (@0, 2)+Da(s, @))ds+ [: o, w)dw, 1€10, T1- - (B.1)

Assume that A
(i) . ‘condition (i) in Theorem 1 for by with o and - b, Wlth o, and ¢ itself is
satisfied, respeotively; conditions (if) and (iii)’ in Theorem 1 hold with ¢=0;

(11) Pq |o~ 161(3 ws) lzds>0) 1, where is the strong solutlon of (5 1), a.nd

—o00<L <00 is a real constant pa,rameter
Theorem 'S, - The MLE of 6 is (denote a=oo*)

Br(ay= ([ @ s(s, @), dod=[ @ uls, @), baGs, a)>ds ) /|70l ds.
In order fo prove Theorem 9 we need the following lomma, ._Whieh can.be shown as
1] ‘. : T | vl ‘ : _
Lemma 1. Undér the assumption of Theorem 9 -
' e _'E@(y(’))_':lpw
where we denote b=0b;+bs, and '
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O(y(-))=exp (j @G, ), > = 5 |, 107, 90 '),
and y; s the pathwise unique strong solution of _ o
y,=mo+J o (s, ys)dw, t€[O, T]

Proof of Theorem 9 By Lemma 1 and Glrsanov theorem g¢; also satxsﬁes (6.1)
with w;, where 'w‘,=4wt—L o~*b(s, ¥,)ds is a B. M. under probability measure dP =
@(y(+))dP. Since the pathwise uniqueness holds for (5.1), we have for e #(¥)
e (T) =P (w1 2@, YET) =Plar y(o, VED)=[ | BY(:))dP= [ D@)ducs
(o). Therefore (diac.)/dtiycr) (@) =P (@), and (dtecr/Atyiny) (@(-)) =@(w(=)), where

@ (a(-)) mexp( [T 2(Oba(s, @) +baCs, 2), doy—5 [ |07 @b+ b |*ds ).

So the log likelihqod funotion is (of. [17]).

(@)= [T (@b (s, @) +DaGs. 0)), day—5 || |07 (Obu-tbi) |ds.
Hence the MLE '§T (w) of @ satisfies the equation

J:<w‘1b1(s,m.), o> — 0 j:la‘ibi(s, @) |*ds— j :<a~1b1, be> ds =
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