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THE EXISTENCE OF ALMOST PERHODIC S@LUTEONS
AND PERIODIC SOLUTIONS

LIN FAXING (% &—“L

. Abstra.ct.

In this paper, it is obtained that a penodlc system has an almost pemodle golution if
it has a solution w—-tp(t) umfmmly stable with respect to 2, and has a periodic solution
if v = q)(t) is Wea,kly uniformly asymptotically stable with respect to ;. Mea,nwhxle it is
also obtained that a uniformly almost periodic system has an almost penodlc solutxon if it
has a solution w—q)(t) uniformly asymptoblca,lly stable with respect to Af

§1. Introduction

L. G. Deysach and G. R. Sell m’ proved that a periodio system has an almogt
periodic solution if it has a uniformly stable bounded solution, C, R. Sell® proved
that a periodic system has a periodic solution if it hag a uniformly asymptotioally
stable bounded solution, But these OOIldﬂilODS are difficult 1;0 satisfy. For example,
the system ' '

0 -1 0 0
‘dw [1 0 0 0
% lo o1 of
0 0 0 -1
bas a periodio solution ‘
0S ¢
' 81nt
(1) =
0

kut it is not uniformly stable. The main aims of this paper is to weaken the
oonditions of [1] and [2],

§2. Almost Periodic Solutions of Periodic Systems

Uonsider the n dimensional system

Manuscript zeceive July 4, 1987, Revised January 8, 1989.
# Department of Mathematics, Fuzhou University, Fuzhou, Fujiang, China.
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" where f: R*X R—>R". is a continuous veotor function.

In following proposition, we suppose that system (1) and its hull Sys’oem
gatisfy the conditions of the uniqueness of solution.

Definition 2.1. The solution s=@(t) of system (1) s unfbformly stable with
respect to B (or USR E) if o= =p(t). is bounded in B and for any £>0, there exists
3(8)>0 such that 5f ©(t, @0, to) s @ solution of (1) and o€ ENN(p(o), (z)), then

lp@®) —2(t, o, )| <& (¢>t),
awhere _ : o _
- HCR, N(p(t), 8(e)) ={o|lo—ph) | <sl.

Lemma 2.1. If the solutfz;on = gv(t) of system (1) is USR El, and By H,,
then 44 is USR E,.

~ Proof From Defiintion 2. 1 we oan get the proof _ :

If f R"><R——>R”‘ g R*x R—>R*, p: R—>R", we take some notations,

() flw, t+i) -——-—> y(a;, #) denotes { f (=, t+tk)} uniformly converges to 9(=, ¥)

in any compact subset of R*XR. f(a, t+tk)————-> g (e, &) denotes {f(, t+tk)}
uniformly eonverges to g(a, ) in ¥V X R, where V -is-any compaot subse’o of R".

(1) H(f)= {gl there is a sequenoe {t;,} I (w t+t,,)———-> g(w, t)},

Q(f) = {g] there s a sequence {tu}, Wlth f—>+oo, f(a, t+tk) ————> 9(z, B)}.

(iii) H,={w| there is a sequence {#}, @ (ty) —>a} .

Q,={z| there is a sequence {ta} with —>-+oo, o () —>w}.

Lemma 2.2. If the solution o= (t). of (1) is.USR H and (rp, fYEH(p, ),
then the solutian o=9(t) of

=7 (=, 1) @

is USR E and 3(8) in Definition 2. 1 are inherited by the hull sysiem (2)

Proof Refer to the proof of {4. Theorem 5.3].

Lemma 2.3. If there is a sequence {tx} with tk>0 and (p(t—l—t;,)-—-wp(t) then .Q—
<8, :

Proof Any @€ Q;, there i a sequence {Ek} Wi'bh -t-k—?—i-‘oo such bhab g_v(ik)—a
X,. Henoe for s,=1/2m>0 there exist bn such that

: . Ne () —mol<t/2m. - oo 3
Pixed fm,,., “because (p(tkm+tk)—->q>(t,,m) a8 fi—>co, there is an rp, such tha.t

u¢(tkm+trm) ’P(tkm)“<1/2m VR W
From (3) and (4) we obtain _ e ,
|l¢(t7c,,.+far,,) -—cvoll<1/rm,, ;
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Take t},=1;, +1,.., therefore . ' L o )
le(t) — ol <1/m (5)
" or hm (p(t ) =ao. From ¢,,=>0 and tk —> o0 we know . ~>-+oo, Heone @€ Q,, s0 2;
CQ,,,. ' co - _ ' :

Corollary 2.1. Assume that the solution =0 (s) of (1) 62 USR Q, and there. ig

a sequence {ty}; with >0 such that ¢(t+tk)——->q)(t) f(w t+tk)——-> loc ¥ (m t)‘,
Then the solutbon o= (t) of (2) isUSR 5 and the est%mwtes 8(8) in Deﬁmt@on 2. 1
are inherited by system (2) ‘ ‘ ‘

Proof From Lemma 2.3, we know 2;cQ,. From Lemma 2. 1, the solution @
=0(#) of (1) is USR Q;. F1om Lemma 2 2, we geb the solufion &= gv(t) of (2) 1s
USR @Q; and 8(s) dre inherited.

. Theorem 2.1. If system (1) isa pemod'w system and_the solution o= <p(t :vo)
of (1) 3s USR: ‘Q,: then o=@ (4, a:o) i an asymptotic almost pemodfw funct@on

Progf ' Assume that (=, t-l—w) f(a; #), whres' co>0 For any sequence {tk}
with $—>-o00 we can suppose that t;,-—mkw+'vk, where mk is natural numbel and
- 0 <o. Then ' St ' ' ' N

p(t+1y, o) = qa(t—l-'v;,—l—mkw, o) =@ (t+7%, @(myo, a;o))
Because {7}, -{(p(mkw, o)} are bounded : sequenees we oan suppose fak—-wo, (mkcb,
@o)—>1o (01 elge, we take their subsequences). From ' :
F(@, t+tf= f@;, o i +w,,) e t—{—'v;;j 2 e, 1w0),
we obtain Ce | v R
‘P(H'tk, wo) —'—>¢’(t+70, ?Jo) : -
FromQorollary 2.1, the solutlon o= <p(t+mkw To) of (1) is USR .Q.,, and the
estimates d(g) in Definition 2.1 are 1nh911ted From (p(mkco wo)—»yo, we know thab
there is a K4 such that
lo(mus, 0)— ol <8(s) when kK.
Henoe for k>K;, | o |
) _!l.sv(t, wo)-a?(t. v mnco) I<e (t>m7¢,w),,-:-
that is E o
‘ ) Ilq)(t+mkco @) = (t+muw, yo, me)|<s  (£>0),
Beca.use m(t+fmkw g/o, fmkw) <p(t yo), we get o
Ilfp(t+mka> wo) qﬂ(t ?/o)ll<s (¢20). .
8o, for k>K 4, we have L - =
"¢(t+'5‘o+mk¢0, a’o) 4’(73""1’0, ?/o) ||<8 (t=0). . (6)
Assume that H sup[lq)(t a;o) I and M= - sup. I f(m t) {l From W0, we know thab

there is a K'z suoh that | 7% —To| <s/M when h=K , Hence, for ]0>Kz, .
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I (4 To+ mueo, o) — @ (t+ by,

—7o| <& (t=0).

. ™
Take K —max(K,, Ks). Combining (6), (7) we obtain, for $=>K, |

lp 4+, @0) —@(B+70, o) | <26  (#20),
That is, tho sequence {p(4-+4, wo)} converges t0 ¢ (é-+%o, Yo) uniformly in R+ So
go(t @o) is an asymptotio almost periodic function,

Theorem 2, 8. Under the condition of Theorem 2. 1, there exisis an almost
periodic solution @ = @(t) of (1) and it is USR Q; and (pE‘.Q(cp)

Proof From Theorem 2.1, system (1) has an asympto tic almost periodio
_éolutiou w=<p('t).A We take sequence {mw} with m—>-+oco, where m is a natural
pumber. From the definition of asymptotio almost periodie there is a subsequence
{mo} of {mw} such that p(t+muw)—>@(3). Therefore pEQ(p) and @(¢) is an
almost pe].lOle funotion, Bub (=, t+muw) = f(x, t), 80 s=@(t) is the solution of
gystem (1) From Corollary 2.1, we see that the solution o= =(1) of (1) is USR Q5.
This completes the proof of Theorem 2.2. . . _ ‘

. Lemma 2.4. Assume that = (z) is an almost pomodoc solutom of autonomous |
system

- - -&-{=f(w)- - o )
Then x=g(t) is USR H,. ' '
Proof Refer to [6, Chapter 5, Corollary 2 of Theorem 36].

Theorem 2.8. The following statements are equivalons:
(i) System (6) has an almost pertodic solutbon,

(ii) There is a solution =g (t) of (6) with USR H,.
(iii) There 68 a solution =@ (%) of (6) with USR Q..
Proof (i)=>(ii) from Lemma 2.4. |
(ii)=>(iii) from Lemma 2.1.

(iii)=>(i) from Theorem 2.2.

$3. Periodic Solutions of Periodic Systems

Definition 3.1. The solution o=p(t) of (1) is weakly und formly asymptotfioally
stable with respect to E(or WUASR E) if the solution &= =p(t) of (1) isUSR E and
there is @ 8>0 such that for any vo€ E NN (p(to), 60), '

tim | p(4) ~a (s, 2o, 16)] =0,
where ©(%, o, o) 8 @ solutoon of 1.

Lemma 8.1. If the solutoon w=p(%) of ) s WUAS'R E1 and B, By, then %t
. 4s WUASR E,. :
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Proof From Lemma 2.1 and Definition 3.1, we can easily get the proof of
Temma 3.1, ' ‘

Lemma 3.2. Assume that system (1) is a periodéc system and the solution o=
@(t) of (V) is WUASR E. Then the solution z=p(t) of (2) és WUASR E and the
esibmates d(¢&), 8o tn Definition 2.1 and Definition 3.1 are ?}nh_em}ted of (4) H,CH
and (¢, f )EH(p, f) or (¢)Q,CH and (9, f) EQ(p, f).

Proof We prove the conclusion of (i) only. The conclusion of (i’) is the same
ag that of (i). ‘

From Lemma 2.1 the solution o= (p(t) of (2) is USR K and 'o‘(e) in - Definition .
2.1 is inherited. We assume that p(¢-+#)—>@(t), f(w, t+t)—> f(s, ), because (p,
F)EH (p, f) For any s € ENN ((p(to) &), where 8, is the same as in Dﬁﬁnl'blonff
3.1, suppose that .

loo—p(i) ] =n<do. e,

Since p(ty~+1,)=>p (1), there is a K, such that
IpCtort 1) = 3 (8) [ <5 (Bo=1). </o>K1> S ¢[))

Suppose thab #,=myw-7, where w is the per1od of f (w 1), mk ig an 1ntegel and O<
Tp<w, We assume tha,t 'z,-k—-wo (or else we take ibs subsequence) Then ‘ ’

f(a; t+t) =f(w t+'v;,)—->f(m t)-= f(m, t-}-'vo)
Because ¢(#) is a bounded funetlon we oan’ suppose that lltp(t) I<H and M=
- sup I.f (=, t) . Hence

Ip(i+b) = p(t st mea) |[<M[mmmo 50, (1
that is, there exists a K, suoh that '

lp(¢+t) — ¢’(t+’vo+mkw>“<-‘(5o "7) (k=Ks). - (12

Take K o=max(Ky, K,). From (9), (10), (12) we get
S @€ B N N (p(fo+70+mu0), 8) (/0>Ko)
Henoe from the condltlons of the lemma, we-have
"‘P(t) (3, @, to+'5‘o+mk0’) | =0 (k>Ko)y

or, for Io>K0
lltp(t—{-wo-{-mkco) a;(t+'vo+m;0w, :vo, to- +'ro+m;,m) ]!=0
Beéé:;lée, _ o o : . .
| (it To-F 1, To, fot+To-+1mam) _-.-—-'m‘(t+xo, 2o, to+70),
lim ||<p(t+'vo+m;,,a>)'—m(t+"vo, %o, $o+70) | =0 (kSKg) ’ (135

Sinoe the solutlon w=p(t) of (1) is USR A, for any &'>0 there g a 8(8’) >0 suoh
that if .

4
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(to)EEﬂN(¢(to+'vo+mka>), 5(8)), :
we have -
| lp(8) — (5, Plho), fotTotme)| <8’ (EZtotTotmuw). (14)
From: (11) and gv(to+tk)—><p(tg) we get q)(to-{-'vo—i-mka))—-x»gv(to), that is, there is a
K°guch that' : :
||<P(to+'vo+mkw) ¢(to)||<5(8') (k>K°)
.But @ (o) € HyE, 50 we geb L
p()€EN N<¢(t0+70+mW)\ 3(8')) (/ﬁ>K°) ‘
Then,‘when k=>K?, (14) is true, that is, T 2
S "‘P(t""VO’i‘kaO)"w(t'i"To’i“mkw ‘P(to)y to+'5'o+mk60) ||<3 (ﬁ>to)
Sinoce - Lo S . : ;
m(t+'vo+mkco. gv(to), to+7o+mkw) a;(t+7:o, (p(t.)), to—l-'vo),
we obhtain :
“‘P(H“”o'*‘mkw) W(H‘To, Gp(to), fot%o) ||<3“' (=t). . (1)
Take K= max(Ko, K. :Combining (13) (1B). we get -
llw(t-i-m'o, ‘@0, to—l-'vo) a;(t+'vo, (to), to-l—'vo) H<s .

e . Cn t—>+oo s
Buh ¢’ is any ¢ Small pos:ﬂuve number 80 - _ e
“w(H"Vo, o, to’*"’fo) 93(!‘!’*‘70, ?(to), 250+'B'o) “ = (16)

tortoo
Suppose that .y(ﬁ wo,v to) | is the solutlon of (2) wﬁ;h y(to, wo, %) ——a,o Then
(t wo, o) = a;(t—{—'vo, %o, to+T0), - :
5 () =y, @ (o), to) a;(t+'r:o, tp(to) to-i-'vo) smce f (m t) f(w t+'vo)
From (16) we obbain
hm“y(f, o, to) (p(t)l[~0

This completes t"he proof of Lemma 3 2.

Theorem 3.1. Assume that system: (1) s a periodic. system and the solution o=

(t) of (1) s WUASRQ,. ‘Phen -system (L) <has i@ pemodw solutwon @= q)(t) with <p

€ Q, and the solution ©= =2 () of (1) és WUASR Q5" St e

Proof From Theorem 2.1 tho solution & =g (¢} of: (1) 1s an’ asymd‘uoho almos?
periodic funobion. We take sequence {mw}, where m is a natural number.and o is
the period of f(a,:8). Then there is a subsequence {,mkw} of {mw} suoh that (p(t—l-
me)—> @ (£) and :p(t) is an almosb perlodm funotion, 80 ¢E Q But f(:v t+mpm) =
f(a, £), so o= <p(t) is the solution of (1). From Lemma 3.2 the solu’olon o= @) ‘of
(1) is WUASR'Q, and 5(s), 8 are inherited. From Lommd 8.1, ‘the 801111‘;1011 w=
gp(t) of (1) 1sWUSAR Q- AR

" Now we prove that o= (p(ﬁ) ig4 pemodm functmn

< For any wy€ Q5 there exists a: soquence: {t;,} with tk—>+oo sueh tha,t <p(tk) A
Furthermore We can Suppose
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o (t+1y) it y(t %o, 0),

- f(a, t+tk)————> f(w, ). .
(or else we take their subsequence) Assume bhat tk—-rrkco+'vk, where ry 18 naﬁura,l
pumber, 0<7,<®. We oan even suppose thab vx—>7o, Te<Tis1, then @ (ryw+7o)—>
o. So there exists a K such that o
|@ (reo+70) — ol <80  (h=>K),

that is -
| 2N TG (rworta), 80) (=K.
Hence
mllfv(i o, TortTHe>) — ?’(t) |=0 (/0>K),‘

that is | -

Lim & (¢4 w0+ o, o, To+ i) — ¢(t+'vo+mw) II —0 (/0>K') o
Since e o _ K L e

@ (3t Tot i, Bo, To+Tuw) =@ (H+ 7o, @o; To) =Yy (4, 3, 0),

we obtain '

lim Jy (5, @, )= p (o) =0 (#=E). - (1D
we especially have =+ Lo
| -  lim |y, oo 0) - p (t+70+ rx4a) [ =0,
1 1_1m Iy, a0, 0) = (b5t s [ =0.

So S : : : AR
11“‘ "‘P (H”b‘o’f‘ TE410) — @ (t“*“b'o‘l” 'f‘x+2) | =0.

But qo(t+wo+rrx+1a)), (p(t+'vo+rx+gw) are almost periodio functions, and then q)(t
Tt irpa0) =@ (4ot rr420), thatb is, o (1) =@ (t+ (rgpe—rrs1) o). Take wo= (Txya
— rgs1)@. Hence @ (3+wp) = =p(t); that is, ¢(¢) isa perlodlc function. This com~-
ple’ﬁes the proof of Theorem 3.1,

8 4. Alihost Pei'iddié_'slo'lﬁtion,s of 'Almost.Per:iodic S&stelﬁé

Deﬂnltlon 4.1. The solution a:—q)(t) of (1) isa untformly asympioiically stable
withrespect to B (01 UASR B) if it 65 USR B and there ewists 80>0 such that for any
>O theq ¢ %s @ T(s’)>0 suoh that fwh@n :voe ENN(p(to), 60) we lwwe
"‘P(t) -—w(t @0, 40) | <&’ (t>to+T(8'))
Lemma 4.1. Assume that the solution o=@ (%) of (1) is UASR E1 and EQCEI,
Then it is UASR Ej; and: NOMS and T'(&') are.all inherited.
Proof From Lemma 2.1 and Definition 4.1, we come 1o the: conolusmn of
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Lemma 4.1,
A notation;

= {w|there exist #C R, .Z‘OE.Q and g€ H(f) Wlthm a;g(t To, 0)}, where z,(%,
wo, O) is the ‘solution of systerm

dw

with :
| Ty (0 o, O) = Wy,

It is eage to prove that if o=p(¢) is the solution of autonomous system (6)
then A4} =

Lemma. 42. I f there ewists seguenoe {ta} with =0 such that cp(t+tk)—-—> gv(t),

f(m, t+t) - —-> f(w t), then Aic AL,
Proo f Refer o Lemmia 2.8 and 1ts proof
Lemma 4.3. Assume that the solution o=@(3) of (1) is UASR E and (9, ) E

H(p, ). Then the:solution w= <p(t) of (2), s UASR B and :5(s),. dy, T(e’) are -

dnherited.

: Proof Refer to the proof of [6, Theorem 6]..

Theorem 4.1. If system (1) is @ ungformly almost pemodw system and the
solution x=@p(t) of (1) is UASRA then g= (p(t) fbs an asymptotw almost pemodw
Sfunction. o e

Proof Tor any séquence {#} with &—>-+oo, it is sufficient 10 prove that there
exists a subsequence {#} of {f,} such that {p(¢+1;)} converges uniformly on R. .

Because {p(t-+#)} is a bounded sequenee. and f(w,¢) is uniformly almost

. loc — loc —
periodic function, we ean suppose thatb --q>(7§+-tk)-—ic—>(p(t)- f(, -'t—l—tk)—-ﬁ?a» fi(w, ), (or
else we can take their.subgequences). Assume. that m(t o, to) A8 a solution of: (1)
-with z (s, 0, to) =g, and. a;k(t To, - to) is.a SOhlblOnka '

LR

L f(a, i+t T

Wl‘bh wk(to, o,. to) =y, Because the solutlon T= gp(t) of (1) is UASR Ag,, go for any
£>0 we'can take = m1n(8(e) So, s) sueh thiat when' @€ A’ﬂN(gu(to), 3, we
have .. o - .
(t>t0)1 .
t , b <{

10620, 00 ¥/2. (=t T@/).
Since (p(tk)——:ﬂp(O), there ex1sts a K 1 such tha,t Hgv(tk) qJ(O) <& (lo>K 1) So from
(20) we g0e ‘that When Io>K1 e : e

@)~ w(t 90(0), tk)“<3 (t?tk)..;.- :

.- thatb is,' then.k>K1 R T ooeerad oL

(20)

B g, 1) gem-'j I €6
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| (3+ ) — o (+ 8, P(0), t)|'<e (t>0) - (21)
Bub o (E+t, ¢(0), tk) oy (¢, (0), 0), then when k=K, o i

lo(¢+t) — o (s @(0), 0)| <& (¢>0). (22).

, Suppose that y(%, @o, to) is the solution of (2) with y= (fo, %o, to) =To.

(i) We prove that the sequence {24(%, o, o)} converges uniformly to y(%, @,
o) on $E R, |wo] <H and € [bo, fo-+=T'(8'/2)]. :

Proof If not, there are ER, eI <H, t"€ [#F, +T (6’/2)] and’ rqo>0 such

#dhat . :
WMﬂmm%mewmmﬁ”~~f @@

‘Take v™=1{" ~t’”€ [0. T'(8'/2)], so from (23) we gel -
“fvm(to +'77 of, 15) —y (&F +7", %”, 75"’) =00 - 0 (24)

“We can suppese that q:"'—-n @} m> and f (w 445 ——» F(w; ), (ory else we can take
wheir subsequenees). From f(a:. t+tm) iy _f(m, ) and- f(w, t+8§) —-> F(w, ), we
' f(a; bt iyt t’”)——) f(m t) . R (25)
Beocause @, (1447, of, #) is the solution of . ' L
——=ﬂ@t+m+wx
sy (865, @5, t"‘) is the solution of
=f (w t+t ‘)

and from (25), we know that ﬁhe sequenoces {w,(i+ 47, 2§, Y, {y(i#tﬁ", o, i"‘)}
«ponverge uniformly 0 w(i a:o, 0) on tE [O T (6’/2)], Where E(t o, 0) is the
;solution of

=7(a; 1),
-that is, there is a K, such thab when m=Ka . i
oty of, ) —y G+, b, 1) | <m/2 (‘KKT@'/?))
In partloular we take =12". Then when m>Ky, Jooa
. lom (5 -+, oF, 85— ?/(to +'5'm g 3") " <'f70/2-
“This contradicts:(24)7 so (1) is brue.. P
From (i) we seo that there is a K. such that When Iv>K 8y

(s, @, t0) =y (#; @0, to) |l<‘0"/2 (€ R, ﬂwoll<H S [f'o, to+'l’(3'/2)]) (26) |

¢ (11) 'We prove thab:for any 4,

Vo T)2), 5(0), 0) =7 T <y (K. " A20)

2 Proof .. We.prove (27) with mathematical induction, Obviously if m= 0 (27 )
iis true. Suppose (27) is true.for m=4. For m= %+1 we- wrlte,’l’ T(S’/2) Then "

lew(GHLT, 5(0), 0)= PG+
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= |ax((6+1)T, @ (4T, 9(0), 0), ¢T) —@((G+1)T)]
<|ax(G+1DT, o (eT, 5(0'), 0), 6T) ~y((e+1)T, (4T, 9(0), 0), 1" |
+y ((4+1)T, o4 (i, fp(O), 0), oT) - ¢((%+1)-’I’)H (28)
From (26), we obtain : R .
lan((6+ )T, G (3T, $(0), 0), ') — y<<@+1>:ﬂ 5T, 5(0).,0),4T)| <5'/2
(k=Kg), . S (29)
From Lemma 4.3, we know. that the solution o="p(t). of (2) is UASR A4 and 3(s),
Sy, T'(8'/2) are inherited.
" From the supposition of induotion, RARENRE A
J2 (3T, 2(0), 0)~ ¢(®T)0|<5’ . -
and 2, (4T, ¢(0), 0) € A%, we get o, (0T, 9 (0), O)EAan(q)(@T) 3. Hence

ﬂ @, mk(wT (p(O) 0). 1) — q,(t)" <{s, 1=4T

'/2 > (rb—!-l)T
In partloular we take t=(4-+1)T". Then
(DT, 0T, 5(0), 0), i)~ ~FEDD] <02, (30
From (28), (29) and (30), weget - = .. :
|#((6+1)T, 2(0), 0) - ¢((%+1)T)U<5’ '
Therefore (27) is true for m= 'z,+1 bhat is (11) is true
From (ii),
zu(mT, $(0), 0)€ 45N N (p(mT), “s'y (F>Ks).
‘Because the solution o= (¢) of (2) is- UASR- Af and (), 8y, T'(8'/2) are inhertted
we, have for /0>K3, - ‘ .
ly(t, wk(m'-" <P(0) 0), mT) tP(t) ll<a (t>mT) . (31)
For any 1€ [0, +c>0) we suppose € [mT (fm.+1)T) From (26), (31) we get
for k=K,
lo(t, (0), 0) —p(8) | = |on (s, @u(mT, fP(O) 0), mT)—p(3)|
<|lwk(t on(mT, (0), 0), mT')—y(s, ax(mT, $(0), 0), mT)ﬂ
- L Fly @ a(nT, 9(0), 0), mT) — () | <8'+e<2s.  (32)
Take K =max(K,, K s). Then from' (22), (32), we have : _
| loG+ay~p()f<8e (:>0)
when k> K, that is, sequence {<p(t+t;,)} oonverges umformly to q:(t) on R*, Thm
completes the proo of Theorem 4.1, . : : RN
‘Lemma 4.4, “If f(a; t) iso umformly almost periodic fmwt@on, then fe .Q( .
Proof From the definition of almost perlodm funciuon o oan easily come 1o ,
the' oonclusion. -7 AL ST e i IEEER
. Theorém 4.2, Undefr the suppos'&tfl/on of Theorem 4 1 thm'e s an wlmosi pemodw
solution =@ (2) of (1) with @€ Q(p) and it is UASR AL R SRR
Proof From Theorem 4.1, s=p(#) is an‘agymptotiq 'almbsb pemodw funétion,
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. From Lemma 4.4, there exists a sequence {f} with f—>-oo such thab

f(@, $+4,) 225 (e, 4).

But sequence {p(i+#)} is'a tiniformly bounded and equi-continuous séquence, so
there exmts a subsequenoe {gv(t+tkm} of {p (t+ t;,)} suoh thab

¢(t+tkm) '—")‘P(t)

that is, » € 2(p). Since p(t) i an agymptotic almogt periodio funoblon @ (4) ig an

almogst periodic function. It “is-obviously that ¢ @ (%) i the solution of (1). From
Lemma 4.8, the solution =9 (¢) of (1) is USAR A4]. From Lemma 4.2, Ajc Al
From Lemma 4.1, we conclude that the solution o=@ (#) of (1) is UASR 4% This
is the proof of Theorem 4.2, '
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