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THE CHUNG-SMIRNOV LAW FOR THE
PRODUCT-LIMIT ESTIMATOR UNDER
~ RANDOM CENSORSHIP

e Gu MINGGAOH(I@'J"_?_%{.‘—:’}‘)*. |

| Abstradf -

The maximal deviation of the produet limit estimator on the whole line is
investigated.The analogue of Chuing-Smirnov law of iterated logarithm is proved under
very mild conditions on eensoring. An improved convergence rate is found and shown to-
be best possible, The result is proved by an ii.d. representation scheme of the product.
limit estimator on the whole line. Improved rates of convergence for the i. i, d.
representation on compact set are also derived. |

§ 1. Introduction and Main Results

Let X9, X3 .-+ be a sequence of independent real random  variables withe
common oontinuous distribution function F° Another sequence, independent of
the {X9}, Yy, Y, - of independent random variables with common (left:
continuous) distribution funofion H censors on the right the preceding one, so:
that the observation available to us at the n'* stage consist of the pairs (X §)),.
1<j<n, where X;=min (X}, Y;) and d; is the indioator of the event {X;=X7}..
The Kaplan-Meier™” §ypa product-limit estimator #2 of F° is defined by

| I A=1/m(X))%, <X
1= 59 . (8 ={1<f<”f<*
0, t>Xn:m

where X ,.,=max (Xy, +--, X,) and m(s)= 1§<” X ,>s) . Variants of the‘ Kaplan—
Meier estimate are Prentice’s™® moment estimator defined by
1=Fe@= I =1/ m&)+1)%
and Altshuler’s™ estimate _
1—59.(8) =exp(~ 2] di/m(X;)).

) <j<n X<t
The properties of F° were investigated notably by Breslow and Crowly™,
Aalen™? Susarla and Van Ryzin®2®! Fildes, Rejtd and Winter™, Fildes and
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Rejt6%8: 14 Phadia and Van Ryzin™®, Burke et al.™, Gill*"!8 Ghorai et al,ts)
Osorgs and Horvath™,; Lo and Singh™, Cuzick™, Wang® and many others,
Let F he the distribution function of X and A
U.()) =~n (F2—Fo), ' : @

‘where in place of ﬁ' we may put ﬁ,‘Z,K, £, or %, Most of the previously

mentioned work deals with the convergenoe property of U,(t) for #<T where T is

a point snch that 1—F(T) = (1—F°(T)) (i—H(T))>0. For any distribution G

sot Te=inf{t: G () =1}. A recent paper by Wang™ studied the uniform
oongistency on [ —co, T'x] for P,. Gil1H81 hag proved that U, converges to a time
ohanged Brownian bridge on [—oo, Tr] under the condition that
Ty 0
| - 1dFH(2> < - @
Foldes““ has proved that : - o
: limsap _sup IUn(t) I/'\/W<0 a8 L ®

—co !

for some constant O if Tx<Ty or T p=Tg and H (Ty) <1. The result of Csdrgl and
Horv4th™ implied that the constant O can be taken as 11. 536478/ A—-HTy).

On the other hand, it is known that if Ty>Tq, the F% are not even consistent
(See [7] or [29]). ’I‘heorem 2 below gives the ‘smallest possible constant O, Om,z

' in the log log statement of (8). Therefore the equality holds in (8) with the

smallest constant. It is not clear in the literature whether a statement like (3)
will continue o be true in the case Tp=Tx and H(Tx) =1. Ghorai et al™®? and
Osorgd and Horvath™! obtained a weaker rate than (8). Theorem 2 can also answer
that question and gives the smallest possible constant O under the condlhon that
H does not grow too rapidly to 1 near the point 7.

Actually we prove a stronger, Finkelstein®!(p, 513) type resuls:

Theorem 1. Suppose that there ewist constants So, £>0 and 0<<a<1 such that k(1
—F°(s))*<1—H (s) fo;r S€ (so, Tr), then the sequence {(1/2loglogn)*U,(-)} ds
almost surely relatively compact in the supremum norm of functbons over [—oo, T F] ,
and, s set of limit points is

g={(L=F°(:))h(d(: ) hES}, | | (4

wh:re S is @ set of absolutely contmuous Junctions:

{hlh [0, w0l R, h(O)—O j (i%)%&l}

‘and d: (—00 Tr]-[0, o],

d(5) = L (L FO(8)) 2 (1—H () ~dF(s).

Theorem 1 reduces to Finkelstein’s Theorem™’ when there is no censoring
(H=0).
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- Theorem 2. Under the same conditions as Theorem 1, fwe'kwfue

i . 1/2
lim osoup<w> _sup_ [0, =0z, ®)

where

Om,u—' sup (1— F°<t>>~/d<t | 8)

When there is no censoring (H (#) =0 for all %), S1mple oa.loulus shows that
Op,n=1/2, so Theorem 2 reduces to the Chung-Smirnov™ law- of the iterated
logarithm for empirical distributions.

§ 2. A Extended i.i.d.Representation of Fe—F°

In the process of proving Theorem 1, we have developed Theorem 8, which
. improves upon the work on i.i,d. representation of the Kaplan-Meiér estimator by
Lo and Singh®®, Let us first denote G =1--&' for any distribution funetion @, F (£)

- j H(s)dF“(s) and |
4@ [ Foware -[_Fo-aFe,
N0 =1(X <t 8=1) =P, @),
4,0 = O —10g 20,1,
M.(5) =N, (%) —J;m (©)d4(s),

B0 = _1m@=nF )/ 20 A

=4, =4 O +[_1n@ <l 0250+ [ 1@ O)dA(s),
HOS 1 (m(s) >nF (5) /) ‘“‘Ff (<§> |

_ (" aM.(s)
B J-m nF (5)

Where F, is the empirical distribution of F and the equality for A and B, is
obvious. It is easy to see that B, is a sum of i.i.d. processes. In the following we
use the notation | f||? to denote the supremum of fanction f over [@, b].

Theorem 3. Assume (2) . Let @, be such that F (a,) =yn~*(log n) 8, where 7>0,
0<a<<i and for a=0, —oo<B<0, for 0<a<l, —co<LB<oo and for a=1,1<B<o0,
Then for any 8>0 and n large enovah | |

F"(#) (4.5 — A®) =F°() B,(8) +R. (9,
where
P(|R (t) Il'i’;,>4M1/2(] +8) (log m) X472 /nt ““/2) 3p W) g8, (D
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Corollary 1. Under the conditions of Theorem 3,
_Sup ]R,. ) |-,=O((log' n)178/2 [l =%/%) g,

Proof Use. Borel——Oa,ntelh Lemma and Theorem 3.

With Corollary 1, by taking =0, 8=0 and using the argument of Lo and
Smgh“"“’l or the argument we use in the proof of Theorem 4 below, it is easy 10 see
a strong result on i.i.d. represen’mtlon of. the Kaplan-Meier estimator,

Gorollary 2. Let T be such that F (T) <1. Then

By —Fo(t) =F°(5) B. () +Ri(t), |
snp | By (£) | =0(logn/n) a.s.

In most apphoatmns the order o(n™ 1/ 2y for Ry would be enough (as in the case
of Theorem 1), in which case if H does not grow foo rapidly to 1 near the _kend point
Ty, we have the following i.vi.d. répresenta,tion of the Product-Limit Estimator on
‘the whole real line. : |

Theorem 4. Under the cond'bt’lzons of Thwrem 1 we hawe

B3 —Fo(%) F°(t)B,.(t/\b)+R*(t), | _
_sup [B() | =0 as S ®

where b, s such thwt Fo(b,) =n"*2(log wy L, . .
To show the strength of Theorem 4, we state an easy consequencem’ Wlthout
proof. '

Corollary 8. Under the ccmdmcms of Theorem 1,

where W is the Brrown%m Motwcm process and & Gs the iramsformation defined in
Theorem 1, ' '

§3. Proofs "

For the sake of simplicity, we will assume that H is continuous in the
following proofs. Otherwise we may define an H* by stretching out H a finite |
amout so that H* is continuous and define F™ by stretching out F° accordingly.
Then we deal with random variables X$* = (F**)"*(U;) and Y;=(H" V), j=1,

-2, ++, where U; and V; are mutually independent uniform [0, 1] distributed
random variables. It can be shown that the distribution of the functionals we deal
with in this paper are the same for (X9, ¥;) and (X¥, Y'7). '

Lemma 1.™% Let F; be the o-algebra including all the informasion wp fo i,
then M (t), B,(t), Bi(t) and B, (1) are quadratic mariingales with respect to F .

" Lemma 2.8 Tet h be a continuous, nomegative and nontnoceasing funciton and



100 Y - CHIN. ANN. OF MATH. Vol. 12 Ser. B

let Z be a semimartingale, zero at time zero. Then for all r .

sup h(t) |Z @) |<2 sup U h(s)dZ (s) | 9

_ Lemma 3(Ma1"bmga,le exponential ineqaulity)™? If M és @ mean zero local
mrtfmgwle 'wfz;tk 14M| <e, then for all >0, A>0, and v>0 we have

PAHI, M@ <n<zem(—5- (1)) @

- where & (z)—>1 ’b_f >0, and zf (v) ~log © as v—>o0,
Lemma 4.71:37  For any A>0 and - 00<aoo

P(} m(-). —1“ > <2exp< —-nF(a)——— b=, (11)

nF ()

where s s the.same as in Lemma 3. L

_ Lemma 5.“1’303 If F (w,',) ==rn“" (log rn.)" where o cmd B are as in Theorem 3,

hm 1 SUp (nF (a,) /2 log log n)*/? ";’i >> \ ; =1 a.s. (12

Proof of Theorem 3 We first nobice ’uhat |m/nF—1] is o(l)by Lemma 5 and

the choices of & and 8, therefore for € [0, w,,], m(@)>nF (£)/2 a.s. for n large

enough. In other words, 4,— A= F a.s. for n large enouga So we can replaoe A,

-—A by B, and B, by B; in the sequel '

"Define

E,,—_—{

Jo FT()(m%s)l wF(g) )1(m>nF/2)dM (s)“ > /2}

7 { [ (m(s) —nF (5))° dFs) _ — }
A m(s)nzﬁ(s) . H()
where A, and 7, will be specified later. By Lemma 2 and Lemma 3 we have

P(IF(B,~ B I <P(E) <2exp( i y( e )) 4P @), (9

where ¢, is the bound on the jump of the martingale in H,, which is less then
2F°(a,) /nF (@,) =0(1) /n(F (@,))**=0(1) (log n) ~#/*/n*~*/

since condition (2) 1mplles Fo@)/H(t)—>0 as t—>Tw and F=F°H. Notice that

on the set

and

, ]|m/nF—1||gn<\/2(1+8)10gn/nF(wn) =d,,
for some §>0, then '

J‘“" (m(s) —nF (s))? - dF"(s) <M. d?
0 m()n?F ()  H(s) n(l—d,) ’

where d,—>0 as n—>oc0 and M =Jo dF°/ H. Take
e , ~logn
Tp=2M (1+9 s - K T,
A aF Gy
then condﬂuonal event I, is empty for large n. In other words, (18) is bounded by
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2 8..2—a 1-00/2
2""1’(“ 16?31( %ﬁ%)?mgn "’("( ) ZiT (1+7§>n log my o7 ))
+ P (s nF = 13>d).
Take
?\. =4 M2 (1+8) (logn)i“ﬁ/“’ 1-a/2,
then (14) is dommated by 3n~@*® for large n by Lemma 4 and the faot that the
quantity 1nS1de P tend o zero as n—>co, ‘ .
 Before we ‘prove Theorem 4, we state some 1mportant lemmas
‘Lemma 8.5 Lot 9, F and £ stand for any of the estimates desoribed ab the
beginning of this paper. Then j“o'r amy 3 fz':f m(t) >1, " | '

Note Cuziok’s ougmal lemma, is not of this form but 'bhlS form is an’ mmedlate
consequence of his original form. '
Lemma ¥. Let a, bo that of Tkewem 3, t}zen :
logn - 1 \M2) ' ' '
A,—4 a_n«,=0( _logn_ 300 — s 15
|4, 4] o Tog Fo(a)) ) as (15)
Proof Just as in the proof of Theorem 3, we may replace 4,— A by B,. B, is

~

a martingale with covariate process » : :
(% 1(m>nF/2)dA(s) =O< 1 log 1 )
—eo m(s) nk (a@,) F°( »
and j Jump size (nF (w,.)}‘i We apply Lemma 3 and Lemma 4 and use a similar

" argument ag in the proof of Theorem 3 to get Lemma 7. Details are omitited.
Lemma 8. Under condition (2), ¥ is relatively compact set én the supremum
norm of functwon over [—oo, Ty], where ¥ s de ﬁneol im the statement of Theorem 1.
Lemma 9. Under condiition (2), {(n/2loglog 'n) 12F°B, ( Ab)} is almost swelgf
relasively compact in the supremum norm of funct'bon over [--oo Trl, and its limit
poini s g. :
The proofs of Lemma 8 and Lemma 9 are standard with the help of Lemma, 2, |
s0 we will put them in the Appendix.
Proof of Theorem 4 For $>b,, according $o Os6rgd and Horvéthm

|B9(5) = F3@) [<|F3B) — F2Ba) | +F° (D). (16)
So to prove Theorem 4, we neei o prove almosb surely _ |
B~ FO~FB M =o(n VD), - (17)
| B0— B0 i3 =0 (%), (18)
| FO(5,) B, (b)) | =o(w¥2), (19)

gince F°(3,) is o(n~?),
First we notice that
(b ) >/0 (Fo (b ))1-!-05 k%—(i-i-as')/z



102 ' CHIN. AN'N. OF MATH. S -~ Vol. 12 Ser. B

for n la,rge and a<a/<1. Denote R, (t) = A () —A (%) — B, (). By Theorem $,
_ | FOR, |5 =0 (n~@~/®) a.g. ‘ (20)
~ Sinoe Fo=exp(—A4) and 1— 79, ,=exp(~4,), we have o
| 59,4~ FO—FOB,|br<| FO(1—o0xp (4~ 4,) + A~ A,) |3+ | FOR, |3
 <IP(A-4)exp(| A=A, B0 as  (3L)
by two terms Taylor expansion and (20). Also by (20) and Lemma 9, we have | F°
(A—A,) ||} in the order of O( (log log n/m) Y 2) almost surely. By Lemma 7, we have'
JA—A,| ”"—O(n“i"“')/'“’ log n) a,lmosb surely Therefore the first term of (21) is also
o(n"Y/?) and we got (17).
To prove (18), by Lemma 6 bhe left~s1de of (18) is less than _ »
«  Alexp(=A)/m()} (22)
if m (d,) >1. By Lemma 5 we have almost. surely when n large m(t) >(1—8)nF (t)
for all {E€ (—o0, b,]. Also notice thab . :
Jexp(—4,) — F°ll”"—0(10g10gn/n)1’2) a. 8,
by (17) and Lemma 9. So (22) is bounded by
81 F0/nF [3+8] (exp (— 4,) — FO) /nF 3
- =0((F°(b,))~%/n) +O((log log n/n)*/* (FO(b,))~*"*/m) - .
—O(n"(i““/ 2 (log n) *) +0(n~ %2 (log log n) /2 (log n) ) —o(n12) g,
sinoce a1,
For (19) lot @, be such that F *(a,) —n‘1/2 rI‘hen

lF°(b,.)B,.(b,.)| lFo(b)/F°(a,,,)||F (w.,) B, (a,,)[-{— 70, J on GM,(s)

F (s)~

J‘t F0<3> dlg' ((S)) (23)

by Lemms, 9 and Lemma 2. To see that second term is almost surely o(n~*?) we

1/2
<- 1 /10g10,9;n> +2 sup
logn \ n A<ty

notice that it is a martmgale with the quadratrc variation

o m(s) 70 1. 1 .o
L,. PFHG) (sz(l -y J w0

: g : <C(F°(a,))* ™ [n<On~Gtd-ay2)
where the first inequality is by L‘emma 4. The jump size is in the order of

‘ 1 1 = —(L-0t/2 p
REGY S @y o egm).

By Lemma 3 and an argument similar o that in the proof of Theorem 3 we see
that the second term of (23) is O(n™% 2(1og n) %) —o(rn,“i/z) '
Proof of Theorem 1 A simple consequence of Lemma 9 and Thorem 4,

Proof of Theorem & A simple consequence of Theorem 1,

Appendix

Proof of Lemma 8 To see. Lemma 8 is frue, we only have to see that for any e
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>0 there exist I'<T'y such that o ' :

' lg® |< @ forall gefé’ and t>T AL
‘sinoe the relative compactness with retrictions to [~oo, T'] is obvious. By the
Schwatz mequa,hty, we have - : o :
' |h(t)l<~/_fora,llh€.7 ' (A.z)-
On the other hand, it is not difficult to see.that (F(%))%d(t)—>0 as {—>Tr since

de"/E < oo, 8o for any €>0 thelte,exis’os T<Tp such tha,t

§ | |F°(t)2d( )| <eforalli=T. =~ (A3
‘ 'Now for any gE g there exists € & and for all ¢>T, o '
[ =Fo@ha@® |<|FHVIG <Ve.
- Proof of :Lemma 9 Lot Ty ={0 =<t < - <1y, —TF} Yo such that .
“AF°(s) _ J"‘"_ GF(s)
tes H(s) ~o H (s) _
-+ According. 0 [26] (page 76) we only have $0 check that for any ﬁxed m- the T,~
approximation B, of B, satisfies

hmsupJ WH nm B,| <tm Where wm——>0 as m—»o0, (A4

n->0o

~and for ‘.’% (Whmh samsﬁes (16)~—(18) of [26], page 76 by Lemma 8) and fixed m

T”’(‘\/Zlog log n B )11m11; sob Iy rn(9) a.8. wrh | [on Bp. ' (A-5~)

The proof of (A.B) is s1m11ar $o that on page 76 of [25], so we omit it here, To
prove (A.4), first we not that ’
lle,,—B,,ll<maxllB —B (ts-x) Il o

and . .
RPN YN e
' (A.6)
by Lemma, 2. Because of .
P .J‘td-.x aM (s) 2 J‘tt-x _ dFo(s>—
ey ORI O {ON
4 .
- e aM, (s) t gFO(s)
B|[* mo R on
and the mar’omgale mequahty, Dudley and Phlhp s [9], Theorem 4.1 give us
dF°(s)
b s e 1< e 110 P T s
0 % d I’O(s)
.5 )

for some constant 0; (A. 4) is provoed once we see that the right—ha;nd side of he
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last expression tends to zero as m—>oo.
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