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Abstract
In this paper, the author establishes the corcepts of relative self-compatibility and
relative finite derivability of languages and obtains the relation between self—com patibility
~ and relative self—c'émpajtibility. From this it is proved that a family of languages is
nondeterministically recognizable if and only if it is relatively self-fcompa,tible and
relatively finitely derivable to some sef of families of langugaes,

Motivated by problém solving, Ha&el establiéhed the (d‘etérministio) finite
branching automaton and the (determinisbically) resognizable family of languagss
reoognized ’by the automaton in [8] and [5]. ‘He gave an automaton-independent
characterization of recognizable. families of languages at the same fime. The
concepts of the nondeterministic finite bra,nohing' automaton and the hondeterp;i—
nistically recognizable family of languages were defined in [1]. In the present
pa,per,‘ we give an automaton-independent o.ha,ra,cteriza,tiqnvof nondeferministically
recognizable families of languages.

§1. Pi'eliminaries

An alphabet 2 is a finite _nonempty seb-of objects called letters. We denote by

2" the free monoid generated by 3 under concatenation. The identity element in

2* is the empty string 4. We call any élement and any subset of 2* a word and a

language over 2 respectively.. For' any word @ over %, we denote the number of

letters in @ by ||, .called the length of . For any u, v€ 27, uls called a prefix of
v, denoted by u<<v, iff v =uw for some w& 2*. : |

In the context we shall use the following nobations:
| L Z(3) =27 —{¢};
for any LC 2%, w& 2* '
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Pref(L) ={u|u€ 3*, (EL) u<ov};
- Fst(L) = = Pref ) n E
Fist (L) = (Pref(L) N 2) U (LN {-/1}) ;
e (L) ={u|u€ Z*, wuCL}. ‘ s
Any subset X-of £ (L) is called a family of languages over E (m shoﬁ; a
family).
Definition 1. 1™, A».(determv}n@stéc) finéte branohing automaton( fb—automwton)
is o quintuple ' '
B=4Q, 5, 5, g0, B,
where <Q 2,9, go> és an ordinary finite automaton fw%tkout final states and B is a
subset of Q><22‘i where 2, =2 {4}.
Definition 1.2, A language LE.Z( E) is aooeptecl by an fb—wutomaton
{Q, 2, 8, go, B> iff for each w& Pref(L), ' ' -» S
(8(qo, w), Fsta(@,(1))) GB
We deno’ﬁe by T (gé’) the famlly of all 1anguages aoeephed by B. Obvmusly, T (,@‘) =
2. |
‘Definition 1.3, 4 family ngsf('z) is recogniable if X =T () for some
F-automaton %, T e -
Generally, we denote RecsY ={X | X is a recognizable family of languages over
Definition 1. 4%, For every uC I*, we d‘éﬁn@ @ bfl)ndréj'}eplwcement: :_opémto'r
R, as follows: for éach Ly, Lo 3%, o S
u(Liy Lz) (Li"'uZ*) U'MIIz
Definition 1. 5%, A family XS #(2) has the replacement property 'I:ﬂ' for
each Ly, L,E X and each u€ Prof(Ly) N PlOf(Lg),
. By(Ly, 8u(Lg)) €X.
Definition 1. 6. Let X #(3) and wE 3*. We define
‘ - 8,(X) ={0,(I) | LEX}—{¢},
D (X)) ={0u(X) | We 2}
We oall the family 9,,(X) the derivative of X with respect $0 aw.
Definition 1. 7.0 TLet XCT Z(2) and LE L (2), We swy thwt L is oompwtfbble
with X 6ff for each w& 2* there is o language L, X such that
Fst4(80(L)) = Fst4 (0 (L)) -
We denote by O(X) the family of all languages compa,tlble with X, X is
called self—eompatlble iff X =0(X).
Lemma 1. 1. For every X ¥ (2),
O(X) ~{L|DE Z(3), BLEX) Pstu(@W(I)) = Fsma (1)
for any w& Pref(L)}.
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Theorem 1. 1. A family X S.Z(2) is recognizadle ff X is sol f-—oompat%lé o

and Y (X') is fingte. _ ,.

- Definition 1. 8. A nondeterministic finite branching automaton (nfb-auto~
- maton) consisis of an ordénary nondeterministic finite automaion Q, &, 3, I) withous
final states and a branchine relation _
L BCQ><224

Definition 1. 9%, Lot %—<Q, 5, 9, I, B> be an n fb—wutomwton We call @
pa/rtfml funct@on f 2*—»@ a decision, Tule for & @ﬁ‘ 7 swt'zzsﬁes the follorwmg two
conditions for any wE Z* and ¢ € 2 . :

(1) FETLif I k) (f(4) s undeﬁned otherw@se), _v ,

(2) f(wa) € f(w) abf F(w) ds deﬁned and f(fw)waécb (f('ww) cl/s undeﬁned othefr-
wise) .

Deﬁmtlon 1. 10Eij A Zanguage Leg (%) is acoepied by an nfb—automawn of
there ewists o decision rrule f 2*—>Q for 3? such that Pref(L)C Dom( f) and
(f (w), Fst(8u(L))) € B. -

According o' [1]; we shall use the notations .

lﬂl {L|LE #(2) and aooepted by ,@}

and

Ree,,ﬂ,Z {l%’ | Iéé’ <Q E 8 I, B> isan nf b—automatOn}
and call the elements of Ree,,,b 2 the nondetermlmstloally recognizable families of
languages over 2. o .
Lemma 1. 2. Recp, E;Re%bz

§2. The Relatlve Self—Compatlbﬂlty of Families

Deﬁnltlon 2. 1. Let R be @ sot of fwmwl@es of languages We say that R s
locked under derivatives ¢ff for each Y € R and each 6 € 2, there ewists a fintte subset
R[Y, a] of R such that '

%6(Y)= | X.

XERLY. a]

In general, R[Y, a] corresponding to ¥ and @ is not unique,  We select one of
them and denote it by d*(¥"). Therefore, for any w€ ¥, YER we “define d¥(¥) as
follows _

1) ¢4(¥) ={Y }

2) ifw=w'a, thend®(Y)= ) d%(Z). "

ZEdT(Y)
Clearly, if R is locked under derivatives, then for any wE2* YE R, cZ“’(Y ) is
a finite subseb of R.-
. Definition 2. 2. Let X b6 a famfély, R a set of families of angua,ges which s
locked: under derivatives. X ands R are called depeudent off there exisis o finite subset Ro
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of B such that - .
X =Yg}e; Y. ‘

- For any w& 2*, we define the derivative of X with respect to w relative to B
‘as ' , : '

| BX) =\ d*(T).

It is is easy to see that if X a,nd R are dependenb then for any wE 2 D¥(X)
isa ﬁnl’ae set of fa,mlhes

Definition 2. 3. * Let X and R be depen«lent We say X is ﬁmﬁel y demwble
relative to R off {DE(X) |rw€ 2%} ds ﬁ/wte

Lemma 2. 1. Le¢t X and B b dependent If X is ﬁmtely demwble relative to
R, then X is finitely defr@wble

_ Prroof Since X and R are dependent, there exists a ﬁnﬂae subset R, of R such

that X = |J 7, a,ndforanywaE* 9, (X) = U 0u(Y). '

- YER ;

Now we first prove that for any weg 2* Y E R, aw(Y) = U Z by mductlon
on jw|. When |w| =0, i¥ is trival. Assume the result holds for lfw| =n. Qonsider
w=wa, |w|=n, a€ Z. We have .

0u(Y) =20 s(7) =042 (T) =04 (D= U a(2)

a*y(Y)  ZEedP(Y)
== ' - X X = X.
zeaL"g(Y)(YegﬁzJ(Z\ ) ( uLJ d%(%)) .xe}fv‘(‘Y)
€ zedvyyy

Consequently, by induction hypothesis for any we 2%, ¥ ER,
du¥)=_ L] Z.

Zed¥(Y)

By the dependence of X and R, we knowthat for any wg 2%,
0w(X)= | 0u(¥)= 1] (L] 2

Ry Zed™(Y)
= U Z= J Z.
7€ yIp, T zeDpy |

So .
{0(X)|we2t={ U Z |wec7}.
_ Z€DP(X)
Evidently, {d%(X)|w€ 2*} is finite implies that {0,(X) |wE 3*} is ﬁni{:e. "‘Thus
X is finitely derivable. . : , :
Definition 2. 4. Let X be a family, R @ set of fwmwlws We say L is compamble
with X through R 4f =
1) For any wE Pref(L), there exist X,€ DB(X) and L, € X, such that
- - Fsbu(00(L)) =Fsta(Lu),
2) Al the X8 determined in 1) satisfy the condition
: w=w;a€ Pref(L)=>X,E€ D} (X,,).
We denote by Ox(X) the family of all languages eompa,tlble with X through R.
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X is called relatively self-compatible to R iff X =0x(X). _ A
Lemma 2. 2. Lot R=9(X) ={0,(X) |w€ 3*}. Then On(X) = —o(xX).
Proof Let LEO(X). By the definition of 0(X), for any w& Pref (L) there
exists L,EX such that Fsts(0,(L))=Fst (0,(Lw)). uw(Ly) € 2,(X)(ER) is
" evident. So for-any w& Pref(L). there exist X, =8,(X )€ R and a language 9,,(L,)
€ 0,(X) such that Fst,(8,(L)) =Fst;i(0w(Ly)): Hence LE Or(X). This implies
O(X)TO0g(X). The proof.of the bther inclusion is the same as above by Lemma.
1.1, Thus we obtain Ox(X) =0(X). ' '
Lemma 23. If X and R are dependent, then XCOR(X) CO(X)
Proof Consider the first inclusion. Let LEX. By Definitions 2.1, 2.2 and
2.3, there exists a finite 'R;,CZR such that X = U. X', Then L must belong to

X'€Ro

some X" of Ry. Denote the spemal X’ and L by X 4 and L_A respectlvely Henoe
Fsty(0,(L)) = Fsh4(34(LA)) - For any a€ Pref(L) ﬂZ‘ we have D%(X )T D% (X)
and there exists X’ € D%(X 4) sach that 8,,(1}) €X', Denote the X’ by X, +then
there exists L,=8,(L) € X (€ D% (X)) such that. Fst,(8;(L,)) =Fst,(8,(L)). Step
by step, for any (4d+) w& Pref (L) we can find X,€ D}(X) and L,=08,(L) € X,

" such that Fst, (8, (L)) =Pty (L), XoED%(X 1) is clear, where w=wa, a€ 2.
Therefore LE Ox(X), i. 0. XTU(X), . o o

Consider the second melusmn Let LEOR(X). By Deﬁnﬂnon 2 4 for any wa
Pref(L) thsre exist X,&D¥%(X) and L,E X, such that »FstA(aw(L)), =Fsty (Lp).
From the definition of D% (X), we know that there exists L;,& X such that L, =

8, (Ll,). Thereof for any wE Pref(I) there exists I/, such that Fst,(8,(L)) =
Fst, (8, (IL)). By Lemma 1.1, LEO(X), i. 6. Ox(X)SO(X). |

Theorem 2. 1. Let X be a self-compatible family, R a set of fam@lws and X
and R be dependens. Then X -is relatively sol f-compatible to R. S

Proof Since X and R are dependent, X T COr(X) CO(X ) (Lemma 2.8). From =
the self-compatibility of X (namely O(X)), we have X'=CUx(X ) —0(X ). Thus X
is rela’uwely self-compatible to R.

We shall know that the above theorem is only necessary, in, other words, there
really exist X and R such that X COR(X)GO(X). Butb we still have the following
theorem. .

Theorem 2.2. Let X be frelcatfofvely self—compatfable to R amd ha@e the freplacememi
property. Then X és self-compatible. - '

The proof depends on the follow'ng lemma, which we state and prove firsh,

Lemma 2. 4. Lei X be relc§ vely sel f—oompamble and have the 'replacefment
property. 1f LE o X ), then for any non—negatwue integer 70 there exists o languwge
L€ X satisfying the two cond%t@ons.
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1) for any wEProf(I) N <U s )
Fst, (2u(I)) = Fist 1 (00 (Ti));
_2) Prof (L) N (L P> ) Prof (L) N (U b )

Proof By LE 0(X), for any u& Pref (L) there exists L,E X such tha;b
sty (94 (L) )= Fst4(0u(L)).
Now we proceed to prove the lemima by induction on k. The conclusion is
immediate for the case &=0. Suppose the lemma is true for k=1. Let k=I+1.
Oonstruet a language L, as ‘ ‘ '

CLig=(Tn—. - U ud, (LMU( 1 ud, (L))

uez“‘lﬂPref(Lz ) EEZ“'lnPref(L)
By mduotlon hypothesus ‘ o
Prof (L) (U zz) Prof (L,)n.(:U: ). .
Therefore ‘ I
El“ ﬂ Prof (L) Z‘“i N Pref (L;) S (=)
From the replacement property of X and the definition of L.y, Ly €-X.

Now we prove L., satisfies condition 1). We divide it into two cases.

Case (1), |w|=1+1. Lot a € Fst,(9,(L). Olearly, wa& Pref (wd,(L)). Hence
wwE'lPref (Lyypr) | (by the definition of Ly1), @€ Fsba(0w(Lnss)). So Fst,(0,(L))E
Fst, (8, (Lus1)). Conversely, let o€ Fets(d;(Lui1)), then wa€ Pref(Ly.,). Henoce
wa&Pref () ua (L)) This is because the 1ength of any word in

y€ J¥1nPref(L)
,Pref (Lr— U ud, <Lz))

u€ I Pref(L). ’ . .
is less than I+1, but |wa|=1+1. Thus o€ Fst,(0y (L)), i e, Fst,00,(Li )T
Fst,(0,(L)). This formula together with Ist, (8 (L)< Fsty (0, (L;+1)) implies
Fst, (0, (L)) FSJUA<aw(Lz+1>)
Case (2). |w|<l+1. Let a&Fsl (0,(L)). Then wa€ Pref(L). If wa €
Pref( U  wd,(L)), then wa& Pref(Ly,s) (by thedefinition of L;,1). Therefore.

%€ Z1 APref(L)

o€ Fshiy (0 (L)) . If wadk Pref( U ud,(L)), then for any u € () Pref

w3 aPfef(L)

(L), waku. From the formula («), for any u € I+ Prof (L), wa<ku., Hence wadt

%0y (L;) By mduotlon hypothesm

wa & Pref (L) N (U 2 ) Pref(Iy) N <L+j§.,‘*>

"l‘he‘ﬁ wa € Pref(Ly). Therefor_e wa < Pref (I — J o wd, (I)). "Thus waE Prof

w6 S nPref(Ly)

| (Liya). This implies g€ Fsﬁ 40 (L) ) , 1.0, Fst, (0, (L) &Fst(0,(Lis1)) . Conversely,

lot a € Fsliy (8, (Iny1)), then wo have wa€ Pref(Ly,1)). If waCPref (| j wa (L)),

neStap, ref(L)
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 then wa€ Prof(L). Therefore o€ Fgm(a (LY. If wweEPref( U wd (D),

u €3N Pref(L)

then wwe Pref (L; U wa @)). Theref01e fwczE Pref (L;) By mduotlon hypo

u€SM1IPref(Ly)

thes1s wa € Pref (Iy) N (U Z > Pref (L) N (U E) Gonsequently, wa e Perf(L) and

@€ Fsh 20, (). Thus Fst 1 (@0 (Lip1)) =Fsti, (9 (L)) This’ eompletes the proof of
~ condition 1).
' Fmally, wWe prove L;+1 sadnsﬁes condmon 2). Let we Pref (L) n <U Z“). When

|w| =0, it is 1mmed1ate that fwé Pref (Lm) ﬂ <U E‘) When }w[ >1 we have w—
wiw, ¢ € 2 and rw1€ Pref (N (U 2t ) From condition 1), We_know 6E Fsb 1(@ui(L1))
s Fst 4 (@w1 (Lm)) Henoe Wik = wE Pref(LM) N <U Z’*) Therefore .

CPref(L) N U 2*) CPref (Lm) n (U zf)

Now we prove the other inclugion. Letw& Pref (L,+2) N (U E’) When |w|<I-+1,
wo have wE Pref (Lm) IfwEPerf (| ~ud, (L)), then wa Pelf (L) n (U 2)

uEIHnPret(L)

If weE Prof (|  ube (L)), then wE Perf (L,—' U ua (L,)) _Henoo

wE I APréf( LY weESIHA Pref(L;)
w€ Pref (I;). Therefore wa Pref (L;) [ﬂ(U 2‘) by ]w[ <Z+1 By mduotlon hypo
thesis w& Pref(L) n(U E ) So wE Pref(L) ﬂ(U E‘) When lfw[ —l+2 we have

W= W1a, € S and [ws] =T+1. Snnﬂarly, ‘we.can show that wy€ Pref (L) and
a€ Fst,(8u,(Ins1)). By the definition of L1, wi€ -Pref(Ly. From condition 1), we
see that aC Pty (041 (Luy,)) =?“Fst4 (05(L)). Henoe wia=w&C Pref(L). Thabt proves

L Pref(L) N (U 2¢): Pref(L;+1) n (U 2i>
Thus , : ' :
Prof () 0({J] 2)=Pref (Zu) N (u ).
. NZ0 S =0 .
Proof of Theorem 2.2. Let LE&O(X). From Lemma 2.4, we know that for
any non-negative integer £, there exisls a language Lké X satisfying condition 1)

and 2).Thus we obtain a sequence of languages in X, S
'Lm LL-L% nw_Lm oo, . ‘ o (*>

By € X, L;€0z(X), =0, 1, 2, --«, each I of thig sequence satisfies the condi-~

tion: for any w& Pref(L;) there exist X,& D¥(X) and L, € X,, such that. .
Faty (0, (L;)) =Fsb, (Lw) and that w= ws a& 'Pre'f(Li) implies X ,,€ D% (X ). -

This ig equivalent to sa,ymg eaoh L; can determme a pa,rtlal funotlon fi Z -—>R
defined by '
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X if w€ Prof(Ly),
| j‘( )= {undeﬁned if wa‘EPlef (L)
Wthh satlsﬁes the condition: if fi is defined on w=wsa then fi (w) eDyxXHn .
DY(fi(wy)), and for any w€ Pref (L;) there exists L€ f; (). suoh $hat Fst, (0u(L1))
-;‘—Fs’oA (L) . In view of this, we obtain a sequence of partial funoiuons correspondmg
0 the a.bove sequence of la,nguages o
< Jo, f1, f2, +- s for 200 I ¢
By Lemma. 2 4 and the deﬁnmon of the function sequenoe the sequenoe sa,tlsﬁes
the followmg condibion: for any by, ba, 051 bs, '

Dom(fu)ﬂ<U 3 lDom<f*2‘>”(LJ 7).

For any f; 1£1 sequenee (1) it is olea,r that f,(./l) € DA(X ) Smce D4 (X ) .1s
finite, there is at least one infinite- subsequence of (1) with the same value on 4.
Deﬁne the followmg subsequenee

~foor for, fozy vty Fow 5 _ )

as one of eueh 1nﬁn11;e subsequences ,
The same as a.bove for any foi and wEE fo,(w)ED%(X ) Sinoce D“ o (X ) is
finibe for a,ny a€ 3, we can also obtam a subsequence of (2) as =

R - Jot, fu, f1z, CEL CUNETUSMEE S o - ®
all the elements of WhlGh have the same restrlotlon on X2,

Slmlla.rly, we can obtain.a subsequenee of (3) ay

R S0y foty fom oty fowyoees . @
.whose elements have the same resfriction on 22 : L o =

- .- Btep by step, we can obtain a serieg of sequences.

), Choy (s CFady s i, oo

whele each element ( fm) isa subsequenee of last one and the whole elements of
(fu) have the same restriction on U 2,

Let us now define a partlal function f 2*—4»3 by
for w€ 2* and n=|w|. L

Olearly this definition is well defined. : About f, we ha.ve the two followmg
concluions: ‘ -

1) That f(4) € DE(X), and that f (fwlw) is deﬁned 1mp11es j' (wia) € Dw*“(X )
and f(w@) € DR(f(fw;)), where a € 3. _ :

2) Forany w& Pref(L) there exists L € f(w) sueh ’ﬁha’a

‘ Fsty (Ly) =Fsb, 0w (L)), e
Proof o f 1) Obvmusly, f4)eDi(X) and that f (rwia) is deﬁned 1mphes
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f(ww) € D2(X). By wia€ Pref(Z),’ |w| =n—1and €%, we know that f(w)=
Fo-pt-vw1), flw)=7Fum(w). Then flw)e& D%( fm(w1)). From the definition of
(fw), we see that fu.(wr)=fo-na-v(ws) (by |wi|=n-1). Thus f (w) f,m (w)
€ D3 (fun(w1)) = D%( fintytn-ny (ws) y =D ( f(w1)). '

Proof of 2) Let wE Pref(L) and |w|=n, the corresponding language of fun DO

Ly, (an element of sequence (x)). Olearly, m>n. By Lemma 2.4, w& Pref(Ly,)
- (sinoe |w|=n<m) 'Henee“’oliere oxists 1, € frn (wj = f(w) such that Fst, (9, (Lm)) =
Fst,(L,). - So Fstd(aw(Lm)) sty (a (L)) by Lemma 2.4. Thus Fsb, (L) =
Peb, (u(T)). | o T

From the above conclusions and the definition of f, we see fhat. for any we&.
Prof(L), there exist X,=f(w)€ D3(X) and Ly € X, suoh that Fst, (0, (L)) =
Fsts(Ly,), and all the X {bs sat1sfy the condition that 1f w= = wa € Pref(L), then

X,€D%(X,). This is equwalent to sa;ymg LEO R(X ). Henoe L& X. Therefore

O(X)CX Thus O(X) X

§ 3. The New Characterization of Nondetermmlstlcally
Recognuable Famlhes

From Lemma 1, 2, we -know'thatfrecbgﬁiz'ammy and ‘nondeterministio recog:
nizability of families'are not equivalent. In this sectlon we glve a oharaotemzatlon‘

of nonde’ﬁermlmstma,lly recognizable faniilies. . : X
- Definition 3, 1.’ Let By, ,% be twa nj—‘b—autoénwta/ .,4?1, %;, awe called equ@mlent
%ﬁldéxil_lgéxz' IR SIS ARL NS S A s
. Definition 8. 2. Let B#=4Q, 3,5, I, B> be an nfb—a/wtomwton, Q= {gi, g2, gs,
., qi}. For-any ¢;E€Q, denote B, ~ (Q 28, {g@}, B>, We swy that %’fbs wrreduo%ble
'bﬁ” for any gi, ¢y, @1 q; bmiplies | By| + | BE|: e T o
- From the proof of Theorem: 5 in [2], we obta,m the following"lemma. eas‘ﬂy
Lemma 8.1. ' Lot B be o reducible nfb-automaton. Then thereé emsts an nfb-
" automaton B eqwavalent to B, but it has less states than B.
- Theorem 3. 1. For any n fb—a,utomwﬁon, there m@sts an wreduc@ble nfb—
automaton equivalent to 4. ' S
Proof Suppose & is an nfb-automaton, If & is irrducible, then the result is
immediate. If & is réducible, then there exists an nfb-automaton %’ whioh is
equivalent $o &, but it has less states than . If ' is irreduoible, then the result
is immediate too. If not, then there exists another n fb-automaton %£" which is
equivalent to Z’ (of course to ,%‘) bt it has less ‘states than %’. Since all the
nfb-automata with only one shate are irréduoible, using $he above method suoces—
sively we can find an irreducible n Fhatomaton equivalent to Z.
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:Gorollla.ry 1 T nondeterm@n@ste}cwlléj recognizable family, there is an
drreducible nfb—automaton o recognizes it. ' |

Now we-come to the main resﬁlt of this section,

Theorem 3. 2 (Oharaoterizaﬁion Theorem). A family X over % is nondeter—
ministically recognizable if and. only 4f there ewvists o sob of fwm'z,lfbes R such that

. 1) X and B.are dependent; : :

- 2): Xdsq elatively self-compatible and frelwt'bvely ﬁn'z/tely derwwble to R. .

'Proof - Consider the “if” part. Since X is relatively finitely derivable, i. e.,

DY(X) |weE 2*} is finite, U D3(X) is a finite set of families. Construct an nfb-'-

automaton Z=<Q, =, 5, I, B> as
Q= UD(X)I D(-X),

85X, @)= D4(X), for X,€Q, a€ 3,
B={(X,, FSJGA(L)) | X, EQ LEX;} . A
Now we prove that the above automaton recognizes X. Leb LE X We deﬁne a
partial funotion f: 2*->@Q by. o v
R & SR 1fw€ ]?ref(L),

fb(w):{undeﬁned if wE 3*—Prof (L)

for. w€ 2*, where X, is the one determmed by w as in Definition 2.4. By this
déﬁnition, it is easy %o see that f.(4) €1 (i. e., DE(X)) and for any wa & Pref (L)),
fr(wa) €8( f(w), @), a€ 3. Hence f;, is a:decision rule of %, and for any w& Pref(L)
~there exists an L, in f(w) such that Fst,(8,(L)) =Fst4r(Lw)' (Definition 2.4).
Therefore ( f(w), Fet4(3,(L))) € B. That is to say L€ |Z|. Thus X< | 4. Conver
soly, lot L€ ||, then Hhas a decision rule fy: 2*—>Q such that Pref(.L)< Dom( f1),
and for any w€ Pref(L), (f (w), Fst,(0,(L)))E€B. From the definition of
% and Definitions 2.1 and 2.2, we know fr(w) € D§(X). Leb. X,=fr(w). Then
for any a€ 2, if wya € Pref(L) then X, € D3 (Xy,). By (fu(w), Fst,(9,(L))) €B
and.the definition of B, there exists L,E X,(i. ., fu(w))-such that Fsta(ly) =
Fst,(0,(L)). Hence LEOR(X), i. 6., LEX. Therefore | B|=X. Thus X = | 4.
..Consider the “only if” part, Let X be a noadetermmlsbmally recognizable
famlly. From Corollary 3.1, we see there exists an irreducible nfb-automaton %
suoh that | B|=X. Let B =<Q, 3,5, I, BY, Q={qs, ¢z - ¢u}, and By, By, -,
% 4 be the b automata, deﬁned in Definition 3.2. Denote the £ families recognized
by above 4 automata by X, X, -, X respectively, and let R={X4, X,,--+, X3}.
Now ‘we prove that - | - ' C
1) X and R are dependent;
2) X is relatively sélf—compatible.to R,
8) X is relatively finitely derivable to R.
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1) For any X,,,ER it is clear that /A (X,,,) U X,. Smce 8(%, w) is

meé(qmz)

finite, we know {X.|¢:€5(gw, @)} is a finite subset of R. Thus X and .R are
dependent since X' = | ] X;. Wedefine '

Qi €1 - '
d%(X o) ={X:la:€ 8(qw @)}.

Obviously, it is well defined by the irredueibility of 4.

2) It is very intuitive tha¥ X is relatively finitely derivable since X is finite.

8) Leb LEO,(X). Then for any wC Pref (L), there exist X,ED%(X) and
L, X, such that Fst,(9, (L)) =Fst,(L,), and w=wa€ Pref(L), aC 3 implies

X w€ D% (X ). From this we can define a partial function f: Z*->Q by
if w€ Pref(L),
Flw)= {undeﬁned if w€ Z*—Pref(L),
where ¢, is the initial state of %, such that |4%,,| =X . This definition is also well
defined by the irreducibility of &. Olearly, for any w& Pref(L), X,#¢. Henoce
Xy#p and X, € D%(X,,), if w=wi0, a € 2. Thus ¢,€ S(yw,, a), i. e.
- f(w) € f(ws) ~a=3(f(wy), @). |

Smee f(4) €1, f is a decision rule of % and for any w& Pref(L), we have
(f(w),Fst4(8,(L))) €B. Henoe LE | Z|. Therefore LE X. Thus Or(X)EX. That
is to say X is relatively self-compatbible to R.

From Theorem 3.2, Theorem 2.2 and Lemma 2.1, we have

Corollary 8. 2. If X is a nondeterministically recoqnizable family and has the
replacement property, then X is recognizable.

The following result was given in [4]. 4

Lemma 8. 8. The class of recognizable families s closed under union, bus the
class of nondeterministically recognizable families is not.

Thus we have the following result.

Corollary 8.3. Let X, X, be two recognizable families. If XU X5 has the
 replacement property, then X 1| X , is recognizable.
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