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Abstract

T-minimax estimators are determined for the mean vector of a multivariate normal
distribution under arbitrary squared error loss. Thereby the set I" consists of all priors
whose vector of first moments and matrix of second moments satisfy . some given restrie-
tions. Necessa,'ry and sufficient conditions are derived which ensure a prior being least
favourable in I" and the unique Bayes estimator with respeet to this prior being I'-minimax,

' By applying these results the I'~minimax estimator is explicitly found in some special cases
or can be computed by solving a system of non-linear equations or by minimizing a quad-
ratic form on a ecompact and convex set.

§ 1. Introduction

Eestimating the mean vector of a mulbivariate normal distribution is a
common. stabisbical probl"'em‘.. It arises for example from regression models (see e. g.
[1], p. 236). In this paper the problem of determining I'-minimax esﬁin_aé,_—
tors under arbitrary squared. error loss is oonsidered. Thereby the covariance
mabrix of the normal distribution is assumed to be known, The subset I' of priors
is fixed by imposing restrictions on the veotor of first moments and the matrix of
second moments. Similar sefs I" are considered by Solomon (1972)%!, However in
[6] the analysis is restricted to linear estimators. In the univariate case with I"
consisting of all priors with fixed first and second moments the I"'-minimax estima—
for is already known (see [1], Example 4.29, and [3]).

In the third section the unique Bayes estimators with respect to a clags of
normal priors in I" and their risk functions are determined. In the fourth section
the basic charaocterization of the I'-minimax estimator is proved. This characte-
 rization shows that determining the I'-minimax estimator is equivalént to deter—
mining the stationary point of a compact and convex subsel of an Fuclidean Spaoce
R By applying this result in two special cases the I'-minimax estimator is ex-
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plicitly found. In the fifth section a geometric characterization of the /'-minimax
estimator is proved. This result shows that the I'~-minimax estimator can often be
determined by solving a sysiem of nonlinear equations, The sixth sechion shows
that the I'-minimax esbimator can be caloulated by minimizing a quadratic form
on a compact and convex subset of R? if the loss funcbion, the covariance matrix
of the normal distributions, and the subset I" of prior sabiéfy a oerfain condition.
Examples are presented at the end of the paper where the I'~minimax eshimator is -
explicitly found. o |

- §2, Notation and Preliminary Results

"The mean vector € R? of a mulbivariate mormal distribution with known,
symmetrio, and positive definite oova,ria;noe matrix 3 is to be estimated under
arbitrary squared error loss ' . ’

s(0, a) = (0 a)TR(H @), 0, aE R, _ 1)
where R denotes a symmetric and positive definite matrix. '

Let IT be the set of all priors, i. e. Borel probability measures on R?, for which

n(w) =([6m(@8)) _€R,

the vector of first moments, and
M (w) =(fa-om(d9))

the symmetric and posﬂuve semi-definite matrix of second moments, exist. Leb <

<4,j<p

denote the partial ordering on fhe set of symmetrio p X p-matrices defined by A<B
if B— A is positive semi-definite.
- In the sequel convex subsets of priors of the form
I'={w€Il|m(w) €V, M(m)<M}+J
are considered, where the closed and convex set ¥V CR? and the positive definite
matrix M are fixed. In the whole paper the same resulfs are obtained if subsets
F={m€H|m(w)EV, M(w)=M}
‘instead of I" are considered. Put |
By= {mé€ R”[m.mT<M}
and V=V  Hy. The following lemma shows that By is an ellipsoid.
Lemma 1. The set Ey satis fies
By={mcR|mTM *m<1i}.
In particular Ey ts compact and conves.
Proof A simple caloulation shows
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where I denotes the identity matrix. Hence M —mm® is positive semi-definite if

and only if 1 —m”M*m>0 since M is symmetrioc and positive definite.

By the Schwarz inequality w € I" implies m(w) € Ey and therefore m(mw) €V y.
Hence ' T

I'={w€H|m(n)EVy, M(w)<M}. 2

If mEV y then the normal distribution w=N (m, M —mm?) is a prior in I". This
implies that I'+ J if and only if ¥y . In particular Lemma 1 shows that the
set 7y is compact and eonvex. ' :

Let 4 be the set of all (non-randomized) estimators, i. e. Borel measurable
functions §; R?—>R?, The Bayes risk of an estimator € 4 with respect to a prior
w & II is defined by ' -

r(w, 8) = [RO, Da(ds), @
where R(-, 3) denotes the risk function of § given by

e M CEIOMICEION

®, 9) ~ (2mw)?det 2
o e—%(«v—e)ﬁ-*(x—o)

dx, 6€R>, 4
An estimator 8* € 4 with ‘

sup r (o, 8*) =inf sup r(m, &)
wel 0€4 w€r

is called I'-minimax estimator, i. e. a I'-minimax estimator minimizes the
maximum Bayes risk with respect to the elements of I'.

§8. A Class of Bayes Estimators with
Respect to Normal Priors

In the sequel the normal priors
| ~ wu=N(m, M—mmi") er .

are considered where mE€V y. It is well known (see e. g. [1], Example 4.9 and p.
162, and [7], Theorem 2.2.7 and Remark 2.2.2) that under squared error loss (1)
the linear estimator 8y € 4 with
| Su(w) = (T— 2 (Z+M—mm?) g+ 3 (I+ M —mm®) ~m, 2€ B,
is the unique Bayes estimator with respect 10 my (except a set of Lebesgue measure
zero). The Sherman-Morrison formula (see e. g. [6], 2.8.11)
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_ ’ A -1 (E—f—M) mm’”(E—l—M)"i
(B2 =y = (3 3) 4+ EEID e G JD

and a short caloulation yield
oN ‘ 1 S(I+M)pmr(Z+M)?
(@) [3(z+ 10 T IE
S(Z4+M) |
T=me(s+ ) m ™ "SR ®
The risk function(4) of a linear estimator 3(z) =4Aws-+d, s€R? A being a p %X p~
matrix, b€ R, has the form
R, 8)=((I-A)6—-d)TR((I—-A)0—b)+rr(ATRAY), GER?,

where tr(-) denotes the trace of a matrix, In case of the linear Bayes estimator da
in (b) this yields o

+

R(9, 8) = (B—m)TB(m) (§—m) +o(m); BE RS,
| where - S :

B(m) = [1+422 “?§>+12"’1®§{”_“;m] (S+M)"1IRS(S+M)~*

mm?® (S + M)t
[I‘H T (ST ~1m]
is a symmetrio and positive definite matrix and
e(m) =3r(0(m))

denotes the trace of the matrix ,
O(m) = (3+ )M~ 1”_’”_”””;?(‘%‘:%)) et ]R
. [M—- 2 (24 M) *mm"
1—m-(Z4+M)™™
Henoce the Bayes risk (3) of 3,, with respect o a prior o ¢ IT is given by v
r(m, 8n) =tr(B (m)M (o)) —2mTB (m)m(m:) +fm.”B (m) m-+e(m). (6)

](E+M)‘1E.

§4. The Basic Characterization of
the I'-Minimax Estimator

If a parameter mEV y satisfies condition (7) in the following first theorem
then the normal prior my=N (m, M —mmr) is leass favourable in I', i. e.

;?f r(mws, 8) =sup mf r (o, ),

and the Bayes estimator 8 with respect 0 aay is I-minimax. The second theorem

shows that there exists exactly one parameter m €V y which fulfils condibion (7) in

‘Theorem 1. The proof of Theorem. 2 uses a stationary point result of Browder and

Karamardian which follows from a minimax inequality of Ky Fan, )
Theorem 1. If HEVx satisfies

& (m) T =inf {d(m) ‘m|mEV y}, )
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then 8z ascording to (B) s the unique I'-mintmas estémator (except a set of Lebesgue
MeASUTe z@o"o) ands the prior gs =N (m, M —mmr) is least favowrable én T, rwhea‘eby
d(m) = [(E + M) *mmT+ (L—mf (Z+M)T m) I]
S (S+M)‘1ERE(E+M)‘1m mEVM
Proo f First note that - - o
- B(mym'=(L—m* (2+M)‘1m)'2d(m), meVy. - - - (8)
Since B(m) is symmetrio and positive definite, there exists a non-singular matrix
A such that B(m) = =AAr, Therefore g
tr (B (m) (M — —M (av))) tr(AT (M- M(w)) 4) >0,
since M — M (w) and thus A7(M—-M (av)) A are positive somi-definite for every
w& I by M(av)<M Hence .
B @) < (B <m>M>, a€L. a0
Now (2) (), (7) (8) and (9) yield |
sup (o, 3,,,) =sup [tr (B (m) M (az:)) 2mTB (m) m (o) +mTB (m) m+c (m)]
<br(B (@) My —3(L— 7 (3+ M) .lm).”"llg;ud(mﬂm,
+mIB(mymAe(@m) .
=1tr(B(m)M) —mTB(fm)'m+c(m) 7 (s, Ow) .
- Therefore (ww, d%) € I'X 4 is a saddle point in the statistical ga,me (r, A r). Whloh
proves the theorem by a well known result in game theory, whereby the I'-mini-
max  estimator is uniquely defermined si.n'ce O is the unique Bayes estimator
with respect 50 v, e

Theorem 2. Therre e:wsts @ uneguely detm‘mmed mE V u which ful ﬁls condfbtfwn
{T) stated in Theorem 1, ¢. e.

d (m) Tm =inf {d (m) Tm|mE V y}.

Proof 1Itis obV1ous ’ahat the fanobion d: Vy—>R? defined as in Theorem 1is
continuous. The set Vy# ' is compaot and oonvex. Therefore a result of Browder
and Karamardian (see [2], | Lemma 3.8.1), which is a special case of a minimax
inequality due to Ky Fan([4], Cerollary 1), yields the existence of a parameter
fr';iEVM whioch sabisfies (7) stated in Theorem 1, i. e, m isa so—q_alled stationary
point of V. o | . ,

Now assume that m and m are two stationary pombs of Vy. Then the Bayes
eéblma’ﬁors 5z and 8y are both I'-minimax estimators because of Theorem 1 and-
sa_,tisfy

‘ag@-sﬁ,@=z[<zz+M>-1+<2§M;;ZT§IE)~*;M>*]@_@ (10)

" The uniqueness of the I'-minimax estimator (exocept a set of Lebesgue measure
zero) and the 11near1ty of the estimators o and 8 yield 8z (m) =8x(m). This and

(10) show that m=m,
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- In'the following fiwo corollaries the I"~-minimax estimator is explicitly deter-
mmed by applying Theorem 1 fortwo spee1a,1 forms. of the set VCR’ in the definition
of the subset I" of priors. : ‘ :

Gorollary 1. If V={m}, mE R mm™<IM, cons%sts of ewwctly one pomt then
VM {m} and m=m satisfies (T) stated én Tkeoa”em 1. T :
- In the univariate case with fixed second moment, i. e, p=1, 2 =0">0, o=
M-+m?=0, and g

{Weﬂl j 0 (86) =m, foﬂ (38) —=M}
the T—mmlma.x estlma.tor I o
2. 4 9 L

8m (@) =_‘°";+._:_E.;’_”_, sER,
obtained by Corollary 1is already known (see []] anmple 4.29, p. 216, and[3]),
Gorollary 2. I f OEV then OEVM cmd =0 sat@sﬁes (7) sdted in Theorem 1,

9. 6. :
) 80(517) M(E+M)‘a: wER"

is the un’bgue T-mintmaz estimator and
avo——N (O M)
ws least favourable im I'. ' :
" In view of Oorollary 21t is subsequently assumed ’nhat OEEV In pa.rbmular
Gorolla,ry 2 can be applied to V=R i.e. in the case :

' I'= {wEIIIM(w)<M}, A
Where restrictions are 1mposed only on the matrlx M (av) of second moments for
prlors we Il ' o ' :

§ 5 A Geometrm Characterlzatlon
of the I’—Mlmmax Estlmator "

" The followmg lemma, shows that in the cage OéV the aoc ordlng 0 Theorem 2
umquely determmed para.meter mGVM whioh falfils condition. (7) s’ua,’ﬁed in Theo—
rem 1 is a boundary pomt of the ‘set Vv . "This makes i feasible to glve m Theorem
3a geometrw eha,raetemza,’mon of the parameter mE VM Co

‘Lemma 3 If OeEV ‘then, the pammetefr mE Vu 'whfwh fulﬁls condetean (7) stwted
in Theoren'1 is an element o f the boundary Wy of Vi ' ‘

Proof Assume thay m#0 is an inner point of Vy and sa’ﬁlsﬁes . Then
' d(m) #0- because of (8), m+0, and B(m) bemg pOSl‘blVG deﬁnl’oe Henoe w1thout

loss of- generahty d;>0 for some 1<4<<p where ¢ (m) = (d;) 1<s<y- '

Since m is an inner point of ¥ y there exists an ¢>0 such ’ohaﬂa m=m—g6;,C VM
where ¢; denotes the ¢—th unit vector in R?, Then ‘ '
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& (m) ™m =d(m) Tm— ed; <d(m) Tm,
. which contradiets (7).
Before the geometric characterization of the I'-minimax eshtimator is given
in Theorem 3 some further notabion is necessary. : L
 Since ¥y is closed and convex there exists at least one outer unlt normal
veotor n(m) € R? belongmg to a supporting hyperplane of VM for every boundary
point mE@VM, i, e, ’
w0 (m) " (m) =1
and S
- - a(m) To<n(m) m
for all 9 €TV 3. Lot :
H@mm)) ={vER?|v=m-+h, n(m)"h=0, hE R”}, mE@VM,

"be the supporting hyperplane corresponding to the normial veetor n(m) which
contains the point m € 8V, bub no inner point of Vi, i. e. {m}CH (m) NV uCV u.

Theorem 8. A papameter m€ oV y fulfils condétion: (T) stated in Theorem 1 if

and only @f there exists @ A>0 and an outer unit normal vector n(m). such that
n(m) +Aid(m) =0, o
4. e. the mormal wector n(m) mul the 'vectorr d(m) defined as in Theorem 1 are pamuel
but have different directions. - ' ’ ' ’ '
Pfroof (1) Let m € oV y satbisfy (7 ) stabed in Theorem 1. Let .
' L H,={wER|v=pd(m)+h, d(m)*h=0, hE R?}, uER,

* denote the hyperplane which is orthogonal to d(m) and eontains ud(m). Then the.

hyperplanes H,, wCR, form a partition of R? and d(m)Tv=pud(m)7d(m) if and

only if v€ H,. Since V' is compaoct and convex there exists a number we& R with

uo-ﬁinf{/.b.ERIH,;ﬂVM#@}o - _ ' - (1)
Therefore o |
mle%i a(m) ”‘m =inf {ud (m)*d(m) | w €R, H n Vu+ @} Mod (m) “d (m)

This and mE oV u sa,tlsfymg (7 yleld

& () T = o () d(m),
and hence mE H ot Now (1) implies H NV 4oV 4. Since d(m) is orthogonal to
H,, the vector ny= --M; (m) with A= (d (m) rd(m)) /2 which satisfies

o nofv<n0m for.all 9EV y \
beeause of (7) isan outer unﬂ; normal; veotor and obvlously
. -mgt A (m) =0,
(ii) Let X>0 and mE@VM suoh that
- n(m) +xd (m) =0,

where n(m) is an outer unit normal vector. Then - -
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n(m) va<fn(m) Tm for all w€Vy
implies
: d(fﬁi) ’-"'v>d (m)rm for all vEVu,
i.e. (7) is sabisfied. ~
. Of special interest is the case Where OGEV V< Hy, and the boundary of V is
smooth such that a uniquely deftermined outer unif normal veoctor n(m) exists for
every boundary point m&dV. Then Theorem 2, Lemma 3, and Theorem 3 show
that the pa,ra.meter m € oV whioch fulfils condition (7 ) stated in Theorem 1 satbisfies
n(m) +Xd(m) =0
for some A>>0, Therefore (&, m) € (0, o0) XV is the unlquely determined solutlon
of the system of » non-linear equations
n(m) +Ad(m) =0,

Where (A, m) € (0, o0) XV~

* Ini the case 0V and V' & My the following corollary shows with the add of the
geemetmc charaoterization given in Theorem 8 that the parameter mEVy whioch
fulfils condition (7) stated in Theorem 1 and which is an element of aV x a,oeordmg.
0 Lemma, 3 is in faoh an element of the genuine subset oV N Hy of OV .

" Qorollary 8. If O&V then the parameter mEV y which fulfils condition (7)
stated in Theorem 1 3s an element of the set oV N EM‘, ?. e. meEBEMﬂIB' where ]Pf denotes-
the dnterior of V. , o R

Proof Lemma.3 and 0V yield m € 8V y. Assume that m€oE MﬂV Then a
uniquely determined outer unit normal veefior n(m) ex1sbs because of Lemma 1, By .
Theorem 3 there exists a A>>0 such that o ‘

n(m) +M(m) =0, . , (12) -

~ Now consider the subset

o e €T U ) <M}

of priors, i. 0. Vi = Hy. Then (12) keeps valid and Theorem: -3 and Theorem 2 show

that mEVy is the unlquely determined parameter which satisfies (7) stated in
Theorem 1, This and m 0 contradiot Corollary 2. - | |

'§6. Special Quadratic Loss Functiens

In this last section the matrix B in the definition (1) of the loss function, the
co-variance matbrix X of the normal distributions, and the mdtrix M in the defini~
tion of the subset I" of priors satisfy a cerfain relation given in Theorera 4 below.,
Then the parameter 7 &V y which fulfils econdition (7 ) stated in Theorem 1 is the
minimum of a quadratbic form on the compact and convex set ¥ y. If the matrices R,
2, and M satisfy a second relation the parameber m is simply the veetor of shorbest
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length in Vy as it is shown in Corollary 4. In some examples a,t the end of this
section the I'-minimax estimator is explicitly determined.
First a technical lemma is proved where a condition is given which is equiva~
lent to (7) stated.in Theorem 1. |
Lemma 4. Let A(m) be a symmetric and poswt@'ve definite matriv such that-
d(m) =A(m)m for every mEV y, i
where the vector d(m) s defined as tn Theorem 1. Then a parameter me Vu swtwsﬁes :
condition (7) stated én Theorem 1 &f and only of S
mTA(m)ym =inf {m" A(m)m[mEVM} I (13)
Proof If 0CV the asserion follows at once since A (m) is positive definite for
every mEV y. Now oonsuier the case OtV . -
(i) Let mEVy fulfil condition (7) stated in Theorem 1. Since A(m) is
symmetrlc and positive definite there exists a p X p-matrix D(m) such that 4 (m)=
p(m™p (m). Now (4), m#0, and the Schwarz inequality yield
mTA(m)m< (m"A(m))m* (m*D(m)TD (m)m)”<mTA(m)m
for every mE€Vy, i. e. (18) is valid.
(ii) Let mEVM fulfil (18) and assume that condition (7) stated in Theorem i
i§ not satisfied. Then there exists a parameter m &V y such that .
‘ mrA(m)m>mrA(m)m. .- L (14)
Since V y is convex m,=am-+ (1 -0t) mE V' for every o€ [0, 1]." A short caloulation
yields ' ' s
mIA(m)mg=m®A(m) m-+ oa[2fm,TA (m) (m—m) +o (m m) T A (m) (m— m) 1.
Therefore (14) shows that there exists an «*€ (0, 1) such that
' mEA (m)mg<<mTA (m)m for all a€ (0, o),
which contradists (13). _ . :
Note that by (8) in the proof of Theorem 1 the maxtrix
: Am) = A—-m?(Z+ M) 'm)2B(m), mEV y,
satlsﬁes the hypothesis d (m) =4 (m) m, mEV y, in Lemma 4. S
Theorem 4. Let the matriz R in the definition (1) of the loss function be given
by : '
‘ " R=yp3"1(S+M)3* for some »>0.
Then a parameter mEV y satisfies condition (T) stated im Theorem 1 ¢f and only %f
me (S-+ M) *m=inf [m? (Z+M) *m|mEVu}p. (15)
Proof The vector d (i) defined as in Theorem 1 satisfies
d(m) =v[(Z+ M) “Lmm? 4 (1— m® (Z+ M) ~1m)I] (Z+ M) tm
=p(Z+ M) *m, mEVy. ' _
Therefore the symmetric and positive definite matrix A(m) =v(Z+ M), mEVy;
fulfils the hypothesis of Lemma 4, which proves the theorem since (13)-and (15) are
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' obvmusly equivalent, , o

Since 2 and M are symmetrioc and posfﬁlve definite there exists a non-singular

matrix L with L' L= (Z+ M)~* Then the set '

Ly={w€R?|w="Lm, 'mEVM}
is compact and éonvex, and ‘the condition (15) in Theorem 4 is obviously equivalent
to : . - .
- g . W= mf{rw"wleLM} B - (16)
whereby w = LmE LM is the vector of shortest length in: LM L -
. Corollary 4. Let the matrices B, 3, and M satisfy the relations
ST T R2m 27 and B+ M=vy I for soms vy, v2>0. :

Then a pammeter mEVM satis ﬁes condition (T) stated 4n Theorem 1 'I/f and only fbf
ST : s =inf{m m|mEVy}, ' o - {@n
i. e, .m is the 'veotor of shortest length inV &, - SR :

Note that in particular the hypothesm of Corollary 4 is sa.msﬁed if the matrices
R, 2, and M are mulliples of the identity matrix I. =~ =~ = .. .

In the following first three examples for different subqets .F of ‘priors the I'~
minimax estimator is explioitly found by applying: Theorem 4 and Corollary 4, In
all these examples the least favourable prior ws is slways a non-singular normal
distiibubion, i. e. the mean veotor m is-always an inner point of Hy. The fourth
example 'shows that, this is generally ot valid. Although the subseb I” of prioi-s
-eontains non-singular normal distributions, i. e. Vy oonta,ins inner points of Hy, a
singular normal. distribution is least favourable in I'. WS

Ewample 1. Assume that X =cl, R=pl, and M= ,wI for some o, P, ,w>0 Let.

V={meR? (m—e)T(m—0)<r?}
be a p-dimensional sphere with centre ¢ € R? and radius >0, where =~
| ¢<m<¢+\/ﬁ, : e
such that 0¢V and such that VM V N Ey contains more than one pomt A short
caloulation shows that. t ' o

i =(1— cCOVNE

W ( \/ — ) E N By ‘
is the veotor of shortest length in ¥y, iie. condition (17) stabed in Corollary 4 is
satisfied. Therefore Corollary 4, Theorem 1,.and (5) show that- :

5 () = e T — o(ee =t . |
8m( ) G b <'u’I (G+M (\/ pep —’I‘)ﬁ)GTO 00 )97
o(~8e —r)

(ff—i—ﬁb (v e%e —1)?) \/c’l’ O wER”,“

is the qunique I’-mmlmax estimator- (exoept a sob of Lebesgue meagsure zero) and
that the prior; ‘ ‘ '
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) Wm=N(<1— )c I~ i:/f“—c&c-;@fccr) |

is least favourable in T,

Eaample 2. Assume that Z‘ O‘I R= pI and M=pupl for some ¢, p, /.b>0 Let
V= {mE R”[mTc>1}
‘be a semi spaee of R?, where c€ R” satisfies ¢%c>>1/p, such that OGEV and such ’nhat
VM——V ﬂ By contains more than one pomt A short caleulation shows tha,t

’ m—-é—--cE@VﬂEu

is the vector of shortest length in Vi, i e. condﬂuon (17 ) stated in Corollary 4 is
satisfied. Therefore Oorollary 4, Theorem 1 and (5) show that

i =——————1 ( . ! ""‘;0' A T>‘ ST S
.8m(w). o+ :“'I ((0'+l_1(-)9_?!€?‘1)0é€0 ce” )

o o
e (o+w)efe—1 o aC RS,

is the unique I'-minimax estimator (except a set of  Lebesgte measuré zerd) and

that the prior L T L Lo
w N<_—éi'c e, ul "(cﬂ'c) = CC |

is least favourable in I, _
Eoumple 3. Assume that X =diag(oy, - o-p) M= dl&g(llq, .- lty), and
Adlag(m,f--.-., G”+ p ”>
ot oy /0
are dlagonal—matrmes for Some A, Gy, **1, Oy f; *** fhe>0; Lei;
_ {mE R”!a,,<mi<,8¢, 1<@<p}
be a p—dlmenssonal oube, Where &, BER?, a;<B;, 1<6<p. Deﬁne mE R’ by
{oc,} for a,>0

~

m; =40 for (t,,<0<,3,, 1<'&<p,
B; for” ,8 <0.
Assume that Vy=V | By contams more than one pomt Wthh is obv:rously eqmva—-
lent Ho : - » 'j S
o m”'M -1 "E

i=1 /-l'e'

because of Lemma 1. The non—smgular matrix

L d a <
satisfies ITL= (Z+ M) and the seb Ly as defined after Theorem 4 is given by

Ly={w€& R”lfw—-Lm, meE VM}
<wz\

w R”
{ E | \/ O-?,+l-l/b \/ O'z [-111, . . o=l o L S
Henee fw-*LmE LM fulfils condltlon (16) and.therefore. mEVM saiusﬁes eondltmn

1<%<p, paflanls ’”’*<1}
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(15) stated -in Theorem 4, Thus Theorem 4 and Theorem 1 show that dx€ 4 as
defined in (5) is thé unique T—mmlma,x estimator (except a seb of Lebesgue Imeasure
zero) a,nd tha,t the prior ’ '

wm=N (m, M—'IT?,F?,T)

ig least favonrable in I,

1 . 4.0
Example 4 Assumetha,’o_p 2, 2= [E 2] R—'[ 0 :]’and-M?l:' Oj

Then |
| B={ (s, ) €B2| F -+ mi<1}
is an ellipse with semi-axes (2, 0) and (0,. 1). iiei;

o V = {(m, ms) € R? [y +2my>c}

be a semi-plane whereby 10/+/ 17 <e<<2+/ 2., T_he' condition ¢<2+/ 2 ensures that
V u=V [1.Ey containg inner points of Hy. Then

Vu= {(mi, fmz)GE"l —--—milﬂ/z——c” = (e—my)

. <m2<J 1_—‘ m;}
Therefore - . . . :
~ (¢ _ [ 1 5 ¢ _1_J _"'1"'“2)r.
The condition ¢>10/~/17 ensures that 7 is the veotor of shorbest length in Vy,

i. . condition (17) stated in Corollary 4- is sabisfied, Therefore Oorollar y 4 and
Theorem 1 show that the pmor '

. Wﬁi=N<’;77’7 M-';%’”F;"T)
is least favourable in I‘ whereby ﬁhe mabrix
| 1

2+0Q/2—-"—02 ‘1-—'.-2 )

.1‘——4-02 | i—(z—dz-—i—&)

The author would like o express. his gratitude to 4Doet01 Eichenauer,

M- mmT—-(
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Professor Kindler, Pro fessor Lehn, and Professor Wegmann for their valuable
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