SIGN TYPES AND KAZHDAN-LUSZTIG CELLS

Du Jie (杜 杰)*

Abstract

This paper studies the relations between sign types and left cells in an affine Weyl group. It is proved that any left cell is a union of finitely many connected sets in the sense of [5]. Also, a geometric explanation of the finiteness of cells in an affine Weyl group is given.

§ 1. Introduction

Let Φ be an irreducible reduced root system in a real vector space E with a positive definite inner product \langle , \rangle such that $|\alpha| = \langle \alpha, \alpha \rangle = 1$ for any short root α in Φ . Let $\Delta = \{\alpha_1, \dots, \alpha_l\}$ be a simple root system in Φ and Φ ⁺ be the corresponding set of positive roots. For any $\alpha \in \Phi$ ⁺, $k \in \mathbb{Z}$ and a positive real number m, we define a hyperplane $H_{\alpha,k} = H_{-\alpha,-k} = \{v \in E; \langle v, \alpha^v \rangle = k\}$ and a stripe $H_{\alpha,k}^m = H_{-\alpha,-k}^m = \{v \in E; k \leq \langle v, \alpha^v \rangle \leq k + m\}$.

Let $\mathscr{F} = \{H_{\alpha,n}; \ \alpha \in \Phi, \ n \in \mathbf{Z}\}$ and $\mathfrak{A} = \text{the set of the closure of the connected components of } E - \bigcup_{H \in \mathscr{F}} H$. The elements of \mathfrak{A} are called (closed) alcoves. It is well-known that for any $A \in \mathfrak{A}$, there is a $|\Phi|$ -tuple $(k_{\alpha})_{\alpha \in \Phi}$ over \mathbf{Z} such that $A = \bigcap_{H \in \mathcal{F}} H^1_{\alpha,k_{\alpha}}$ and k_{α} 's satisfy

- (1) $k_{-\alpha} = -k_{\alpha}$, for $\alpha \in \Phi$;
- (2) $|\alpha|^2 k_{\alpha} + |\beta|^2 k_{\beta} + 1 \le |\alpha + \beta|^2 (k_{\alpha + \beta} + 1)$ $\le |\alpha|^2 k_{\alpha} + |\beta|^2 k_{\beta} + |\alpha|^2 + |\beta|^2 + |\alpha + \beta|^2 - 1$

for α , $\beta \in \Phi$ with $\alpha + \beta \in \Phi^+$ (see [6, Theorem 5.2]).

Let \mathscr{E}_{Δ} denote the set of $|\Phi|$ -tuples $K = (k_{\alpha})_{\alpha \in \Phi}$, which satisfies (1) and (2). Then the map $A \rightarrow (k_{\alpha})_{\alpha \in \Phi}$ gives a bijection from \mathscr{U} to \mathscr{E}_{Δ} and we call K the coordinate form of A.

Let W (resp. W_a) be the Weyl (resp. affine Weyl) group determined by Φ . Then W is generated by the reflections s_a on E for $a \in \Phi$, and W_a is the semi-direct product $W \propto D$ where D denotes the group consisting of all translations T_λ , $\lambda \in \mathbf{Z}\Phi$ on E. Let $-\alpha_0$ be the highest short root of Φ and $s_0 = s_{\alpha_0} \cdot T_{-\alpha_0}$, $s_i = s_{\alpha_i} (1 \leqslant i \leqslant l)$. Then W_a can be regarded as a Coxeter group with generator set $S = \{s_i; 0 \leqslant i \leqslant l\}$. If $z = s_a \in \mathbb{Z}$

Maunscript receive February 6, 1988.

^{*} Department of Mathematics, Fast China Normal University, Shanghai, China.

xy and l(z) = l(x) + l(y), then we write $z = x \cdot y$.

By [6] there exists a bijection between W_a and \mathfrak{A} such that if $w \in W_a$ corresponds to $A_w = (k(\alpha, w))_{\alpha \in \overline{x}}$, then $k(\alpha, w) = \langle \lambda, \alpha^{\vee} \rangle + k(\alpha, \overline{w})$, where $w = \overline{w}T_{\lambda}$ for $\overline{w} \in W$ and $\lambda \in \mathbb{Z}\Phi$, and

(3) $k(\alpha, s_j w) = k(\alpha, w) + k((\alpha_j) \overline{w}^{-1}, s_j), \ 0 \le j \le l.$

We shall identify W_a with $\mathfrak A$ or $\mathscr E_A$ as a set in subsequent discussion.

For any subset $X \subset W$ we denote by $\langle X \rangle$ the union of all alcoves in E corresponding to the elements of X. In [5], G. Lusztig conjectured that if L is a left cell, then $\langle L \rangle$ is a contractible polyhedron. In this paper we prove the following result:

Theorem A. Let L be a left cell, then there are finitely many contractible polyhedrons $\langle L_i \rangle$ such that $L = \bigcup L_i$.

As a by-product of the proof of Theorem A, we get a geometric explanation of the finiteness of cells in an affine Weyl group (Theorem B).

§ 2. Weyl Chambers and Sign Types

Let \mathscr{C}^+ be the (closed) dominant Weyl chamber of E with respect to Δ , that is, $\mathscr{C}^+ = \{v \in E; \langle v, \alpha^{\vee} \rangle \geqslant 0 \text{ for } \alpha \in \Phi^+\}.$

Then there exists a bijection $w \to w \mathscr{C}^+$ between W and the set of Weyl chambers of E and the chamber $w \mathscr{C}^+$ is dominant with respect to the basis $w \Delta$ of Φ . Thus if $y \in W_a$ corresponds to an alcove $A \subset w \mathscr{C}^+$, then, for any $\alpha \in \Phi^+$,

(4)
$$k(\alpha, y)$$
 $\geqslant 0$ if $\alpha \in w\Phi^+ \cap \Phi^+$, < 0 otherwise.

Let \mathcal{S} be the set of sign types of W_a (see [7]). We regard $X \in \mathcal{S}$ as a subset of W_a . Thus for any $\alpha \in \Phi^+$ the signs of $k(\alpha, z)$ for all $z \in X$ are the same. (Note that if $k(\alpha, z) = 0$, the sign of $k(\alpha, z)$ is defined to be the zero sign) and if $y \notin X$ then there exists at least one root $\beta \in \Phi^+$ such that the signs of $k(\beta, z)$ and $k(\beta, y)$ are different.

For $X \in \mathcal{S}$ there is a unique $w \in W$ such that $\langle X \rangle \subset \mathscr{C} = w\mathscr{C}^+$. We say the function $k(\alpha, -): W_a \to \mathbb{Z}$ is bounded over X, if the image of X is bounded. Let

$$\Phi_1 = \{ \alpha \in \Phi^+; k(\alpha, -) \text{ is bounded over } X \}, \Delta' = w\Delta.$$

$$\Phi_0 = \{ \alpha \in \Phi^+; k(\alpha, -) \text{ is zero over } X \}.$$

Lemma 2.1. (a) $\Phi' = \Phi_1 \cup (-\Phi_1)$ is a root subsystem of Φ .

- (b) For any $\alpha \in \Phi_2 = w\Phi^+ \Phi'$, $k(\alpha, y)$ tends to ∞ as l(y) tends to ∞ .
- (o) For any $\alpha \in w\Phi^+$ there are $\gamma \in \Delta'$ and a sequence in $w\Phi^+$: $\gamma_0 = \gamma$, γ_1 , ..., $\gamma_n = \alpha$ so that $\gamma_i \gamma_{i-1} \in \Delta'$ for any i, $1 \le i \le n$.
 - (d) $\Phi_0 \subset w\Phi^+$.

Proof (a) If α , $\beta \in \Phi_1$ with $\alpha + \beta \in \Phi$, then $k(\alpha + \beta, -)$ is bounded over X by (2). Hence $\alpha + \beta \in \Phi_1$. Therefore Φ' is a subsystem of Φ .

- (b) Since $\alpha \notin \Phi'$, it follows from (4) that $k(\alpha, y) \to \infty$ as $l(y) \to \infty$, $y \in X$.
- (c) See [1, Lemma 2.3.1].
- (d) Since $\langle X \rangle$ is the closure of one of the connected components of $E \bigcup_{H \in \mathcal{F}} H$,

where $\mathscr{F} = \{H_{\alpha,k}; \alpha \in \Phi^+ \text{ and } k = 0, 1\}$, it follows that

$$\langle X \rangle \subset (\bigcap_{\alpha \in \Phi_0} H^1_{\alpha,0})$$
.

Hence we get the result.

Let $w \in W$. For $K = (k_{\alpha})_{\alpha \in \Phi} \in \mathscr{E}_{A}$, we put $K' = (k'_{\alpha})_{\alpha \in \Phi}$, where $k'_{\alpha} = k_{\alpha}$ if $\alpha \in w\Phi^{+}$ $\cap \Phi^{+}$ and $k'_{\alpha} = k_{\alpha} - 1$ if $\alpha \in w\Phi^{+} \cap (-\Phi^{+})$. Then we have

Lemma 2.2. For any α , $\beta \in w\Phi^+$ with $\alpha + \beta \in w\Phi^+$, inequality (2) holds for k'_{α} and k'_{β} .

Proof By [6, Theorem 5.2], $(k_{\alpha})_{\alpha \in \Phi^+}$ determines an alcove A and is the coordinate form of A with respect to Φ^+ . If we choose A' as the basis of Φ , then $w\Phi^+$ is the corresponding set of positive roots and $(k'_{\alpha})_{\alpha \in w\Phi^+}$ is the coordinate form of A with respect to $w\Phi^+$. Again by using [6, Theorem 5.2], we get the lemma.

Thus we have defined a bijection $f_w: \mathscr{E}_{\Delta} \to \mathscr{E}_{\Delta'}$ by $f_w(K) = K'$, and denote $f_w: (K_y)$ by $K'_y = (k'(\alpha, y))_{\alpha \in \Phi}$ for any $y \in W_a$.

We know that E is a union of boxes

$$B = \{ v \in E; \ 0 \leqslant b_{\alpha} \leqslant \langle v, \ \alpha^{\vee} \rangle \leqslant b_{\alpha} + 1, \ b_{\alpha} \in \mathbb{Z}, \ \alpha \in \Delta' \},$$

and if $A \subset \mathscr{C}$ is an alcove and $A = \bigcap_{\alpha \in \mathscr{A}} H^1_{\alpha, k_{\alpha}}$ then there exists a unique box $B = \bigcap_{\alpha \in \mathscr{A}} H^1_{\alpha, k_{\alpha}}$ such that $A \subset B$.

If $H \in \mathscr{F}$, the complement E-H has two components. We denote their closures by H^+ and H^- such that H^+ meets any translation of $\mathscr C$ in E.

Let $b = (b_{\alpha})_{\alpha \in A'}$ be a |A|-tuple over \mathbb{Z}^+ . If $A \subset A'$, we denote by \overline{A} the complement A' - A, and call

$$P(\Lambda, b) = \langle p(\Lambda, b) \rangle = (\bigcap_{\alpha \in \Lambda} H^1_{\alpha, b_\alpha}) \cap (\bigcap_{\alpha \in \overline{\Lambda}} H^+_{\alpha, b_\alpha}).$$

a SPECIAL POLYHEDRON. If $P = \langle Y \rangle$, $Y \subset \mathcal{C}$, we write

dim
$$P = \{ \alpha \in \Delta'; k(\alpha, -) \text{ is bounded over } Y \}$$
,

called the dimension of P. Clearly, dim P(A, b) = |A|.

Lemma 2.3. Let $X \in \mathcal{S}$ and $x \in X$ is the shortest element of X. Then

- (a) $\Delta_1 = \Phi' \cap \Delta'$ is a basis of Φ' and $|k(\alpha, x)| = 1$ for any $\alpha \in \overline{\Delta}_1$.
- (b) $\Phi' = \mathbf{Z}\Phi_0 \cap \Phi$ and $\langle X \rangle \subset \bigcap_{\alpha \in A_1} H^1_{\alpha, k(\alpha, x)}$.

Proof (a) For $\beta \in \Phi'$, $\beta = \sum_{y \in A'} a_{\gamma} \gamma$, since $k'(\alpha, y) \geqslant 0$ for any $\alpha \in w\Phi^+$, $\langle y \rangle \subset \mathscr{C}$ and $k'(\beta, -)$ is bounded over X, it follows from 2.1 (e) and (2) that $k'(\gamma, -)$ is bounded over X for $\gamma \in \Delta'$ with $a_x \neq 0$. This means that Δ_1 is a basis of Φ' .

Suppose that there is an $\gamma \in \overline{A}_1$ such that $k = |k(\gamma, x)| > 1$. We choose $y \in X$ such that y has a (codim 1) face s lying in the hyperplane $H_{\gamma,k}$ if $\gamma \in \Phi^+$ or $H_{\gamma,-k+1}$ if $\gamma \in -\Phi^+$. Clearly, $sy \in X$, but we have $0 < |k(\gamma, sy)| < |k(\gamma, x)|$. This contradicts [7, Proposition 7.2].

(b) Let $\Phi'_0 = \mathbf{Z}\Phi_0 \cap \Phi$. Then we have clearly $\Phi'_0 \subset \Phi'$ by (2). Let Λ be a basis of Φ'_0 and $\Lambda' \supset \Lambda$ is a basis of Φ' . Suppose that $\Lambda' \neq \Lambda$ and $\alpha \in \Lambda' - \Lambda$. Since $\langle X \rangle$ is the closure of one of the connected components of $E - \bigcup_{H \in \Lambda} H$, it is easy to see that dim $\langle X \rangle = \dim \left(\bigcap_{\beta \in \Phi_0} H^1_{\beta,0} \right) = |\Lambda|$. On the other hand, $k(\alpha, -)$ is bounded over X and $k(\alpha, \alpha) \neq 0$, so there is an integer $m \neq 0$ with $k(\alpha, \alpha) \neq 0$ such that $\langle X \rangle \subset H^m_{\alpha, k(\alpha, \alpha)} \cap \left(\bigcap_{\beta \in \Phi_0} H^1_{\beta,0} \right)$. Since $\alpha \in \Lambda' - \Lambda$, it follows that

$$\dim \left[\left(\bigcap_{\alpha \in \Phi_0} H^1_{\beta,0} \right) \cap H^m_{\alpha,k(\alpha,x)} \right] < |\Lambda|.$$

So we get a contradiction. This shows $\Lambda = \Lambda'$, hence $\Phi'_0 = \Phi'$.

Now we suppose that there are $\alpha \in \mathcal{A}_1$ and $y \in X$ such that $k'(\alpha, y) > 0$. By above discussion, there exists $\beta \in \Phi_0$ such that $\beta - \alpha \mathbf{Z}^+ \mathcal{A}_1$. Thus 2.1 (c) and (2) imply $k(\beta, x) = k'(\beta, x) > 0$, contrary to $\beta \in \Phi_0$. Hence $k(\alpha, y) = 0$ if $\alpha \in \mathcal{A}_1 \cap \Phi^+$ and $k(\alpha, y) = -1$ if $\alpha \in \mathcal{A}_1 \cap (-\Phi^+)$.

Remark 2.4. Let $X \in \mathcal{S}$. Then $\langle X \rangle \subset P(\Delta_1, x)$ where $x_\alpha = k'(\alpha, x)$, $\alpha \in \Delta'$ and x is the shortest element of X. By 2.3, $H_{\alpha,x_\alpha} \in \mathcal{F}$. This implies $p(\Delta_1, x) - X$ is a union of finitely many sign types and

$$\dim\langle X\rangle = \dim P(\Delta_1, x)$$
.

§ 3. Proof of Theorem A

From now on, we assume that $X \in \mathcal{S}$ is infinite. Let Λ be a subset of Λ' such that $\Lambda \supset \Lambda_1$. For $z \in X$, we put $b_{\alpha} = k'(\alpha, z)$ for $\alpha \in \Lambda'$. Thus $P(\Lambda, b)$ is a special polyhedron contained in $P(\Lambda, b)$.

Lemma 3.1. Let $P = P(\Lambda, b)$ be as above. Then there is a sequence in $P: y_1, y_2, \dots$ such that for any n > 0,

- (a) $y_n = z_n \cdot y_{n-1}$ for some $z_n \in W_a$;
- (b) $k'(\alpha, y_n) = k'(\alpha, y_{n-1}) + 1 \text{ for } \alpha \in \overline{\Lambda};$
- (c) If Ψ is the root subsystem of Φ generated by Λ and $\Psi_2 = w\Phi^+ \Psi$, then $k'(\alpha, y_n)$ tends to ∞ as n tends to ∞ for any $\alpha \in \Psi_2$.
 - (d) $k'(\alpha, y_n) = k'(\alpha, y_1)$ for all $\alpha \in \Psi$.

Proof Let $y_1=z$, $T=\bigcap_{\alpha\in\Psi}H^1_{\alpha,k(\alpha,z)}$ and B_z is the box of $\mathscr C$ containing z. Then $y_1\in T\cap B_z=B'$.

We claim that B' has a longest element u and u must have:

(5) There are $|\overline{A}|$ codim 1 faces which lie in the following hyperplanes:

$$H_{\alpha,k'(\alpha,y_1)+1}, \alpha \in \widehat{\Lambda}.$$

In fact, if B' has two elements u and u' with the same maximal length, then one of them, say u', has a face $t \in S$ lying in a hyperplane $H = H_{S,h'(S,u')+1}$ with $\beta \in \Psi_2 - \overline{A}$, and H separates u and u'. This implies $tu \in B'$, but l(tu') > l(u'), contrary to the maximality of l(u'). So B' has a longest element, denoted by u. On the other hand, since each $H_{a,h'(a,y_1)+1}$ ($a \in \overline{A}$) intersects T, there is $y \in B'$ such that y has (5). We choose y satisfying (5) of maximal length. Suppose $s \in S$ is a face of y such that sy>y and $s \subset H = H_{S,h(S,y)+1}$ with $\beta \in w\Phi^+ - \overline{A} \cup \Psi$. Since $H^+ \cap B'$ is a convex set and its codim 1 faces lie in the hyperplane of forms: $H_{\gamma,h}$ for $\gamma \in \overline{A} \cup \Psi$, $k \in \mathbb{Z}$, it follows that $H^+ \cap B'$ is a union of alcoves and still has $|\overline{A}|$ codim 1 faces lying in the hyperplane of (5). So we have at least one alcove y' in $H^+ \cap B'$ satisfying (5) and l(y') > l(y). This is contrary to the choice of y. Indeed, we have proved that if sw=s. w for $s \in S$, then $sw \notin B'$, hence u=y. The claim is proved.

By the above claim, there is $u_1 \in W_a$ such that $u = u_1 \cdot y_1$. Let s be a face of u and s lies in $H_{\beta, k'(\beta, y)+1}$, $\beta \in \overline{A}$. It is easy to see that $su = s \cdot u$. Thus we get $y_{12} = su \in P$ such that $y_{12} = (su_1) \cdot u$, $k'(\alpha, y_{12}) = k'(\alpha, y_1)$ for $\alpha \in \Psi \cup \overline{A} - \{\beta\}$ and $k'(\beta, y_{12}) = k'(\beta, y_1) + 1$.

Replacing y_1 by y_{12} , we can proceed as above and get $u_2 \in W_a$ and $\gamma \in \overline{A} - \{\beta\}$ such that $y_{13} = u_2 \cdot y_{12} \in P$ and

$$k'(\alpha, y_{13}) = \begin{cases} k'(\alpha, y_1) & \text{if } \alpha \in \Psi \subset \overline{\Lambda} - \{\beta, \gamma\}, \\ k'(\alpha, y_1) + 1 & \text{if } \alpha = \beta \text{ or } \gamma. \end{cases}$$

Continuing this procedure, we can find an element $y_2 \in P$ such that $y_2 = z_1 \cdot y_1$ for some $z_1 \in W_a$ and $k'(\alpha, y_2) = k'(\alpha, y_1)$ if $\alpha \in \Psi$, $k'(\alpha, y_2) = k'(\alpha, y_1) + 1$ if $\alpha \in \overline{\Lambda}$.

By the same technique and replacing y_1 by y_2 , we can find $y_3 \in P$ satisfying certain properties as above. Finally, we get a sequence in $P: y_1, y_2, \cdots$ such that (a), (b) and (d) hold. (e) follows from (2) and 2.1 (e).

Corollary 3.2. There exists a contractible polyhedron $P' = \langle L \rangle$ such that dim P' = dim P and L is contained in a single left cell.

Proof By 3.1 there is a sequence in $T \cap P$: y_1, y_2, \cdots such that (a)—(d) in 3.1 hold. Since the function a(-) ([3]) has an upper bound, there is $m \ge 1$ such that $a(y_p) = a(y_m)$ for any $p \ge m$. Hence $y_p \sim y_m$ for $p \ge m$ since $y_p < y_m$.

Now we show that $P' = T \cap (\bigcap_{\beta \in \overline{A}} H^+_{\beta, k'(\beta, y) + N})$ is contained in a left cell, where $N = N(\Phi)$ is a fixed positive number.

Assume $y \in P'$. We use induction on $h(\alpha)$ (with respect to Δ') to prove that $k'(\alpha, y) \gg k'(\alpha, y_m)$ for any $\alpha \in \Psi_2$. We have already the inequality for $h(\alpha) = 1$ (i.e., $\alpha \in \Delta'$) by the definition of P'. Suppose $h(\alpha) > 1$. By 2.1 there exist $\delta_0 \in \overline{A}$ and

a sequence in $w\Phi^+$: $\delta_0 = \gamma_0$, γ_1 , ..., $\gamma_t = \alpha$ such that $\delta_i = \gamma_i - \gamma_{i-1} \in \Delta'$ $(1 \le i \le t)$. Then, by (2),

$$\begin{split} |\alpha|^{2}(k'(\alpha, y) + 1) \geqslant &|\delta_{t}|^{2}k'(\delta_{t}, y) + |\gamma_{t-1}|^{2}(k'(\gamma_{t-1}, y) + 1) + (1 - |\gamma_{t-1}|^{2}) \\ \geqslant &|\delta_{t}|^{2}k'(\delta_{t}, y) + |\delta_{t-1}|^{2}k'(\delta_{t-1}, y) \\ &+ |\gamma_{t-2}|^{3}(k'(\gamma_{t-2}, y) + 1) + (2 - |\gamma_{t-1}|^{2} - |\gamma_{t-2}|^{2}) \\ \geqslant &\sum_{i=0}^{t} |\delta_{i}|^{2}k'(\delta_{i}, y) + t - \sum_{i=1}^{t-1} |\gamma_{i}|^{2} \\ \geqslant &\sum_{i=0}^{t} |\delta_{i}|^{2}k'(\delta_{i}, y_{m}) + (t + |\gamma_{0}|^{2}N) - \sum_{i=1}^{t-1} |\gamma_{i}|^{2}. \\ |\alpha|^{2}(k'(\alpha, y_{m}) + 1) \leqslant &|\delta_{t}|^{2}k'(\delta_{t}, y_{m}) + |\gamma_{t-1}|^{2}(k'(\gamma_{t-1}, y_{m}) + 1) + |\gamma_{t}|^{2} + |\delta_{t}|^{2} - 1 \\ \leqslant &\sum_{i=1}^{t} |\delta_{i}|^{2}k'(\delta_{i}, y_{m}) + |\gamma_{0}|^{2}(k'(\gamma_{0}, y_{m}) + 1) \\ &+ \sum_{i=1}^{t} (|\delta_{i}|^{2} + |\gamma_{i}|^{2}) - t \\ = &\sum_{i=0}^{t} |\delta_{i}|^{2}k'(\delta_{i}, y_{m}) + \sum_{i=1}^{t} (|\gamma_{i}|^{2} + |\delta_{i}|^{2}) + |\gamma_{0}|^{2} - t. \end{split}$$

So we can choose N such that $|\alpha|^2(k'(\alpha, y) + 1) \ge |\alpha|^2(k'(\alpha, y_m) + 1)$ for any $\alpha \in \Psi_2$. Thus we get $k(\alpha, y) \ge k(\alpha, y_m)$ for any $\alpha \in w\Phi^+$. This implies by (3) that there is a $w' \in W_a$ such that $y = w' \cdot y_m$.

On the other hand, by 3.1, there is $p \ge m$ such that $k'(\alpha, y_p) \ge k'(\alpha, y)$ for any $\alpha \in w\Phi^+$. So we have $w'' \in W_a$ such that $y_p = w'' \cdot y$. It follows that $\alpha(y) = \alpha(y_m)$. Hence $y \sim y_m$ and H is contained in a left cell.

Theorem 3.3. Let $P = P(\Lambda, b)$ be as in 3.1. Then

- (a) There is a special polyhedron $P' \subset P$ such that P P' is a union of finitely many special polyhedron P_i with dim $P_i < \dim P$.
- (b) P' is a union of finitely many contractible polydedron P'_i each of which is contained in a single left cell.

proof Let $y_{11}, y_{21}, \dots, y_{n1}$ be the set

$$\{y;\, \langle y \rangle \subset (\bigcap_{\alpha \in A} H^1_{\alpha,k(\alpha,z)}) \cap (\bigcap_{\alpha \in \overline{\omega}} H^1_{\alpha,k(\alpha,z)}).$$

Then there is, for any i, $1 \le i \le n$, a sequence in $P: y_{i1}, y_{i2}, \dots, y_{ip}, \dots$ which satisfies (a)—(d) in 3.1, and $k'(\alpha, y_{1p}) = k'(\alpha, y_{ip})$ for any i, p > 0 and $\alpha \in \Delta'$. Thus there exists $m(i) \ge 0$ such that $a(y_{ip}) = a(y_{im(i)})$ for $p \ge m(i)$. Let $m = \max\{m(i); 1 \le i \le n\}$. Then $y_{ip} \sim y_{im}$ for any $p \ge m$ and i, $1 \le i \le n$.

Let
$$b_{\alpha} = k'(\alpha, y_{11})$$
, $c_{\alpha} = k'(\alpha, y_{1m})$ for $\alpha \in \Delta'$. For a subset Γ , $\Lambda \subset \Gamma \subset \Delta'$, put
$$D(\Gamma) = \{d = (d_{\alpha})_{\alpha \in \Lambda'}; (d_{\alpha})_{\alpha \in \Lambda} = (b_{\alpha})_{\alpha \in \Lambda}, (d_{\alpha})_{\alpha \in \overline{\Gamma}} = (c_{\alpha} + N)_{\alpha \in \overline{\Gamma}}$$
and $(d_{\alpha})_{\alpha \in \Gamma - \Lambda} \in \prod_{\alpha \in \Gamma - \Lambda} [b_{\alpha}, c_{\alpha} + N]\},$

where [a, b] denotes the set of all numbers k with $a \le k \le b$. Then we have

$$(i) P(\Lambda, b) = \bigcup_{\substack{\Lambda \subset \Gamma \subset \Lambda' \\ d \in D(\Gamma)}} P(\Gamma, d),$$

- (ii) dim $P(\Gamma, d) < \dim P(\Lambda, b)$ if $\Gamma \neq \Lambda$.
- (iii) Let $P' = P(\Lambda, d)$ and $P'_i = (\bigcap_{\alpha \in \Psi} H^1_{\alpha, h(\alpha, y_{i1})}) \cap P'$. Then P'_i is a contractible polyhedron contained in a single left cell by 3.2 and $P' = \bigcup_{i=1}^n P'_i$.

From (i)—(iii), the theorem is proved.

Proof of Theorem A By 2.4, we see that if $X \in \mathcal{S}$, then $P(\Delta_1, b) - X$ is a union of finitely many sign types. Therefore by using 3.3 and induction on dim $\langle X \rangle$, we get $P(\Delta_1, b)$ is a union of finitely many special polyhedron P_i and P_i is a union of finitely many contractible polyhedrons each of which is contained in a single left cell. Since \mathcal{S} is finite, Theorem A is proved.

These arguments also imply the following result:

Theorem B W_a has a finitely many left cells.

References

- [1] Du Jie, The decomposition into cells of the affine Weyl group of type B_3 , Ph. D Thesis, E. C. N. U. (1986).
- [2] Du Jie, Two-sided cells of the affine Weyl group of type C_3 (to appear in J. of London Math. Soc.).
- [3] Lusztig, G., Cells in the affine Weyl groups, Advanced Study in Pure Mathematics 6, Algebraic & Related Topics (1985), 255—287.
- [4] Lusztig, G., Cells in the affine Weyl groups II, J. Alg., 109: 2 (1987), 536-548.
- [5] Lusztig G., et al, Open Problems in Algebraic Groups, Proc. Symp. on "Algebraic groups and their representations", (1983), Katata.
- [6] Shi, J. Y., Alcoves corresponding to an affine Weyl group, J. London Math. Soc., 35: 2(1987), 42-55.
- [7] Shi, J. Y., Sign types corresponding to an affine Weyl group, J. London Math. Soc., 35: 2(1987), 56-74.