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SIGN TYPES AND KAZHDAN-LUSZTIG CELLS
DuJmB A

Abétraqt

. This paper studies’ the relations between sigh types and left cells in an affine Weyl
- group. It is proved that any left cell is a union of finitely many connested sets in the sense
~of [5]. Also, a geometrie explanation of the finiteness of cells in an affine Weyl group is

given,
§1. Introduction

Let @ be an irreducible reduced root system in a real vector space H with a
positive definite inner product < , > such that || =<&, a)=1for any shors root «
in @. Let 4= {ai, «+«, oz} be a simple root system in @ and @* be the corresponding
seb of positive roots, For any a€ @*, k€% and a positive réal number m, we define
a hyperplane He,x=H_o,1={v€ H; <fv oy = Ia} and a stripe H?,=H", ,={vE E;
k<<'v o' ><k+m}.

Let # = {Ha,,,, oaGQS nE 2} and 9 — the seb of the closare of the eonneoted
components of B— U H. The elements of 3[ are called (closed) alcoves T$ is well~

known that for any A€, there is a |@|—tuple (Be) acs OVer Z such ﬁhat A=
r; Hj .. and ks satisfy
. &E

1) ko= —hy, for a€D;
@ |alhat |8 %at+1< ot B[ (ka+a+1>
<loa|*hat |B[*ha+ |al*+ |8[*+]a+B[*~1
for a, BE D with a+BE B* (see [6, Theorem 5.2]).

Let &, denotie the set of |®|-tuples K = (#u)acs, which satisfies (1) and (2)
Ther: the map A~> (Ka)aca gives & bijection from % Yo &, and we-call K the coor—
dinate form of 4. ’ ‘

Let W (resp: W,) be the Weyl (resp. affine Weyl) group determmed by &.
Then W is generated by the reflections s, on E for «&®, and W, is the semi-direct
product WocD where D deriotss the group eonsisting of all translations T, AEZD

on H. Let —ay be the highest short root of @ and So=500T _ser 8;=35,,(1<8<1). Then

W4 can be regarded as a Coxeler group with generator set § = {se 0O}, If 2=
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ay and 1 (z) =1 (2)+1(y), then we write z=w-y.

By [6] there exists a bljeotlon between W, and ¥ such that if wEW, corres-
ponds to- A, = (k (a, 'u)))“eg, then & (o, w) = (9\. a'>+5(a, w), Where w=wT, for w&
W and A€ ZP, and

@) bla, sw) =h(a, w)+B((@) @, ), 0<j<l.

We shall identify W, with % or &4 as a set in subsequent disoussion.

For any subset X W we denoté by <X> the union of all aleoves in B ocorres-
pording o0 the elements of X, In [5], G. Lusztig conjectured that if I is a left cell,
then <L) is a contractible polyhedron In this paper we prove the following resulb:

" Theorem A. TL¢t L bé'a left cell, inén theo e are finitely ‘many cont/mct@ble

- polyhedrons {L;» sur'h that L= U L.

As a by-product of the proof of Theorem A we get a geometrio explanatbion of

_ the finiteness of cells in an affine Weyl group (Theorem B).

§ 2 Weyl Chambers and Slo*n Types

Let i/’ * e the (olosed) dominant Weyl chamber of B with respeet to A that

—-{Q)EE <fv, v>>0 for o€ @*}.

‘Then there exists a bl;]eetlon w—>w % * between W and the seb of Weyl chambers of

B and the chamber «w®* is domma,nﬁ with 1espec1; to the basis w4 of cD Thus if
yE W,, oorresponds t0 an alecove AC:fw%’ * then for a,ny aC @* ' '
>0 if o€ wd* N DT, -

@ lc(oa, ?/) {<O otherwise. : _

Let . be the set of sign types of W, (see [7]). We regard X €.% as a suhset
of W,. Thus for any € @* the signs of & (a, #) for all € X are the same. (Note thatb
if k(w, &) =0, the sign of k(a, 2) is defined to be the zero sign) and if yéEX then
there exists at leash one root BE ®* such that the signs of lc(,B, 2) and k(B, y) are

: dlﬁ'elent

For X E.? there is a unlque wE W such that <X>C%” =wé*. We say the
funotion b(e, —): W,—>Z is bounded over X, if the image of X is bounded. Let
@y ={a€ D*; k(a, —) is bounded over X}, 4'=wA.
@y ={a€ D*; k(w, —) is zero over X}.
Lemma 2.1, - (a) &' =, U (—D,) s a root subsysiem of .
(b) For any a€ Py=uwd*—&', k(w, y) tends to oo as 1(y) tends fo oo.
(o) For any a€ wd* there are y€ 4 and w sequence tn wd*: 70-7, YViy %0y Vp=
o S¢ that 7v;— 7@_16 4" for any b, 1<i<n. :
(d) Pocwd*.
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- " Proof (a) If, BED; with a-+-BE D, then k(x+B, —) is bounded over X by
(2). Henoce a+ BE D,. Therefore @' is a subsystem of D, : |
(b) Since ag @', it follows from (4) that & (e, y)—->oo as Z(y)—->oo yeX.
(o) See [1, Lemma 2.3. 1]1. '
. (d) Since <X is the closure of one of the connected components of E— U H,

where ﬂ' {H,,,,k, a€ O* and k=0, 1}, it follows bhat '
{X>c ( ﬂ H ,o)

Hence 'we got the result, -
.. Lot wEW . For K = (ka)acsC &1, We put K'=(ki)acs, Where 70‘, ks if o€ wd*
N®* and ¥,=k,—1 if € wd* N (—D*), Then we have S

Lemma 2.2, For any o ,86 wd* rwfbth a-+BE wd™, 'Znequalfz}ty (2) holds fo'r
kL, and . : :
Proof By [6, Theorem 5.2], (Ko)scs+ determines an alcove 4 and is -the
coordinate form of A4 with respeot o @*, If we choose 4’ as the basis of @, then wd*
is the correspondmg sot of positive roots and (5. 4ewg is the coordinate form of A
with respeot 0 wd*, 'Agam by using [6;, Theorem 5.2], we get the lemma,

Thus we have defined a bijection fy: @@4—>§Az by fu(K ) =K', and denofe f,
(Ky)by K= (K (o, 9))aco for any yEWa. : SR

- We know that % is'a union of hoxes -

B={v€ B; 0<b,<0, a"><by+1, b,EZ, aE L};

and if AC ¥ is an alcove and A E&Q'H“'k“ then. there exisbs a wunique box B=
M HL:. sueh that ACB,

acd

If He %, the complement K —H has $wo ‘cOmpbnents We denote their olo—
sureg by H* and H ~ such that H* meets any translation of ¢ in K.
Lot b= (ba) we 4, - beo al A | —tuple over Z"” If AC:A’ we denote by 4 ’vhe complement
A' ~A, andcall '
P4, 5 =<p(4, B)>=([) Fio) n mﬂaba)

a SPECIAL POLYHEDRON IfP= <Y ), YC:‘K we write
dim P={ac d; k(a, —) is bounded over Y}
ca,lled the dimension of P, Clearly, dim P(4, b) =] A]
‘Lemma 23. Let X €& and € X is the shortest eloement of X. Then :
(a) Ai——@'ﬂd’ is @ basis of & and | k(o a;) | =1 for any ae 4.
(b) &'=2ZDND and {X)>C ﬂ H,ia, o-

Proof (a) For BED', B= 2 @y, since ¥ (&, y)=0 for any o€ wd*, {YHc¥

and %' (8, ~) is bounded over X, it follows from 2.1 (o) and (2) that #'(y, —) is
bounded over X for y € 4’ with a,+0. This means that 4; is a basis of &',
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Suppose that there is an y €4, such that k=|k(y, #){>1. We ochoose y€X
such that y has a (codim 1) faee s lying in the hyperplane H,y if yE€®* or
H,, _y41.if y& —®*. Clearly, sy€ X, but we have 0< llo('y, sy) | <15 (y, w)l ‘This
contradicts [7, Proposition 7.2].

() Let D6=2P;NP. Then we have clearly @{)c:@' by (2) Let /1 be a basis of

tand A'> A is a basis of &' Suppose that 4+ 4 and «€ A'—4. Since <X is the

closure of one of the connected oomponents of H— U H, it is easy %o see thatb dim
HeA

X> —dlm(ﬂ H[,,o) =|A4|. On the other hand, %(a, —) is hounded over X' and

k(a, ) +0, so0there is an infieger m+#0 with k(e w)m>0 such that. <X >C-Ha (>
N ( ﬂ H}, o). Since a€ A'— 4, it follows that o '

dlm[(m H ) N Hvmol < |4l

So we geb a cantradlehon ThlS shows A=A4!, hence &)=7',

- Now we suppese that there are aE 4, and y& X such that ¥ (e, y) >O By abhove
dlscussmn there exists B&®, such that B—aZ*4,, Thus 2.1 (o) and (2) imply
k(B, @)=k (B, ©) >0, -contrary to BE€ Bo. Honoe ¥(a, y) = 0 if a€ 4, N D* and % (o, y).
——1if a€ 4N (—B")..

Remark 2.4. Let X€.%. Then {X>cP (Al, #) where a;a——k (&, w), aC 4’ and
 is the shortest element of X. By 2.3, H,,,& #. This. 1mphes p(dy, o)—X isa
union of finitely many sign tiypes and

- dimd X =dimP (44, @), -

§ 3. Proof of Theorem A

From now on, we assume tha,t X e 5” is 1nﬁn1te Leb a4 be a subset of A’ suoh
$hat AD4,. For z€X, we put b=k (g, 2) for a€ 4’. Thus P4, b) is a special
polyhedron contained in P(4y, b). - | |

Lemma 3.1. Let P= P(A b) be as abowe Then there is @ sequenec im P: y1,
Yz - - such that for any n>0, ’

(a) Yn =20 Yn_1 fOT SOME 2,E W

() ¥ (e ¥a) =¥ (&, Yas) +1 for a€ 4;

(6) If @ is the root subsystem of @ generated by A and W2=@@*—W, then.
I (o, y») tends to oo as n tends to oo for any o€ Y,.

@) ¥ (e, y,) =F (&, 1) for all « €T

Proof Letyi=2, T =a® H e and B, is the box of ¥ containing z. Then,
nETNB, =B :

Woe claim that B’ has a longest element v and % must have:



No.1 Dy, J. SIGN TYPES AND KAZHDAN-LUSZTIG CELLS 37

(B). There are | 4| codim 1 faces which lie in tne following hypérplanes:
Ha,k'(a,yx)uy 066—/1
In faot, 'if B’ has two elements and «' with the same max1ma1 length, then one of
them, say «/, has a face te S 1y1ng ina hyperplane H=H &y v With BE W, —
4, and H separates » and «’. This implies fu- € B, bub I (1) >1(w’ ), contrary to the
maxzmahﬁy of 1(«"). So B’ has a longest element, denoted by ». On the other hand,
since each H, 0¥ (@) +1 (w€ A) intersects T', there is yE B’ suoh that y has (6). We

‘choose sa,msfymg (6) of maximal length. Suppose s€f is a face of y such that
sy>y and sCH =H g uppss With BEwd*— AP, Since H*B' is a convex seb

‘and its codim 1 faces lie in the hyperplane of forms: H.,, for y€ Ayw, €2, it
follows that H* (B’ is a union of alooves and still has || codim 1 faces lying in
the hyperplane of (5). So we have at least one aleove ¢’ in H B sabisfying (8)
and Z(y') >1(y). This is contrary to ’ohe «choice of y. Indeed, we have proved that if
sw=s. w for s€ 8, then swe B, hence u—y. The olaim is proved.

-+ By the above olaim, there is uis & W, such that  =uy-y,. Lieb s be a face of % and
s lies in H BBy )41 BEA I+ is eagy to see that su=ssu. Thus We. get Yig=su < P
such that yy,=(suy) e, k (a, y12> =k (oa, yi) for a€W U A= {,8} and &' (,8, yiz) -
K (B, y1) +1. . S

Replaoing y; by y12, Wwe ocan proceed as above and get u2€ W‘, and 76/1 {B}

such that y13=us+y12€ P and : ST
k' (o,.90) if &€ ’I’CA {B, ’}’},
4 (05, y13) { ;

_ B (e, y1)+11foa ,8017 _
Continuing $his proeedure we can find an element yZE.P such thab Ya=21°y for
some 21 € W, and ¥ (e, y2) = k' (o, #4) 1f €D, k’(a Y2) =K' (oa, y1) +1ifa€ 4.

By the same technique and replacing v by ¢, we. ca,n find ys€ P satisfying-
certain properties as above. Finally, we get a sequence in P: Y1, Y2 -+ such that.
(a), (b) and (d) hold, (o) follows from (2) and 2.1 (¢). |

Corollary 8.2. There evists @ contraciible polyhedron P’ =<L) such that dim P
—dim P and L is contained in & single left cell.

Proof By 3.1 there is a sequenee""in TNP:ys, ¢s - such that (a)—(d) in.
3.1 hold. Since the funcbion a(—) ([3]) has an 'upper bound, there is m>1 such.
that a(y,,) =a(y,) for any p=>m. Honoe y,,Ny,,, for p=m since y,,<y,,. ‘

Now we show that P=TN (ﬂ H gy 1S oontamed in a lefb cell where.

N =N (D) is a fixed positive number

Assumeo yEP’. We use induction on h(a) (Wlth respeot to 4") to prove that.
Ko, y) =¥ (a, yn) for any qe W, We have already the inequality for h(a)=1
(i.e., a€ 4") by the definition of P’, Suppose A(a) >1. By 2.1 fhere exist 3,€ 4 and.
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a sequence in w®d*: =70, 71, ***, 'yt=a such that 8;=7;‘—7;__1€ 4' (1<é<t). Then,
by (2), |
lal (¥ (&, y) +1)=13: "%’ (3, z/) + Vo1 2B (7ot 9) A1) + A= [ 722 ]?)
= ]3t|270’(3t; y) -+ |5t-1|270'(8t-1, Y) -
+|’)’t R CACT ?/)'*"1)‘!‘(2—[%-1'2 l’}'t-zlz)

>E|5|”k'(8n y) +— Elvel’

=BG, ym>+<t+l%|2N> 2!%!” .
fai)? (70’(06, ym) +1)<|8:%F (By ym) + | Vo1 |2(W Yoty Ym) +1) + |72+ |8:]2 =1
<2[8 |%'(a,, y,,.)+l')’o|2(70'(')’o, ym) 1)

+2<|8 l“+l%if’>—t

: =Ei8 ’2]‘7’<8£: ?/m)+2(l'}’¢la+!8 I2)+"yo!2—ﬁ ‘ o ‘

So we canﬂvohoose'N such that |a|2(K (@, ¥) +1)>|a|*(# (o, yu) +1) for any a€W,.
Thus we. get #(a, y) =k (oa, g/,,,) for a,ny a€wd*, This implies by (8) that there isa
w €W, such thab ¢ =w' g/, CoE :

On the other hand, by 8.1, there is p>m suoh that 70’ (e, y,,) >k (a, y) for any.
o€ wd*, So we have w”EW, such that y,—=w"sy. It follows  thab a(y) =a(Yn).
Henoce Y~Ym and H is contained in a left 0911. B R

Theorem 3.3. Lot P=P(4, b) boasin3.1. Then .

(a) Tnere is o specwl polyiwda on ' P'CP such’ thwt P P’ is a unton of ﬁmtely
'mcmy specwl polyhedron P; with dlmP <d1mP o

(b) P’ is a ungon of ﬁn@tely mcmy contmct%ble polydedfron P’ each of whfwh is
commned in smgle Zeft cell.

proof Let y11, §a1, <+, Yu1 Do the set |

{y; <y>c: ( ﬂ H: aicae) N ( ﬂ Ha foCa, z))

Then there is, for any b, 1<é<n, a sequenoe in P: yu, Yiay *-, y,,,, " WhLOh sa’alsﬁes
(a) (d) in 3.1, and B (o, y19) =0’ (oc, Yip) - for any 6, p>0 and a€ 4. Thus there
exists m(fb) >0 such that a(Yig) = a(yu,,(,)) for p>m(fb) Let m= max{m(@) 1<'?;<rn,}
Then Yio > Yim for any p=>m and &, 1<4<n. :

Lot ba=F (e, Y11), Ca= =k (o, Y1) for a € 4, For-a subset I', AcI'cd, put
D(F) {d (da>aed’; (da)GEA‘—(bw)aeAy (da)aer—(0a+N)aeP
a,nd (da>aeP—Ae ].__[ [bay G¢+N]}y

where [w b] denotes the set of all numbels k Wlth w<k<b Then we have |
(i > P(4, By= 1) P(T,d),

dED(T’) )
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(ii) dim P(I, d)<dim P(4, b) if I'# 4.
(dii) Let P’ P(A d) and P’ =( ﬂ H 1 ,c(a,?m)) nre. Then P’ isa contra,otlble
polyhech on oouta.med 1n a smgle 1ef13 oell by 3 2 and P’= U | .

b
=1 :

From (i)—(iii), the theorem is proved

Proof of Theorem A “By 2.4, we: .see that if X€.%, then P(4y, ) —X isa
union of finitely many sign types. Therefore by uein_g .3.3Aand induotion on dim
{X>, we get P (4, b) is a union of finitely many special polyhedron P; and P;isa
union of finitely many. contractible polyhedrons each of which is eonfua.med in a
mgle left cell. Since & is. ﬁnlte, Theorem A is proved.. N

- These arguments also imply the following resul: =~ .- -

Theorem B W, has a finitely many left cells.
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