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ON DISTRIBUTIVE MODULES AND
LOCALLY DISTRIBUTEVE RINGS

K. R. F_uller XUE WEIVIIN ('a’%.Ti f’\)**

AbStract' :
Distributive modules over artinja.n rings are characterized via module diagfanié;’ and
it is shown that a left ariinian ring is (two-sided) locally distributive in case its left
indecomposable injective modules and projective modules are distributive. This latter result

is used to show that a locally distributive a,rtnua,n rmg and the endomorphism ring of its
minimal cogenerator have 1dentlca1 dxaglams

- An artinian ring-is ldéallj}v distvi'i'b'utive‘in oase its indeobinp()sa,ﬁlevprOjéotive«
modqles have distributive submodule lattices. Aceordmg t0 [67 sucha rmg is- oxa.0t
in the sense of Azumaya 533 s0 our results lend support to Azumaya s OODJGO'[]U].G
that exach rings have self duahty ’ ‘

A module dlagra.m M is a ﬁmte d1reoted graph Wlbh dlstmgulshed node 0 such
that: (i) there is at most ‘one arrow between any {wo nodes; (ii) there are no
oriented cyeles in A and N0 AITOWS emana’umg from 0 (111) if a;aéO then #—0 in .4
if and only if there is no arrow a—>y 0 in #. (Cf. [1, 11]. ) We also let .# denote
the set of nodes in the diagram .#. A subdiagram #<.# saiusﬁes o€ 4 and o>y
1mphes yE%, and for any subset X C,/é’ '/7/ (X ) denotes the smallest subdlagram
of A containing X }

If ¥ is4ny finibe distiibutive latbice and : -

M ={w€ L |o is meet irreducible},
then .# hecomes a module dlagram with z—>y in ease y is maximal among -thoss
elements of M properly contained in w. (zis meet 1rreduelble in case x= u\ v

nnplles w=uy or #=9v, ) Upon observmg thads o€ M and a;<\/ i 1mplles w<g/, for
§=1

gome i€ {1, see, M} ONO ea,sﬂy checks that there is a latties isomorphism §:.% (./ﬂ’ )—>
& from the lattice of subdiagrams of # to & via 8:U—>N U(U<.#). (For a proof,
see [7, pp. 82—83].) In this diagram, if a—>y then there is no other path from x to
y. We say that a diagram with this property satisfies the lattice condition.
Throughout this paper R is a bagic artinian ring with radical J, basiec set of
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primitive idempotents ey, -+, ¢,, and simplemhodules §;=Re,/Je,, 6=1, --, n

As in[1, 11], a pair (#, ) isa diagram for a finitely generated léft R-module
M in case Oard (#\{0}) =c(M), the composition length of M; 5: Z(M)—>L (M)
is an injeotive lattice homomorphism between the lattices of subdiagrams of .# and
submodules of M that satisfies § (Rad U) = Rad 8(021) (U <.#); and the nodes of .#
are labeled by a function A: ,/%\{O}——ﬂ 1, e, n} suoh bha’ﬁ 6(021) / ) (’V ) »S’M,» When-
ever ¥ and ¥ Uf{e}= U are subdlaglams of ./// ' . _

In order to characterize dlstubumve modules via dlagrams we shall use the
following 1emma,, which may’ prove 0 have other uses o

If (,/% 8) isa dlagra.m for RM and o= e,,—f— +e¢,‘ Wlth 1<@1< <’bk<'n we let

| eﬁ’ =1 ({og, - , 6}) U{0} o

"'W11:h an’‘arfow w——>@/aé0[ in 4, in oase w—»ya&O in A or m—>z1—> —>z;——>yaé0 in A
with “eash A (zi) ¢ {’bi, e}, and @50 in aﬁ/ othervvlse Then J/ 19 a module
;d1agram with la,bels he (?»l//e), and 1f V< <./ then Ve<,/// IR
1 Lemma. If (,/// 3) isa dwgmm For oM and o —e;,+ - +e@,, fw'z:th 1<®1< -
<He<m then (,,//e, 88) Q,s w clewgmm fo'r oRo eM rwhefre s (EK ) =d (021 (38’ )) fO’I‘ ecwh <
./// o

Pa”oof Glear]y 5,0 @A) S (eM ) is'a lattice homomorphism Vpon obse1 ving
" that for each "< .#,.

REZCIE S W
and ’ﬁha,t Re generates 8(”2/(52")), 0 that R R AN S
| CSUE)) =ReSU(TY) =BT, @

one easily checks that J; is injective. Also if V <¢// then applymg d o a eomp031-
tion series for ¥ ylelds oneé for: S(V ), ' s o TR
iR (’7/) 3(F ) S8 1) > 8 (Y card(‘)‘f\(O})) =0
Wlth %”1_1—{wz} Ui and muliuplymg the teams by o We see that 93908 (7 ) has
composﬂuon length RN Lo et P :
o e (ed W)) —eard (%\{0}) s o (3)
Now observmg that (Rad @/ (,9(‘ ))e Rad £ we have - R ‘

: 3
c (68 (Rad (% (ff ) ) ) ) (——)eard (Rad (% (EL"' ) e\ {0})
- =oard (Rad (Z)\{0})

ey
~oard (% (Rad (') {0})

8)
(—0(33(%(Rad(92"))))

| =0 (8 (Rad(2))).
So since % (Rad x ) CRad #(Z) 1mp11es one mclusmn and they have the same
composition length, we hive : -
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8.(Rad &) ;—ea(Rad UE)) ' o €Y

for any Z’<.#,. Thus 3, preserves radicals:
@
3% (Rad Z) = eB(Rad UX)) —eJ‘o‘(?/(ﬁ"))
@

= 6JR3(X) =0T ed,(X).
Finally, if 2, % <M, with & = {w} U# then w is the only element of @/ (@) \% (@)
with label in {¢,, «- 'z,k}, S0
8.(%) /3, (%) =e(3(% @) /3 (U () ﬂ%(@)) Sle(a)

A module is called distributive in case its latitice of submodules is distributive.
In [B, Theorem 1] distributive modules are characherized as those whose quotient
modules all have square free socles. Aceordihg %o [10, Lemma 4], a module M over
the artinian ring R is distributive if and only if, for each §=1, «++, n, { Regm|me& M}
is linearly ordered if and only if the module , z. .M is uniserial for 4= =1, «+, n.
Moreover, if pM is distributive then its submodules are all stable under endomor-
' phisins (as in [13, Theorem 2]), and one easily checks that # (M) is finite,

An R-module X is lccal in case X /JX is simple, so if X <pM then X is meet
irreducible in % (M). Thus we see from an earlier discussion that if zM is distribu-
tive then ‘

w={X<M|X is local} {0}
with 8 (%) =3% becoming a diagram, (w, 8) for M with X/JX =8yx. Now an
application of [10, Lemma 4] yields one implication of the first parb of the following
theorem, :

2. Theorem. A module M is distributive of and only §f there és a déagram
(A, 3) for M én which any two nodes with the same label are connected by a path.

Moreover, if these conditions hold then d és a lattice isomorphisin and, up to ésomor-
phism, M has & unique diagram satésfying the lattice condétion.

Proof We have just seen thal the condition is necessary. For sﬁfﬁeieney, the
condition clearly implies that for each ¢=1, -, n, Z(.#,) is a ohain, and so, since
J,, preserves radioals, .¥(¢;M) must also be a chain. Thus M is distributive by
{10, Lemma 47]. '

If (#, d) is a diagram for a distributive module zM and %, «-+, %, are the
maximal subdiagrams of .# then since M/JM is square free™, (i), +-, 8(U)
are the only maximal submodules of M. Thus it follows inductively that 8:.%(.#)
—>F (M) is actually bijective. Finally, if # satisfies the lattice condition then zH>
(% (w)) is a diagram isomorphism (as defined in [11]) between .# and the diagram
A of local submodules described above. : ’

A finite semigroup Z containing 0 is called an algebra semig'roup in case Z=
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{e1, -+, €.} U_F with ey, -+, e, being orthogonal idempotents and # a nilpotent ideal
such that Z= U e % e;. As in [11], the elements of Z# are nodes of diagrams (%), &)

and (%,, 8,) for the semigroup algebra KZ over a field K Here a—>y+0 in %,
(in #,) in nase there is an a€ £\ _#* such that aw=y (resp., 2a=y) and —0 if ¢
anmhﬂabes w, 8(U)=KU, U<y M(w)=0 if o= =ow; and 8, and A, are defined
S1m11ar1y
Suppose that the basm 1ef13 ‘arbinian ring R is left loea,lly dlstrlbutlve in the
sense that each indecomposable prOJeoblve. Re, is a distributive module, Then
adeording to Theorem 2 there is a unique (o within isomorphism) diagram (%, )
for =R such that Z satisfies the lattice condibion, Z =2, ) - U P, with #,NP;=0
if @sé g, and 3(%;) = Re,, =1, ++, n. On the othor hand we can associate an algebra
semlgroup w115h =R by choosmg, for each local left 1dea1 X -X e;<Je; with X /JX
_-;S'i, exactly one Tz =6x ;€ X\J X, and lettmg '
' ' /—{mX}X<Jet, X is looal 4=1, =+, n} U{0}
and
A Z (zR) ={ey, *+ e,,}U/.
Then deﬁnmg an opera’ﬁlon on Z (zR) via’
’ woy=2C % (zR) if Roy =Ry
we obtain the following version of results of Yukimoto in [14].
3. Theorem. If R is left locally déstridbutive then Z=X (rR) s an algebra
sembgroup such that (%, ;) ts a diagram for zR, where 8;(%U) =RU, U<,
Moreover, &f R is also right locally désiributive then (X, 8,) s o déagram for Rg
where 8, (U) =UR, U<DK,. .
Proof Let #—=%(xR). Using the observation™™ that if s=ag; and y=ey in
%, then Rw+y=Roy=RaRy, one easily sees that (Z%, ) is an algebra semigroup. If
w, y€ % with 0+ Ry maximal among the local submodules of Rv=Rew then since
=Y {Rae;|a€ Fe;\ _#%;}, Ry is contained in all (henoe is equal to some) Ragw=
Ra-x. Conversely, suppose a€ _fe,\ #%; and a-w=y+0 in Z. If h:Re;—~>Rw via hire;
~>rew then b1 (J%w) =J?%;+ Ker h cannof cantain Ra (since neither term does), s
Ry=Ro-o is maximal among the local lefi ideals in Rw. Thus we see that %, is-
isomorphic o the diagram Z via a+>Rgz, and the first sbatement follows.
Yukimoto's argument (see [14, Proposition 5]) shows that if B is also right
locally distributive then {ewR|0+ex€ %} consists of the distinot local right ideals
contained in ¢;R, and so (%, J,) is a diagram for Rp.
As Yukimoto™? pointed out, if R=R (zR) with R left locally distributive then
so is K% (this also follows from Theorem 2), and he showed by example that K%
need not be right locally distributive. We observe nexi that if Z is any algebra
somigroup with K% left locally distributive then Z satisfies certain necessary
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condibions for right local distributivity. In pa,rmoular both the left cancellation
condition of [11],, @y =aw2 %0 1mphes w1 =g, and it3 right hand version hold.

4. Proposition. If Z isan algebra semigroup such that K& Gs left locally
d@stmbutwe then % sat@s figs both the left wnd right ccmoellwtfz;on oondw@ons and R, wnd
Z: both swv‘fbsfy the Zattwe cond@t@on

Pfroof Suppose D1y = oy % 0. Then &(ml) ?\,(:vz) in %, $0 by Theorem 2 there ig
a path from one to the, other, say from a, 0 @3, But then we must have wa / with
W, = and 0 w a;ly fw7‘ *ayy for a11 k>0 oontrary to nllpotence of / Thus Z has
right ca,noellahon ’I‘he lattlce oondduon for a,?l follows because 1f wl-»mzqeo and o>
u1—>u2—> ——>um—->:v2 in Jl then in 92 e, musb ha.ve aE A\ / 2 and we€ / 2such that
awi—mz—wmﬁéo contra,ry to rlgh’r oanoellatlon Now if @%@ and wwl—awz—yaéo
with wE FA / 2 ’uhen ml-->y<——a>2 appears in Z, Wl’ﬁh ?\,(wl) 7\.(:1;2) But then by local
dls’orlbutwlty there would ha.ve o be a path from one of and w2 $0 the o’oher
contrary %o the lattice eondltlon already estabhshed Thus it follows that & has
left cancellation; and the lattice condition for &, holds as it does for 4, .

‘We note here that Proposition 4; together with the uniqueness part of Theorem
2, shows that if R=K 2 is left locally distributive then RB=K (zR).

Next we give a characterization.of (two-sided) locally distributive rings in
terms of their left modules;  which'we shall subsequently -apply to examine the
endomorphism rings of their minimal: cogenerabors. ‘ S

5. Theorem. A loft artintan ring B s locally’ d@stmbutfwe %f andh only 4f its
dndecomposabdle left projective modules and injective modules are-désirébutive

Proof The condition is necessary by [10, Lemma 5]..

_For‘ sufficiency, let ¢ and .f be primitive idempotents in a ring B thab sabisfies

the condition, and let BE==H(Rf/Jf) be the injective envelope of Bf/Jf. Then fR
and H form a pair in the sense of [97], and we shall prove this implication by using
the resulbs of [9] to show that fRe.x, is uniserial. ‘According to -[.9,:Lemr‘na, 2.2]
¢l (Re/Je) =F (eRe/eJo), the left injective envelope of eRe/eJe. Since ¢Re and e
are uniserial left eRe-modules,  eRe is a uniserial ring by [9, Theorem 5.4]. Thus
it only remains %o show that fRe/fReJe is simple (or zero) over eRe. According to
[9, Lemmas 1.1 (a) and 2.3 (b)], for any ideal I<zRjy and any bisubmodule Q<
2lwac.m the annihilator econditions : : :
Q=°‘Elm (Q) =rz(lp (Q)) :
and
e JI= sz('rE(fI)) zfR"‘E(I)
are sabisfied, Now let
Q=Rery (RQJ ) <REEnd(3E)
and:
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I=lg (Q) <RRR-
Then since QT ry(ReJ) we have
: FI=1;(Q) Dmern(R@J) =fPelJ,
.and since Iery(ReJ)ZIQ =0 we also have
FIe o(re (R@ J)) =fRel,

so_thaﬂo
fI@ f_puJe ]

Now since E is distributive and Q< RsE, we must have Q/J QNR@/ 7 e by [10
Lemma 4], so.since Re is distributive, Q= Re/Ke for some ideal K <pl, Thus .
since Q=r5(1z(Q)) =rs(I) we have .
frE(I);Re/'Ke
and so according to [9, Theorem 5.1]

FR/fI=lsenser (K YE( 3R/ e ) ‘
I‘mally. applying [9, Lemma 2.2] again we have an embedding of right modules

fRe/fReJe=fRe/erC§E(eR/eJ)e—E (eRe/eJe)

so that f Re/f ReJe is simple (or zero) over ¢Re as promised. ,

According to the olassioal theorems of Azumaya ® and Morita™, there isa
duality between the categoriss of finitely generated lefs and right modules over a
- ring R if and only if B is artinian and the endomorphism ring of the minimal left
oogeneraﬁdr over R is isomorphis to the basio ring of R. Reoehﬂy it has been proved
that serial rings™ ¥ and I-hereditary locally distributive rings™ have solf-duality.
Crucial o the proof in [13]: is the fact that a basio serial ring and the endomor-
phism ring of its minimal cogenerator have identical diaglains Thus we expech
that the followmg result may prove useful in verifying Azuma,ya s conjecture for
locally distributive rings, '

6. Theorem. If R isabasic locally distributive ring and S ¢s the endomor—
phism ring of the mintmal left cogenerator over R, then 8 ds Zocally d%stfrwbutww with
the same left and right dwgmms as R. _ : '

Proof Let E=E.®-@F, with E,=HE(Re/Je), 5=1, -, n. Then B is
finitely generated, sinoce each H; is distributive. Thus there is a duality D=Hom
(—,- _;g.Eg) between the ﬁnitely generated lefs B-modules and right §=End (RE)A—
modules™ 1% g0 for each finitely generated M there is a lattice anti-isomorphism
0: (M) (D(M)) via

a §:Nt->Ker(D(éy)), N<M,

where %y is the inclusion map N lN—) M. Letting fi€ 8 be the idempotent for H; in
the decomposition H=E®---@H,, f1, +**, fxis a basio set of idempotents for §. It
follows that the indecomposable right projective S-module f.S=~D(H;) and right
injective S-module D(Rsg;) are all distributive. Thus by Theorem B, § is locally
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distributive, Since all submodules of H; and ¢,R are stable under endomorphisms
p:Kisrp (K), K<eR

defines a lattice anti-isomorphism @:%(e,R)—>% (E;) by [9, Lemmas 1.1 (a) and

2.8 (b)1, s0 takmg 0: % (B;)—>L(D(H;)) =L(fS) we have a lattice lSOIﬂOl‘phlSD’.I
Gop: % (e;R)—> Z(f:S).

Now to see that ¢,R and f;R have isomorphic dlagrams we need only to show that if

X <e;R with X /X J=e;R/e;J then f;S maps onto fop(X).Sinoe ¢ is a lattice anti-

isomorphism B;/rp (X) has simple soole ry(X.J)/ rp,(X) which must be isomorphic .

t0 Re;/Je;. since its aunihilator in R is the same as that of X/XJ, according fo

the proof of [9, Theorem 2.4]. Thus we have an exact sequence

00 (X)X B>,
which yields an exact sequence
D(B)—>D(B)= D(QD(X))—*O
80 00¢(X ) =Ker(D(4yx)) is indeed an epimorph of D(H;) = f;S. Therefore the
right (and so by Theorem 3 the left) diagrams of B and § are identical.

D (4g¢x))

References

[1] Alperin, J. L., Diagrams for modules, J. Pure and Appl. Algebra, 18 (1980), 111—119..

[2] Azumaya, G., A duality theory for injestive modules, Admer. J. Maath., 81 (1959), 249—278,

{81 Azumaya, G., Exact and serial rings, J. dlgebra, 88 (1983), 477489

[4] Gaballero, C. H., Self-duality and l-herélitary semidistributive rings, Comm. in digebra, 14(1986);
1821—1843. ' ’

{51 Camillo, V. P., Distributive modules, J. dlgedra, 36 (1975), 16—25.

[6'] Camillo, V. P., Fuller, K. R., Haack, J, K., On Azumaya’s exact rings, Math. J. Okayama Univ. 28
(1986), 41—51.

[7] Orawley, P. & Dilworth, R, P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N. J.,
1973. ,

[81 Dischinger, F'. & Miiller, W., Binreihig zerlegbare artinsch Ringe sind selbstdual, drch. Math., 43(1984),
182136, ' -

(9] Fuller, K. K., On indesomposable injectives over artinian rings, Paczﬁ(, J. Math., 29 (1969), 115—135

(101 Fuller, K. R., Rings of left invariant module tyre, Comm. in digebra, 8 (1978), 1563—167.

[11] Tuller, K. R., Algebras from diagrams, J. Pure and Appl. Algebra, 48 (1987), 23—37,

[12] Morits, K., Duality for modules and its applications to the theory of rings with minimum condition,S¢i.

) Rep. Tokyo Kyoiku Daigaku, 8 (1958), 83—142.

(13] Woaschbiisch, J., Self-duality of serial rings, Comm. in dlgebra, 14 (1986) 581—589.

[14] Yukimoto, Y., On artinian rings whose indecomposable projectives are distributive, Osaka J. Math.,
22 (1985), 339—344, '



