GAMMA-MINIMAX ESTIMATORS FOR THE MEAN VECTOR OF A MULTIVARIATE NORMAL DISTRIBUTION

CHEN LANXIANG (陈兰祥)*

Abstract

 Γ -minimax estimators are determined for the mean vector of a multivariate normal distribution under arbitrary squared error loss. Thereby the set Γ consists of all priors whose vector of first moments and matrix of second moments satisfy some given restrictions. Necessary and sufficient conditions are derived which ensure a prior being least favourable in Γ and the unique Bayes estimator with respect to this prior being Γ -minimax. By applying these results the Γ -minimax estimator is explicitly found in some special cases or can be computed by solving a system of non-linear equations or by minimizing a quadratic form on a compact and convex set.

§1. Introduction

Eestimating the mean vector of a multivariate normal distribution is a common statistical problem. It arises for example from regression models (see e. g. [1], p. 236). In this paper the problem of determining Γ -minimax estimators under arbitrary squared error loss is considered. Thereby the covariance matrix of the normal distribution is assumed to be known. The subset Γ of priors is fixed by imposing restrictions on the vector of first moments and the matrix of second moments. Similar sets Γ are considered by Solomon (1972)^[6]. However in [6] the analysis is restricted to linear estimators. In the univariate case with Γ consisting of all priors with fixed first and second moments the Γ -minimax estimator is already known (see [1], Example 4.29, and [3]).

In the third section the unique Bayes estimators with respect to a class of normal priors in Γ and their risk functions are determined. In the fourth section the basic characterization of the Γ -minimax estimator is proved. This characterization shows that determining the Γ -minimax estimator is equivalent to determining the stationary point of a compact and convex subset of an Euclidean space \mathbf{R}^{p} . By applying this result in two special cases the Γ -minimax estimator is ex-

Manuscript received March 14, 1988.

^{*} Department of Applied Mathematics, Tongji University, Shanghai, China.

plicitly found. In the fifth section a geometric characterization of the Γ -minimax estimator is proved. This result shows that the Γ -minimax estimator can often be determined by solving a system of nonlinear equations. The sixth section shows that the Γ -minimax estimator can be calculated by minimizing a quadratic form on a compact and convex subset of \mathbf{R}^p if the loss function, the covariance matrix of the normal distributions, and the subset Γ of prior satisfy a certain condition. Examples are presented at the end of the paper where the Γ -minimax estimator is explicitly found.

§2. Notation and Preliminary Results

The mean vector $\theta \in \mathbf{R}^p$ of a multivariate mormal distribution with known, symmetric, and positive definite covariance matrix Σ is to be estimated under arbitrary squared error loss

$$\mathbf{s}(\theta, a) = (\theta - a)^T R(\theta - a), \ \theta, \ a \in \mathbf{R}^{\mathfrak{p}},$$
(1)

where R denotes a symmetric and positive definite matrix.

Let II be the set of all priors, i. e. Borel probability measures on \mathbf{R}^{p} , for which

$$m(\boldsymbol{\pi}) = \left(\int \theta_{i} \boldsymbol{\pi}(d\theta)\right)_{1 < i < p} \in \mathbf{R}^{p},$$

the vector of first moments, and

$$M(\pi) = \left(\int \theta_i \theta_j \pi(d\theta) \right)_{1 < i, j < p},$$

the symmetric and positive semi-definite matrix of second moments, exist. Let \leq denote the partial ordering on the set of symmetric $p \times p$ -matrices defined by $A \leq B$ if B-A is positive semi-definite.

In the sequel convex subsets of priors of the form

$$\Gamma = \{ \pi \in \Pi \mid m(\pi) \in V, \ M(\pi) \leq M \} \neq \emptyset$$

are considered, where the closed and convex set $\mathcal{V} \subset \mathbf{R}^p$ and the positive definite matrix M are fixed. In the whole paper the same results are obtained if subsets

$$\widetilde{\varGamma} = \{ \pi \in \Pi \mid m(\pi) \in V, \ M(\pi) = M \}$$

instead of Γ are considered. Put

$$E_M = \{m \in \mathbf{R}^p \mid m \cdot m^T \leq M\}$$

and $V_{\mathcal{M}} = V \cap E_{\mathcal{M}}$. The following lemma shows that $E_{\mathcal{M}}$ is an ellipsoid.

Lemma 1. The set E_M satisfies

$$E_M = \{m \in \mathbf{R}^p \mid m^T M^{-1} m \leq 1\}.$$

In particular E_M is compact and convex.

Proof A simple calculation shows

$$\begin{bmatrix} 1 & 0 \\ m & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & M - mm^T \end{bmatrix} \cdot \begin{bmatrix} 1 & m^T \\ 0 & I \end{bmatrix} = \begin{bmatrix} 1 & m^T \\ m & M \end{bmatrix}$$
$$= \begin{bmatrix} 1 & m^T M^{-1} \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} 1 - m^T M^{-1} m & 0 \\ 0 & M \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ M^{-1} m & I \end{bmatrix}$$

where I denotes the identity matrix. Hence $M - mm^{\tau}$ is positive semi-definite if and only if $1 - m^{T}M^{-1}m \ge 0$ since M is symmetric and positive definite.

By the Schwarz inequality $\pi \in \Gamma$ implies $m(\pi) \in E_M$ and therefore $m(\pi) \in V_M$. Hence

$$\Gamma = \{ \pi \in \Pi \mid m(\pi) \in V_M, \ M(\pi) \leq M \}.$$
⁽²⁾

If $m \in V_M$ then the normal distribution $\pi = N(m, M - mm^T)$ is a prior in Γ . This implies that $\Gamma \neq \emptyset$ if and only if $V_M \neq \emptyset$. In particular Lemma 1 shows that the set V_M is compact and convex.

Let Δ be the set of all (non-randomized) estimators, i. e. Borel measurable functions δ ; $\mathbf{R}^{p} \rightarrow \mathbf{R}^{p}$. The Bayes risk of an estimator $\delta \in \Delta$ with respect to a prior $\pi \in \Pi$ is defined by

$$r(\pi, \delta) = \int R(\theta, \delta) \pi(d\theta), \qquad (3)$$

where $R(\cdot, \delta)$ denotes the risk function of δ given by

$$R(\theta, \ \delta) = \frac{1}{\sqrt{(2\pi)^{p} \det \Sigma}} \int_{\mathbf{R}^{p}} (\theta - \delta(x))^{T} R(\theta - \delta(x))$$
$$\cdot e^{-\frac{1}{2}(x-\theta)^{T \sum_{-1}(x-\theta)}} dx, \ \theta \in \mathbf{R}^{p}.$$
(4)

An estimator $\delta^* \in \Delta$ with

 $\sup_{\pi\in\Gamma} r(\pi, \, \delta^*) = \inf_{\delta\in\mathcal{A}} \sup_{\pi\in\Gamma} r(\pi, \, \delta)$

is called Γ -minimax estimator, i. e. a Γ -minimax estimator minimizes the maximum Bayes risk with respect to the elements of Γ .

§3. A Class of Bayes Estimators with Respect to Normal Priors

In the sequel the normal priors

$$\pi_M = N(m, M - mm^T) \in \Gamma$$

are considered where $m \in V_M$. It is well known (see e. g. [1], Example 4.9 and p. 162, and [7], Theorem 2.2.7 and Remark 2.2.2) that under squared error loss (1) the linear estimator $\delta_M \in \mathcal{A}$ with

 $\delta_{\mathcal{M}}(x) = (I - \Sigma(\Sigma + M - mm^{T})^{-1})x + \Sigma(\Sigma + M - mm^{T})^{-1}m, x \in \mathbf{R}^{p},$

is the unique Bayes estimator with respect to π_M (except a set of Lebesgue measure zero). The Sherman-Morrison formula (see e. g. [5], 2.3.11)

$$(\Sigma + M - mm^{T})^{-1} = (\Sigma + M)^{-1} + \frac{(\Sigma + M)^{-1}mm^{T}(\Sigma + M)^{-1}}{1 - m^{U}(\Sigma + M)^{-1}m}$$

and a short calculation yield

$$\delta_{m}(x) = \left[M(\Sigma + M)^{-1} - \frac{\Sigma(\Sigma + M)^{-1}mm^{T}(\Sigma + M)^{-1}}{1 - m^{T}(\Sigma + M)^{-1}m} \right] x$$

+ $\frac{\Sigma(\Sigma + M)^{-1}}{1 - m^{T}(\Sigma + M)^{-1}m} m, x \in \mathbf{R}^{p}.$ (5)

The risk function (4) of a linear estimator $\delta(x) = Ax + b$, $x \in \mathbb{R}^p$, A being a $p \times p$ -matrix, $b \in \mathbb{R}^p$, has the form

$$R(\theta, \ \delta) = ((I-A)\theta - b)^{T}R((I-A)\theta - b) + \operatorname{rr}(A^{T}RA\Sigma), \ \theta \in \mathbb{R}^{p},$$

ore tr(·) denotes the trace of a matrix. In case of the linear Bayes estimator δ_{m}

where $tr(\cdot)$ denotes the trace of a matrix. In case of the linear Bayes es in (5) this yields

$$R(\theta, \delta) = (\theta - m)^{T}B(m)(\theta - m) + c(m), \ \theta \in \mathbf{R}^{p},$$

where

$$B(m) = \left[I + \frac{(\Sigma - M)^{-1}mm^{T}}{1 - m^{T}(\Sigma + M)^{-1}m}\right] (\Sigma + M)^{-1} \Sigma R \Sigma (\Sigma + M)^{-1}$$
$$\cdot \left[I + \frac{mm^{T}(\Sigma + M)^{-1}}{1 - m^{T}(\Sigma + M)^{-1}m}\right]$$

is a symmetric and positive definite matrix and

$$(m) = \operatorname{tr}(O(m))$$

denotes the trace of the matrix

$$\begin{aligned} & C(m) = (\Sigma + M)^{-1} \Big[M - \frac{mm^{T}(\Sigma + M)^{-1}\Sigma}{1 - m^{T}(\Sigma + M)^{-1}m} \Big] R \\ & \cdot \Big[M - \frac{\Sigma(\Sigma + M)^{-1}mm^{T}}{1 - m(\Sigma + M)^{-1}m} \Big] (\Sigma + M)^{-1}\Sigma. \end{aligned}$$

Hence the Bayes risk (3) of δ_m with respect to a prior $\pi \in \Pi$ is given by $r(\pi, \delta_m) = \operatorname{tr}(B(m)M(\pi)) - 2m^{\tau}B(m)m(\pi) + m^{\pi}B(m)m + c(m).$

c

(6)

3

§4. The Basic Characterization of the Γ -Minimax Estimator

If a parameter $\widetilde{m} \in V_M$ satisfies condition (7) in the following first theorem then the normal prior $\pi_{\widetilde{m}} = N(\widetilde{m}, M - \widetilde{m}\widetilde{m}^T)$ is least favourable in Γ , i. e.

$$\inf_{\delta \in A} r(\pi_{\widetilde{m}}, \delta) = \sup_{\pi \in \Gamma} \inf_{\delta \in A} r(\pi, \delta),$$

and the Bayes estimator $\delta_{\widetilde{m}}$ with respect to $\pi_{\widetilde{m}}$ is Γ -minimax. The second theorem shows that there exists exactly one parameter $\widetilde{m} \in V_M$ which fulfils condition (7) in Theorem 1. The proof of Theorem 2 uses a stationary point result of Browder and Karamardian which follows from a minimax inequality of Ky Fan.

Theorem 1. If $\widetilde{m} \in V_M$ satisfies

 $d(\widetilde{m})^{T}\widetilde{m} = \inf \{ d(\widetilde{m}) \mid m \mid m \in V_{M} \},\$

(7)

then $\delta_{\tilde{m}}$ according to (5) is the unique Γ -minimax estimator (except a set of Lebesgue measure zero) and the prior $\pi_{\tilde{m}} = N(\tilde{m}, M - \tilde{m}\tilde{m}^{T})$ is least favourable in Γ , whereby

$$b(m) = [(\Sigma + M)^{-1}mm^{T} + (1 - m^{T}(\Sigma + M)^{-1}m)]$$

 $(\Sigma+M)^{-1}\Sigma R\Sigma (\Sigma+M)^{-1}m, \ m \in V_M.$

Proof First note that

$$B(m)m = (1 - m^{T}(\Sigma + M)^{-1}m)^{-2}d(m), m \in V_{M}.$$

Since $B(\tilde{m})$ is symmetric and positive definite, there exists a non-singular matrix A such that $B(\tilde{m}) = AA^{T}$. Therefore

 $\operatorname{tr}\left(B(\widetilde{m})\left(M-M(\pi)\right)\right)=\operatorname{tr}\left(A^{T}\left(M-M(\pi)\right)A\right) \geq 0,$

since $M - M(\pi)$ and thus $A^{T}(M - M(\pi)) A$ are positive semi-definite for every $\pi \in \Gamma$ by $M(\pi) \leq M$. Hence

 $\operatorname{tr}(B(\widetilde{m})M(\pi)) \leq \operatorname{tr}(B(\widetilde{m})M), \ \pi \in \Gamma.$

Now (2), (6), (7), (8) and (9) yield

$$\sup_{\pi \in \Gamma} r(\pi, \delta_{\widetilde{m}}) = \sup_{\pi \in \Gamma} [\operatorname{tr}(B(\widetilde{m})M(\pi)) - 2\widetilde{m}^{T}B(\widetilde{m})m(\pi) + \widetilde{m}^{T}B(\widetilde{m})\widetilde{m} + c(\widetilde{m})]$$

$$\leq \operatorname{tr}(B(\widetilde{m})M) - 2(1 - \widetilde{m}^{T}(\Sigma + M)^{-1}\widetilde{m})^{-2} \inf_{\pi \in \Gamma} d(\widetilde{m})^{T}m$$

$$+\widetilde{m}^{T}B(\widetilde{m})\widetilde{m}+c(\widetilde{m})$$

$$= \operatorname{tr} \left(B(\widetilde{m}) M \right) - \widetilde{m}^{T} B(\widetilde{m}) \widetilde{m} + c(\widetilde{m}) = r(\pi_{\widetilde{m}}, \delta_{\widetilde{m}}).$$

Therefore $(\pi_{\widetilde{m}}, \delta_{\widetilde{m}}) \in \Gamma \times \Delta$ is a saddle point in the statistical game (Γ, Δ, r) which proves the theorem by a well known result in game theory, whereby the Γ -minimax estimator is uniquely determined since $\delta_{\widetilde{m}}$ is the unique Bayes estimator with respect to $\pi_{\widetilde{m}}$.

Theorem 2. There exists a unequely determined $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1, i. e.

 $d(\widetilde{m})^{T}\widetilde{m} = \inf \{ d(\widetilde{m})^{T}m | m \in V_{M} \}.$

Proof It is obvious that the function $d: V_M \to \mathbb{R}^p$ defined as in Theorem 1 is continuous. The set $V_M \neq \emptyset$ is compact and convex. Therefore a result of Browder and Karamardian (see [2], Lemma 3.3.1), which is a special case of a minimax inequality due to Ky Fan([4], Corollary 1), yields the existence of a parameter $\widetilde{m} \in V_M$ which satisfies (7) stated in Theorem 1, i. e. \widetilde{m} is a so-called stationary point of V_M .

Now assume that \widetilde{m} and \overline{m} are two stationary points of $\mathcal{V}_{\mathcal{M}}$. Then the Bayes estimators $\delta_{\widetilde{m}}$ and $\delta_{\overline{m}}$ are both Γ -minimax estimators because of Theorem 1 and satisfy

$$\delta_{\widetilde{m}}(\widetilde{m}) - \delta_{\overline{m}}(\widetilde{m}) = \Sigma \Big[(\Sigma + M)^{-1} + \frac{(\Sigma + M)^{-1} \overline{m} \overline{m}^T (\Sigma + M)^{-1}}{1 - \overline{m}^T (\Sigma + M)^{-1} \overline{m}} \Big] (\widetilde{m} - \overline{m}).$$
(10)

The uniqueness of the Γ -minimax estimator (except a set of Lebesgue measure zero) and the linearity of the estimators $\delta_{\widetilde{m}}$ and $\delta_{\widetilde{m}}$ yield $\delta_{\widetilde{m}}(\widetilde{m}) = \delta_{\overline{m}}(\widetilde{m})$. This and (10) show that $\widetilde{m} = \widetilde{m}$.

49

(8)

CHIN. ANN. OF MATH.

In the following two corollaries the Γ -minimax estimator is explicitly determined by applying Theorem 1 for two special forms of the set $V \subset \mathbb{R}^p$ in the definition of the subset Γ of priors.

Corollary 1. If $V = \{m\}$, $m \in \mathbb{R}^{9}$, $mm^{T} \leq M$, consists of exactly one point then $V_{M} = \{m\}$ and $\widetilde{m} = m$ satisfies (7) stated in Theorem 1.

In the univariate case with fixed second moment, i. e. p=1, $\Sigma = \sigma^2 > 0$, $\omega^2 = M - m^2 \ge 0$, and

$$\widetilde{\Gamma} = \Big\{ \pi \in \Pi \, | \, \int \theta \pi \, (d\theta) = m, \, \int \theta^2 \pi \, (d\theta) = M \Big\},$$

the \tilde{T} -minimax estimator

$$\delta_m(x) = \frac{\omega^2 x + \sigma^2 m}{\omega^2 + \sigma^2}, \ x \in \mathbb{R}$$

obtained by Corollary 1 is already known (see [1], Example 4.29, p. 216, and [3]),

Corollary 2. If $0 \in V$ then $0 \in V_M$ and $\tilde{m} = 0$ satisfies (7) sated in Theorem 1, *i. e.*

 $\delta_0(x) = M(\Sigma + M)^{-1}x, x \in \mathbb{R}^p,$

is the unique Γ -minimax estimator and

$$\pi_0 = N(0, M)$$

is least favourable in Γ .

In view of Corollary 2 it is subsequently assumed that $0 \notin V$. In particular Corollary 2 can be applied to $V = \mathbf{R}^{p}$, i. e. in the case

$$\Gamma = \{ \pi \in \Pi \mid M(\pi) \leq M \},\$$

where restrictions are imposed only on the matrix $M(\pi)$ of second moments for priors $\pi \in \Pi$.

§ 5. A Geometric Characterization of the Γ -Minimax Estimator

The following lemma shows that in the case $0 \notin V$ the according to Theorem 2 uniquely determined parameter $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1 is a boundary point of the set V_M . This makes it feasible to give in Theorem 3 a geometric characterization of the parameter $\widetilde{m} \in V_M$.

Lemma 3. If $0 \notin V$ then the parameter $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1 is an element of the boundary ∂V_M of V_M .

Proof Assume that $\widetilde{m} \neq 0$ is an inner point of V_M and satisfies (7). Then $d(\widetilde{m}) \neq 0$ because of (8), $\widetilde{m} \neq 0$, and $B(\widetilde{m})$ being positive definite. Hence without loss of generality $\widetilde{d}_i > 0$ for some $1 \leq i \leq p$ where $d(\widetilde{m}) = (\widetilde{d}_i)_{1 \leq i \leq p}$.

Since \widetilde{m} is an inner point of V_M there exists an $\varepsilon > 0$ such that $\overline{m} = \widetilde{m} - \varepsilon \varepsilon_i \in V_M$ where ε_i denotes the *i*-th unit vector in \mathbb{R}^p . Then $d(\widetilde{m})^{T}\widetilde{m} = d(\widetilde{m})^{T}\widetilde{m} - \varepsilon \widetilde{d}_{i} < d(\widetilde{m})^{T}\widetilde{m},$

which contradicts (7).

Before the geometric characterization of the Γ -minimax estimator is given in Theorem 3 some further notation is necessary.

Since V_M is closed and convex there exists at least one outer unit normal vector $n(m) \in \mathbb{R}^p$ belonging to a supporting hyperplane of V_M for every boundary point $m \in \partial V_M$, i. e.

 $n(m)^T n(m) = 1$

and

 $n(m)^T v \leq n(m)^T m$

for all $v \in V_M$. Let

$$H(n(m)) = \{v \in \mathbf{R}^{p} | v = m + h, n(m)^{m} h = 0, h \in \mathbf{R}^{p}\}, m \in \partial V_{M},$$

be the supporting hyperplane corresponding to the normal vector n(m) which contains the point $m \in \partial V_M$, but no inner point of V_M , i. e. $\{m\} \subset H(m) \cap V_M \subset \partial V_M$.

Theorem 3. A papameter $\widetilde{m} \in \partial V_M$ fulfils condition (7) stated in Theorem 1 if and only if there exists a $\tilde{\lambda} > 0$ and an outer unit normal vector $n(\widetilde{m})$ such that

$$n(\widetilde{m}) + \widetilde{\lambda} d(\widetilde{m}) = 0$$

i. e. the normal vector $n(\widetilde{m})$ and the vector $d(\widetilde{m})$ defined as in Theorem 1 are parallel but have different directions.

Proof (i) Let $\widetilde{m} \in \partial V_M$ satisfy (7) stated in Theorem 1. Let

 $H_{\mu} = \{ v \in \mathbf{R}^{p} | v = \mu d(\widetilde{m}) + h, \ d(\widetilde{m}) h = 0, \ h \in \mathbf{R}^{p} \}, \ \mu \in \mathbf{R},$

denote the hyperplane which is orthogonal to $d(\widetilde{m})$ and contains $\mu d(\widetilde{m})$. Then the hyperplanes H_{μ} , $\mu \in \mathbb{R}$, form a partition of \mathbb{R}^{p} and $d(\widetilde{m})^{T}v = \mu d(\widetilde{m})^{T}d(\widetilde{m})$ if and only if $v \in H_{\mu}$. Since V_{M} is compact and convex there exists a number $\mu_{0} \in \mathbb{R}$ with

$$\mu_{0} = \inf \{ \mu \in \mathbf{R} \mid H_{\mu} \cap \mathcal{V}_{M} \neq \emptyset \}.$$
(11)

Therefore

$$\inf_{m\in V_{\mathcal{U}}} d(\widetilde{m})^{\mathrm{T}} m = \inf \{ \mu d(\widetilde{m})^{\mathrm{T}} d(\widetilde{m}) \mid \mu \in \mathbb{R}, \ H_{\mu} \cap V_{\mathcal{M}} \neq \emptyset \} = \mu_0 d(\widetilde{m})^{\mathrm{T}} d(\widetilde{m}).$$

This and $m \in \partial V_M$ satisfying (7) yield

$$l(\widetilde{m})^{T}\widetilde{m} = \mu_{0}d(\widetilde{m})^{T}d(\widetilde{m})$$

and hence $\widetilde{m} \in H_{\mu_0 i}$. Now (11) implies $H_{\mu_0} \cap V_M \subset \partial V_M$. Since $d(\widetilde{m})$ is orthogonal to H_{μ_0} the vector $n_0 = -\tilde{\lambda} d(\widetilde{m})$ with $\tilde{\lambda} = (d(\widetilde{m})^T d(\widetilde{m}))^{-1/2}$ which satisfies

 $n_0^T v \leq n_0^T \widetilde{m}$ for all $v \in V_M$

because of (7) is an outer unit normal vector and obviously

$$u_0 + \tilde{\lambda} d(\tilde{m}) = 0.$$

(ii) Let $\tilde{\lambda} > 0$ and $\tilde{m} \in \partial V_M$ such that

$$n(\widetilde{m}) + \widetilde{\lambda} d(\widetilde{m}) = 0,$$

where $n(\widetilde{m})$ is an outer unit normal vector. Then

 $n(\widetilde{m})^T v \leq n(\widetilde{m})^T \widetilde{m}$ for all $v \in V_M$

implies

 $d(\widetilde{m})^T v \gg d(\widetilde{m})^T \widetilde{m}$ for all $v \in V_M$,

i.e. (7) is satisfied.

Of special interest is the case where $0 \notin V$, $V \subset E_M$, and the boundary of V is smooth such that a uniquely determined outer unit normal vector n(m) exists for every boundary point $m \in \partial V$. Then Theorem 2, Lemma 3, and Theorem 3 show that the parameter $\widetilde{m} \in \partial V$ which fulfils condition (7) stated in Theorem 1 satisfies $n(\widetilde{m}) + \widetilde{\lambda} d(\widetilde{m}) = 0$

for some
$$\tilde{\lambda} > 0$$
. Therefore $(\tilde{\lambda}, \tilde{m}) \in (0, \infty) \times \partial V$ is the uniquely determined solution of the system of p non-linear equations

$$n(m) + \lambda d(m) = 0,$$

where $(\lambda, m) \in (0, \infty) \times \partial V$.

In the case $0 \notin V$ and $V \not\subset M_M$ the following corollary shows with the add of the geometric characterization given in Theorem 3 that the parameter $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1 and which is an element of ∂V_M according to Lemma 3 is in fact an element of the genuine subset $\partial V \cap E_M$ of ∂V_M .

Corollary 3. If $0 \notin V$ then the parameter $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1 is an element of the set $\partial V \cap E_M$, i. e. $\widetilde{m} \notin \partial E_M \cap V$ where V denotes the interior of V.

Proof Lemma 3 and $0 \notin V$ yield $\widetilde{m} \in \partial V_M$. Assume that $\widetilde{m} \in \partial E_M \cap \mathring{V}$. Then a uniquely determined outer unit normal vector $n(\widetilde{m})$ exists because of Lemma 1. By Theorem 3 there exists a $\tilde{\lambda} > 0$ such that

$$n(\widetilde{m}) + \widetilde{\lambda} d(\widetilde{m}) = 0.$$
⁽¹²⁾

Now consider the subset

$$\Gamma^* = \{ \pi \in \Pi \mid M(\pi) \leq M \}$$

of priors, i. e. $V_{\mathcal{M}}^* = E_{\mathcal{M}}$. Then (12) keeps valid and Theorem 3 and Theorem 2 show that $\widetilde{m} \in V_{\mathcal{M}}^*$ is the uniquely determined parameter which satisfies (7) stated in Theorem 1. This and $\widetilde{m} \neq 0$ contradict Corollary 2.

§6. Special Quadratic Loss Functions

In this last section the matrix R in the definition (1) of the loss function, the co-variance matrix Σ of the normal distributions, and the matrix M in the definition of the subset Γ of priors satisfy a certain relation given in Theorem 4 below. Then the parameter $\widetilde{m} \in V_M$ which fulfils condition (7) stated in Theorem 1 is the minimum of a quadratic form on the compact and convex set V_M . If the matrices R, Σ , and M satisfy a second relation the parameter \widetilde{m} is simply the vector of shortest length in V_M as it is shown in Corollary 4. In some examples at the end of this section the Γ -minimax estimator is explicitly determined.

First a technical lemma is proved where a condition is given which is equivalent to (7) stated in Theorem 1.

Lemma 4. Let A(m) be a symmetric and positive definite matrix such that

d(m) = A(m)m for every $m \in V_M$,

where the vector d(m) is defined as in Theorem 1. Then a parameter $\tilde{m} \in V_M$ satisfies condition (7) stated in Theorem 1 if and only if

$$\widetilde{m}^{T}A(\widetilde{m})\widetilde{m} = \inf\{m^{T}A(\widetilde{m})m | m \in V_{M}\}.$$
(13)

Proof If $0 \in V$ the assertion follows at once since A(m) is positive definite for every $m \in V_M$. Now consider the case $0 \notin V$.

(i) Let $\widetilde{m} \in V_M$ fulfil condition (7) stated in Theorem 1. Since $A(\widetilde{m})$ is symmetric and positive definite there exists a $p \times p$ -matrix $D(\widetilde{m})$ such that $A(\widetilde{m}) = D(\widetilde{m}^T)D(\widetilde{m})$. Now (4), $\widetilde{m} \neq 0$, and the Schwarz inequality yield

 $\widetilde{m}^{T}A(\widetilde{m})\widetilde{m} \leqslant (\widetilde{m}^{T}A(\widetilde{m}))\widetilde{m}^{-1} \cdot (\widetilde{m}^{T}D(\widetilde{m})^{T}D(\widetilde{m})m)^{2} \leqslant m^{T}A(\widetilde{m})m$

for every $m \in V_M$, i. e. (13) is valid.

(ii) Let $\widetilde{m} \in V_M$ fulfil (13) and assume that condition (7) stated in Theorem 1. is not satisfied. Then there exists a parameter $\overline{m} \in V_M$ such that

$$\widetilde{m}^{T}A(\widetilde{m})\widetilde{m} > \widetilde{m}^{T}A(\widetilde{m})\widetilde{m}.$$
 (14)

Since $V_{\underline{M}}$ is convex $m_{\alpha} = \alpha \overline{m} + (1-\alpha) \widetilde{m} \in V_{\underline{M}}$ for every $\alpha \in [0, 1]$. A short calculation yields

 $m_{\alpha}^{T}A(\widetilde{m})m_{\alpha} = \widetilde{m}^{T}A(\widetilde{m})\widetilde{m} + \alpha[2\widetilde{m}^{T}A(\widetilde{m})(\overline{m} - \widetilde{m}) + \alpha(\overline{m} - \widetilde{m})^{T}A(\widetilde{m})(\overline{m} - \widetilde{m})].$ Therefore (14) shows that there exists an $\alpha^{*} \in (0, 1)$ such that

 $m_{\alpha}^{T}A(\widetilde{m})m_{\alpha} < \widetilde{m}^{T}A(\widetilde{m})\widetilde{m} \text{ for all } \alpha \in (0, \alpha^{*}),$

which contradicts (13).

Note that by (8) in the proof of Theorem 1 the maxtrix

$$A(m) = (1 - m^{T} (\Sigma + M)^{-1} m)^{2} B(m), \ m \in V_{M},$$

satisfies the hypothesis d(m) = A(m)m, $m \in V_M$, in Lemma 4.

Theorem 4. Let the matrix R in the definition (1) of the loss function be given by

$$R = \nu \Sigma^{-1} (\Sigma + M) \Sigma^{-1} \quad for some \ \nu > 0.$$

Then a parameter $\widetilde{m} \in V_M$ satisfies condition (7) stated in Theorem 1 if and only if $\widetilde{m}^T (\Sigma + M)^{-1} \widetilde{m} = \inf [m^T (\Sigma + M)^{-1} m | m \in V_M].$ (15)

Proof The vector d(m) defined as in Theorem 1 satisfies

$$d(m) = \nu [(\Sigma + M)^{-1} m m^{T} + (1 - m^{T} (\Sigma + M)^{-1} m) I] (\Sigma + M)^{-1} m$$

$$=\nu(\Sigma+M)^{-1}m, m\in V_M.$$

Therefore the symmetric and positive definite matrix $A(m) = \nu (\Sigma + M)^{-1}$, $m \in \mathcal{V}_{M_{\mathcal{F}}}$ fulfils the hypothesis of Lemma 4, which proves the theorem since (13) and (15) are

obviously equivalent.

Since Σ and M are symmetric and positive definite there exists a non-singular matrix L with $L^r L = (\Sigma + M)^{-1}$. Then the set

$$L_{\mathcal{M}} = \{ w \in \mathbf{R}^{v} | w = Lm, m \in V_{\mathcal{M}} \}$$

is compact and convex, and the condition (15) in Theorem 4 is obviously equivalent to

$$\widetilde{w}^{T}\widetilde{w} = \inf\{w^{T}w | w \in L_{M}\}$$
(16)

whereby $\widetilde{w} = L\widetilde{m} \in L_M$ is the vector of shortest length in L_M .

Corollary 4. Let the matrices R, Σ , and M satisfy the relations

 $R = \nu_1 \Sigma^{-2} \text{ and } \Sigma + M = \nu_2 \text{ I for some } \nu_1, \ \nu_2 > 0.$ Then a parameter $\widetilde{m} \in V_M$ satisfies condition (7) stated in Theorem 1 if and only if $\widetilde{m} : \widetilde{m} = \inf\{m^T m \mid m \in V_M\},$ (17)

i. e. \widetilde{m} is the vector of shortest length in V_{M} .

Note that in particular the hypothesis of Corollary 4 is satisfied if the matrices R, Σ , and M are multiples of the identity matrix I.

In the following first three examples for different subsets Γ of priors the Γ minimax estimator is explicitly found by applying Theorem 4 and Corollary 4. In all these examples the least favourable prior $\pi_{\tilde{m}}$ is always a non-singular normal distribution, i. e. the mean vector \tilde{m} is always an inner point of E_M . The fourth example shows that this is generally not valid. Although the subset Γ of priors contains non-singular normal distributions, i. e. V_M contains inner points of E_M , a singular normal distribution is least favourable in Γ .

Example 1. Assume that $\Sigma = \sigma I$, $R = \rho I$, and $M = \mu I$ for some σ , ρ , $\mu > 0$. Let $V = \{m \in \mathbf{R}^p \mid (m-c)^T (m-c) \leq r^2\}$

be a p-dimensional sphere with centre $c \in \mathbf{R}^{p}$ and radius r > 0, where

$$r < \sqrt{c^{\mathrm{T}}c} < r + \sqrt{\mu},$$

such that $0 \notin V$ and such that $V_M = V \cap E_M$ contains more than one point. A short calculation shows that

$$\widetilde{m} = \left(1 - \frac{r}{\sqrt{c^{\pm}c}}\right) c \in \partial V \cap E_{M}$$

is the vector of shortest length in V_M , i. e. condition (17) stated in Corollary 4 is satisfied. Therefore Corollary 4, Theorem 1, and (5) show that

$$\delta_{\widetilde{m}}(x) = \frac{1}{\sigma + \mu} \left(\mu I - \frac{\sigma (\sqrt{c^{\tau}c} - r)^2}{(\sigma + \mu - (\sqrt{c^{\tau}c} - r)^2)c^{\tau}c} cc^{\tau} \right) x$$
$$+ \frac{\sigma (\sqrt{c^{\tau}c} - r)}{(\sigma + \mu - (\sqrt{c^{\tau}c} - r)^2)\sqrt{c^{\tau}c}} c, x \in \mathbf{R}^p,$$

is the unique Γ -minimax estimator (except a set of Lebesgue measure zero) and that the prior

$$\mathbf{w}_{\widetilde{m}} = N\left(\left(1 - \frac{r}{\sqrt{c^{T}c}}\right)c, \ \mu I - \frac{\left(\sqrt{c^{T}c} - r\right)^{2}}{c^{T}c} c c^{T}\right)$$

is least favourable in Γ .

Example 2. Assume that $\Sigma = \sigma I$, $R = \rho I$, and $M = \mu I$ for some σ , ρ , $\mu > 0$. Let $V = \{m \in \mathbf{R}^p | m^T c \ge 1\}$

be a semi-space of \mathbb{R}^p , where $c \in \mathbb{R}^p$ satisfies $c^r c > 1/\mu$, such that $0 \notin V$ and such that $V_{\underline{M}} = V \cap E_{\underline{M}}$ contains more than one point. A short calculation shows that

$$\widetilde{m} = \frac{1}{c^{T}c} c \in \partial V \cap E_{M}$$

is the vector of shortest length in V_{M} , i. e. condition (17) stated in Corollary 4 is satisfied. Therefore Corollary 4, Theorem 1, and (5) show that

$$\delta_{\widetilde{m}}(x) = \frac{1}{\sigma + \mu} \left(\mu I - \frac{\sigma}{((\sigma + \mu)e^{\tau}e^{-1})e \cdot e} ee^{\tau} \right) x$$
$$+ \frac{\sigma}{(\sigma + \mu)e^{\tau}e^{-1}} e, x \in \mathbb{R}^{p},$$

is the unique Γ -minimax estimator (except a set of Lebesgue measure zero) and that the prior

$$\pi_{\widetilde{m}} = N\left(\frac{1}{c''c} c, \ \mu I - \frac{1}{(c''c)^2} cc^{\mathrm{T}}\right)$$

is least favourable in Γ .

.

ic fo

1.1

Example 3. Assume that $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_p), M = \operatorname{diag}(\mu_1, \dots, \mu_p)$, and

$$R = \lambda \operatorname{diag}\left(\frac{\sigma_1 + \mu_1}{\sigma_1^2}, \cdots, \frac{\sigma_p + \mu_p}{\sigma_p^2}\right)$$

are diagonal-matrices for some λ , σ_1 , ..., σ_p , μ_1 , ..., $\mu_p > 0$. Let

$$\mathbf{V} = \{ m \in \mathbf{R}^p | \alpha_i \leq m_i \leq \beta_i, \ 1 \leq i \leq p \}$$

be a *p*-dimensional cube, where $\alpha, \beta \in \mathbb{R}^p, \alpha_i \leq \beta_i, 1 \leq i \leq p$. Define $\widetilde{m} \in \mathbb{R}^p$ by

$$\widetilde{m}_{i} = \begin{cases} \alpha_{i} & \text{for } \alpha_{i} > 0, \\ 0 & \text{for } \alpha_{i} \leq 0 \leq \beta_{i}, \ 1 \leq i \leq p, \\ \beta_{i} & \text{for } \beta_{i} < 0. \end{cases}$$

Assume that $V_M = V \cap E_M$ contains more than one point, which is obviously equivalent to

$$\widetilde{m}^{T}M^{-1}\widetilde{m} = \sum_{i=1}^{p} \frac{\widetilde{m}_{i}^{2}}{\mu_{i}} < 1$$

because of Lemma 1. The non-singular matrix

$$L = \operatorname{diag}\left(\frac{1}{\sqrt{\sigma_1 + \mu_1}}, \dots, \frac{1}{\sqrt{\sigma_p + \mu_p}}\right)$$

satisfies $L^{\mathsf{T}}L = (\Sigma + M)^{-1}$ and the set L_M as defined after Theorem 4 is given by $L_M = \{w \in \mathbf{R}^p | w = Lm, m \in V_M\}$

$$= \Big\{ w \in \mathbf{R}^p | \frac{\alpha_i}{\sqrt{\sigma_i + \mu_i}} \leqslant w_i \leqslant \frac{\beta_i}{\sqrt{\sigma_i + \mu_i}}, \ 1 \leqslant i \leqslant p, \ \sum_{i=1}^n \frac{\sigma_i + \mu_i}{\mu_i} \ w_i^2 \leqslant 1 \Big\}.$$

Hence $\widetilde{w} = L\widetilde{m} \in L_M$ fulfils condition (16) and therefore $\widetilde{m} \in V_M$ satisfies condition

a in the Same and Anna an Anna Anna an Anna an

计群员 指示法的

Sand State States of the second s

e de la constante de la constant

(15) stated in Theorem 4. Thus Theorem 4 and Theorem 1 show that $\delta_{\widetilde{m}} \in \Delta$ as defined in (5) is the unique Γ -minimax estimator (except a set of Lebesgue measure zero) and that the prior

$$\pi_{\widetilde{m}} = N(\widetilde{m}, M - \widetilde{m}\widetilde{m}^{T})$$

is least favourable in Γ .

Example 4 Assume that
$$p=2$$
, $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 0 \\ 0 & 1/16 \end{bmatrix}$, and $M = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$.

Then

$$E_{M} = \left\{ (m_{1}, m_{2}) \in \mathbb{R}^{2} | \frac{1}{4} m_{1}^{2} + m_{2}^{2} \leq 1 \right\}$$

is an ellipse with semi-axes (2, 0) and (0, 1). Let

$$V = \{ (m_1, m_2) \in \mathbf{R}^2 | m_1 + 2m_2 \ge c \}$$

be a semi-plane whereby $10/\sqrt{17} \le c \le 2\sqrt{2}$. The condition $c \le 2\sqrt{2}$ ensures that $V_{M} = V \cap E_{M}$ contains inner points of E_{M} . Then

$$V_{M} = \left\{ (m_{1}, m_{2}) \in \mathbf{R}^{2} | \left| \frac{c}{2} - m_{1} \right| \leq \sqrt{2 - \frac{1}{4} c^{2}}, \frac{1}{2} (c - m_{1}) \\ \leq m_{2} \leq \sqrt{1 - \frac{1}{4} m_{1}^{2}} \right\}.$$

Therefore

$$\widetilde{m} = \left(\frac{c}{2} - \sqrt{2 - \frac{1}{4}c^2}, \frac{c}{4} + \frac{1}{2}\sqrt{2 - \frac{1}{4}c^2}\right)^T \in \partial V \cap \partial E_M.$$

The condition $c \ge 10/\sqrt{17}$ ensures that \widetilde{m} is the vector of shortest length in V_M , i. e. condition (17) stated in Corollary 4 is satisfied. Therefore Corollary 4 and Theorem 1 show that the prior

 $\pi_{\widetilde{m}} = N(\widetilde{m}, M - \widetilde{m}\widetilde{m}^T)$

is least favourable in $\varGamma,$ whereby the matrix

$$M - \widetilde{m}\widetilde{m}^{T} = \begin{pmatrix} 2 + c\sqrt{2 - \frac{1}{4}c^{2}} & 1 - \frac{1}{4}c^{2} \\ 1 - \frac{1}{4}c^{2} & \frac{1}{4}\left(2 - c\sqrt{2 - \frac{1}{4}c^{2}}\right) \end{pmatrix}$$

is singular.

The author would like to express his gratitude to Doctor Eichenauer, Professor Kindler, Pro fessor Lehn, and Professor Wegmann for their valuable hints.

References

[1] Berger, J. O., Statistical decision theory, 2d ed., Berlin-Heidelberg-New York, Springer, 1985. [2] Ichiishi, T., Game theory for economic analysis, New York-London, Academic Press, 1983.

[3] Jackson, D. A., O'Donovan, T. M., Zimmer, W. J. & Deely, J. J., G₂-minimax estimators in the exponential family, Biometrika, 57 1970, 439-443.

57

- [4] Ky Fan, A minimax inequality and applications, in O. Shisha (Ed.) Inequalities III, New York-London, Academic Press, 1972, 103-113.
- [5] Ortega, J. M. & Rheinholdt, W. C., Iterative solution of nonlinear equations in several variables, Orlando, Academic Press, 1970.
- [6] Soloman, D. L., A-minimax estimation of a multivariate location parameter, J. Amer. Statist. Assoc., 67 1972, 641-646.
- [7] Srivastava, M. S. & Khatri, C. G., An introduction to multivariate statistics, New York, North Holland, 1979.

. . . .

11: