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A BOUNDARY VALUE PROBLEM FOR A
NONLINEAR ORDINARY DIFFERENTIAL
- EQUATION INVOLVING A SMALL |
PARAMETER————-

The Riemann problem foz' a Generahzed lefusnon Equa&mn

Wane JUNYlv(iq's:,%) *

Abstract

This paper studies the boundary value problem involving a small parameter
ET @)+ [V TV +(sg(V () +F (T ()))V'(s) =0 for s€ R,
V(—o0)=A4, V(+oo)=B; A<B, '
whieh originates from the Riemann problem for a generalized diffusion equntion
g(U) DU =p' (©)p" () Dal k(U ) +8) | DU | "1 DU +p' )f (UD DU for € R, >0,
U(2,0)=A for <0, U(x,0) =B for >0,
under the hypotheses Hy—H,. The author's aim is not only to determine explicitly the
discontinuous solution Ue(®, ) =V o(s), s=2/p(t), to the reduced problem, and the form
and the number of its curves of discontinuity, but also to present, in an extremely natural
way, the jump conditions which it must satisfy on each of its curves of discontinuity. It
is proved that the problem has a unique solution U,(w,5)=V.(s), s=»/p(8), >0, V.(s)
pointwise converges to Vo(s) as /0, Vo(s) has at least one jump point if and only if &(y)
possesses at least one interval of degeneracy in [4, B], and there exists a one-~to-one
" eorrespondence between the collection of all intervals of degeneracyjof k(y) in [ 4,B] and
-+he set of all jump points of Vo(s). '

8§1. Introduction

In this paper we study a boundary value problem for a second order nonlinear
ordinary differential equation involving a small parameter, >0, of the form
(BT &)+ |V (&)W (9) -+ gV (©)+f T (V' (9 =0 1.
on the whole real axis R with the boundary conditiions
V (—o0) =4 and V (4-00) =B, ' 2)
which orlgmates from the Riemann problem for a generalized diffusion equation

with convection
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9U)DT =p Hp" @ Da((b(D) +2) | DU ¥D,T) +9 () (U) D for a€ R, >0,

U(, 0) = A+ (B—4) H (z) for sER, @
where H (x)=0 for w<0, H(z) =1 for >0, and H(©0)=[0, 1], D, and "D,
respectively représent differentiation with respeot to the independent va;riables: @
and ¢, and p’ () f(U) D,U éﬁand_s for conveoction, When £ (T) =0, 9(U)=1, and p(t)
=t/ equation (8), has been suggested as a model for certain generalized
diffusion processes by Philip ™ when %(U) +e 0 and p(#) =%, problem (8)o=(4)
is well known as the Riemann problem for a scalar conservation law. From the
form of the two problems, it can be seen that if 7, (s) is a solution to the boundary

value problem (1)~ (2_), then U, (a§, %) - d;_f' V(e/p(®)) isa sim.ilarity solution to
the Riemann problem (8),-(4), and vise versa. :
. Unless otherwise indicated, we always make the following four hypotheses:
'H1 4, B, A<B, and N >0 are given constants, |
" Hpe p(?) is an increasing, locally absolutely oontmuoas (being abbrevmted
a. o. la,ter) function defined on [0, -+oco) with p(0) =0 and p(£) >0 for >0,

Hg F (y) 2k J f(s)ds-and G'(y) _def’ f g(s)ds are a. o. function defined on [A4,

B)] such that G (y) is strmtly inoreasing and =< gég)) G(y) —F (y)-nonnegativeoh [A,
B].

H,e h(y) is a nonnegative measurable function defined.on [4, B] such that
G(y) (@ (B) Q)7 (y) is Lebesgue integrable on [4,B].

To investigate the behaviour of the solution V, (s) at the minus and plus
mﬁnﬂay, we need a special case of hypothems H,, namely

Hs. f(y) and g(y) are nonnegamve measurable functlon deﬁned on. [A B]

| such: that L) (q/) is equlva,lent t0 an inoreasing, a. o. function defined on [4,B].

FIO)

“In essence, a perturbation procedure consists of constructing the ‘solution for
a problem involving a small parameter ¢, either in the differential eqaation or the
boundary conditions or both,when hhe solution for the limiting case ¢ =0 is knewn.”
(Quoted from the Preface to the hook [2] ) Our problem is in itself different from
the case mentioned above; this perturbaﬁ;ion procedare consists of determining the
solution for the 11m1131ng case 8 =0, hecause the structure of the solution we want
10 find is not known a priori and depends upon the perturbatlon procedure As we
ocan see laber, our problem is a singular porturbabion problem under hypotheses
H-H,, provided that the function 4 (y) has at least one interval of degsneracy in
[4, B]. What is termed an interval of degeneraey of k(y) in [4, B] is a olosad
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subinferval on whioch #(y) =0 a. e., and furthermore, %(y)>0 a. e, in the
complement of the union of all intervals of degéneraoy in [A4, B].

.~ When the function %(y) has at least one -interval of degeneracy in [4, Bj,
equation (8)o must be of degenera,te para,boho type. It has long been found that
dlscom;mmtles may oceur in generahzed SOl’lIblODS $0 a. second order quasilinear
.degenera’ue palabollo equation, 3ust as they do in those 1o a . first order qua,sﬂmea,r

hyperbolic equation—an equaduon which is 1tself a degenera,te parabohc equatlon
where no second demvatlves of the unknown funotlon a,ppear ab a,]l For this
reason there should be eertam Jump oondﬂuons Whloh a dlsoontmuous solutlon
must satisfy on the set of its Jump pomts by a dlseontmuous SOlll'blOll We mean a
generahzed solution in which disconbinuities have alrea,dy arisen. As ea,rly as
1969, Vol pert and Hudjaev™® firsh presented such jump conditions; it is'a plty
that the jump conditions were not completely correct, It was not until 1985 thab
Wi Zhuogun®® pomted out that one of the j jump eondﬂuons was false and gave it a
~ eorrect expression. As far as we know, the Jump conditions presented in’ [3] were
only 60D equenees of a definition of. genera,hzed solution and the definition came
into being on the ana,logy of a definition of generahzed ‘solution tov a first order
quasilinear hyperbolic equation; besides, in. [8] there were no examples which can
exhibit a dlseontmuous solution and the form of the seb of its Jump points, All the
faots mentioned above were the reasons why the mistake was made in T31. Our

purpose of sbudyihg the Riemann problem is not only to determine explicitly the
“def,

discdntimi;)us' solution Uo(w,?) Vo(s), s=az/p (t) to the reduced problem (3)o-
(4), and the form and the number of its ocurves of dlscon’ﬁmulty, but also to
present, in an extremely natural way, the jump GODdl‘blODS whmh Uo(w,) must
satlsfy on each of its curves of dlseom;mufoy ‘ B
'The organization of this paper is as follows. In Section 2 we announce otr main
reeults. In Secbion 8 we convert the problem: of determining similarity solutions to
the Riemann problem (8),-(4) into the boundary value problem (1),-(2) and then

transform the latter into a two-point boundary value problem of the form

ORSIONNEIOETALES .
‘(_w YIORE _)*( w (@) )" ergewm, o
w(4) =0, w(B)=0. | ®

Section 4 is devoted to the two-point bounda,ry value problem, In the last sechbion
we construct the solution V,(s) to the boundary value problem 1).-(2),
making use of the unique solution w,(y) %o the +Hwo-point boundary value

problem,



No.1 = Wang, J. Y. RIEMANN PROBLEM FOR DIFFUSION EQUATION 109

§ 3. Main Results

‘In this paper we esbabhsh the followmg main results,

. Theorem 1 (Ex1stenoe ‘and Un1queness Theorem)  Under hypothese Hi-H4,
the boundao’y oalue problem . (2}, g=>0, has @ undque solutfwrm V.(s). Momowr, the
solutfwn V.(s) comefrges to the solutwn Vo (s) pomtwose on R as &l0. ‘

Theorem 2 Assume fwrther that hypothesis B is valid. Then there is a ﬁmte
number Sa (sB) such that V() =4 for s<sA (V.(s)=B for s>sB), if and only ’bf ‘

(4+B)/2 k(s) 4g 1w 'k (s)+e \W¥ '
I A IO ) cls< * OO(J‘ a+B2 \G(B) =G (s) ) ds<+°°

Theorem 3(Structure Theorem). The solutwn Vo (s) can be represented by

Vo(s).= A+2(bj ap) H (s— s,)+J Vo(t)dtforalZsER

where Vi (s), a"demwtwe of Vo(s), 4s nonnegative and intograble on B, {s=s; §=1,
2, +++} the set of all jump points of Vo(s), and {[@;d}; §=1, 2,---} the collection of all
~ intervals of degeneracy of k(y) in [A,B]. Moreover, in each connected component of
the open set R\ij{s-;sj} , Vo(s) isa. c. and satisfies equation (1)o, while at each

Jump point s=s;, j=1, 2,+++, Vo(s) musi satisfy the following jump conditions:

(lﬂ(Vo(S)) I'V'l (s) |N—1V’ (s) +SG<V0(S)) +F(Vo(s))) =0, o D 4

Vo (SJ“O) a:n Vo (sa+0> bi: a'nd VO (85) = [aa: 7] o (8>

Theorem 4 (Oornparlson Theorem) To ezpress ewplw'btly the dependence of the
solution Vo (s) and its jump point s= s,, j=1, 2,++, upon both A and B, we denote them -
by Vo(s; A,B) and s;(A,B), respectively. If A;<As and Bi<B,, then '

Vo(s;ds, Bi)<Vo(s; Az, B2) for sER and s;(A1,By) >s;(45,Bs), j=1, 2,

- 8hifting the results mentioned above to the Rlemann problem (8).- (4) we van.
obtain the following theorems. : -

Theorem 1’ (Existence and Uniqueness Theorem). - Und'efr hypotheses Hy-Hg

s=w/p
). Moreover, the solution U,(z,t) converges to the solution U, (w, £) poontmse on the

domain R x (0, +o0) as &/0. A

Theorem 2 Assume further that hypothesis H is valid. Then there is-a finite
numeer s4 (sz) such that U, (o, t) A for w<84p(t), >0 (U(w t)=B for a>ssp(t),
1>0), @f and only ai

o () ds<+°°(ff4+ﬂ>,z e ) ),

the Riemann problem (8), (4) , 60, has a unique solution "Uv (w,t
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dynamms Whlle the hypothesis that -2

Theorem 3’ (Strueture Theorem). The solution Uo(w, ) can be represented by
@/n(t) |

Us(d) = 4-+33(0: - a»H( =2 =5 )+ Vo@ds for o€ B, 0,

-0

where Vo (s) is a nonnegative integrable function defined on R, {w=d¢;
g =1, 2, }the set of all curves of d@scomwnmty of Us(m, t), and, {laj, ,] j=1, 2,
ver } the collection” of all imtervals of degeneracy of the fumciion k(y) in [4, B].
Morreowr, in each cmmected covnpment of the open set R X% (0, r00) \U{z=:(9)},
Uy (a; t) fz,s a@. c. and a. e. satisfies equation (3)0, while on eack curve of discontinuity,
o= (t) =1, 2,++, Uo(x, t) must satisfy thefollowmg Jump cmd@twns

@ Hp” (t)k(Uo(w £) | Delo (@,8) | ¥ DU o(,8) + (f:)G(Uo(w £))

AP OF oo, ) || e : =0 for £0, | )

%40

Uo(s (t) “0,73) =aj;, Uo($s(H) +0, 8) =b;, and Uo(;(¥),8) = [asbs] for 0. (10)

- Theorem 4" (Comparison Theorem). To express emplwwtly the dependenne of

the solution Us(w,t) and és curve of discontinuity, o=d; (t) =sp (), =1, 2, -,

UPON bot_h A and B, we denote them by Uo(w, ¢; A, B) armd.,qS,(t, A, B). If A1<A; and

Bi< B,, then o . _
| Uo (2,4 41,B:) <Uo(w,t.45,B,) for all s€R; $>0

and : _ . o

b3 (6 A, By) b (b Ag, By) for all 30, §=1,2,-+r.

Here it must be pointed out that when g(y)=1 and p(t) =tf, the jump

condition (9) is exa,o’rly what is known ag the Rankme-Hugomot condition in gas

B F(B) F (y) is nonnegative on [4, B]

is exaotly what is called the entropy 1nequa,l1‘by (seo [5, p. 246-254]).
From the theorems mentioned above, we ean draw the following econclusions:
. The solution Vo(s) is a. o. on B and the solution ¥ (s) uniformly converges
Joo Vo (s) if and only if the function %(y) >0 a. e. on [4,B].
. When % (y) possesses at least one interval of degeneracy in [A4, B], V,(s)
has at least one jump point; when #(y) possesses 1nﬁn11ie many intervals of

'degenera,oy in [4,B], Vo(s) has mﬁm’ﬁely many jump pointbs, beoause there ex1sts a

one-t0-one correspondence between the collection of all intervals of degeneraoy of

la(y) in [4.B] and the set of all jump points of V,(s).

. As for as the disconbinuous solution Uy (w, §) is eoneerned its curve of

AdlSGOntanlby, w=sp(t), =1, 2, -, possibly has only the locally absolute

continuiby, and on ifs ourve of discontinuity there are possibly some segments
parallel o the ¢-axis, which symbolize waibing time.
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§ 8. Converting into a Two-Point Boundary Value Problem

- In this section we transform the Riemann problem (8).-(4) into the boundary
value problem (1).-(2) and then convert the later into the two-point boundar’y
value problem (5).-(6),. BT : : :

‘We shall call the funetion U,(x,5) a solution to the Riemann problem (3),
(1), >0, if it satisfies the following conditions:

(a) U,(, t) is defined and continuous on the domain R % (0, +o0),

(b)- 11m U, (2,8) =4+ (B A)H (). for almost all € R, _ S

(o) DtU (@, t);, DU, (w, t), -and D,((%k (U, (=, t))—i-s) | DU, (w, £) !N 1D MR (a; £)
exist a. e, on the domain R x (0, +o0), and

(d) DU, (;t) =p" @)WY @) Do ((k(U, (@, £)) + &) | DU, (w, £) | ¥~ 1-D0;U (=, 8)) -+p' (¥)
D,F(U,(x,%)) holds a. e. on R x (0, +o0),
If the solution U, () converges t0 a limit, denoted by Uy(e,f), pointwise on the
domain R X (0,+0) as &0, then Us(wt) -is called a generalized solutlon to the
ARlemann problem (3)0 (4)

We seek s1n111a11ty solutlons of the form ,

def.
V@) ET (), s—a/p), -
then we arrive ab the boundary Value problem (1) -(2). Oonversely if V(s) is a

solution to $he the boundaly value problem (l)s @), then U(a, ) = ( 10) )

must be a soluiuon Yo the- Rlemann problem (8)e-(4). So we shall consider only the
boundary value problem (1),-(2) in what follows, = . . ‘

' By a solumon to the boundary value problem (1) (2), s>0 'Wwe mean the
function V. (s) satisfying the following econditions:

(a) V(s) is defined and a. c. on the whole real axis R

ORZ (—oo) =4 and V,(+4-o0) =B,
(0) (b(Ve(s))+ s) [V’ (s) |- 1V' (s) is eqmvalent to an a. o. funoiuon deﬁned on
R, and :
' (d) equality (1), holds a. e. on R.
If the function ¥, (s) converges to a limit, denoted by Vo(s), pointwise on R as 8|0,
$hen Vo(s) is oalled a generalized solution to the.Riemann problem (8)q-(4).

The following lemma is a starbing poinb for dealing with our problem.

Lemma 1. The solution V(s) to problem (1),-(2), 80, is inereasing.

Proof Olearly, it is enough o show that V,(s) is monotone on R. If this is not
the case, then there will be numbers ¢, bER, a<b, and O such that ¥, (a) =V.(b)
=0 and (say) V.(s)>0 in (g, b). Integrating equation (1), with ¥ =V,(s) over
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(a,b) ylelds - |
06T +9 1720 1T | = [[@F.0) ~e.0na>o,

which is a contradiction, by the assumption that V., (s) >0 in (a,b). This shows
that V',(s) is monotone. : :

 Let ¥ (s) be a solution to the boundary Va,lue problem (D)(2). Then it is
certainly inereasing on R and V' (—o0) =V’ (+o0) =0. Further, if it is strictly
increasing on R, then the funotion s=Z (y), inverse to y=V (s),exists, s=Z (V (s))
on R, y-V(Z(y)') -in (A B), and V'(Z(y)) =1/Z'(y) holds a. e. 'in (4,B).

Substituting s=Z (y) into equation (1), and then putting W(g/) (k(g/) +8)
/(Z' (y))¥, we formally obtain the two-point bounda,ry value problem (5) (6)0
and the equality

§4 The vao—Poiht Boundary ﬁVa_hié.Problem

In this section we explore the two-point boundary value problem (5) - (6)o. As
the two points y=A4 and y=B are singular in the problem, we need to consider the
bwo- pom’s boundary value problem withoutb smgular endpomts

NAMOKEILC), E(y)+e\v¥ :
( : g(y) > ( iW (y) 8). for yE (‘A B) v . (5)s
W (4) =h, W (B) =h; b, ©,

' By a solution fo the two-point boundary value problem (5),- (6) m 80, A0,
we mean the funcbion W,(y;h) satisfying the followmg donditions:
- (a) W,(y;h) is a.0, and nonnegafmve on [A B] W, (A h) W.o,(B h) =h=0,
and

(b) Z.(y; (y; h)+f (y)) /9(®) "is equivalen’o to a locally a.o,
funotion defined in (4,B) such that equality (5) holds a.e. in (4,B).
" Let W(y) be a solution to problem B, (6),. Then it can be represented ‘by the
formula,

W @) = Taw)@.W @)ds+ By) ~F ) for all g€ o B, (12
where [¢,b] is any qubmterva,l of [4,B], ’ |

Qs(y,'&U)———“"‘((M?/)—*"e)/%U)”N for yE L4, B] we (0 +°°),

_( ES def. {(G(b) G(y)) (G(s)—G(a))/(@®)—G(a)) for a<s<y,
“ (G(d) ~G(s)) (GW) —G(2))/(G() - G(a,)) for y<s<b,

. i3 continuous and positive in (a,b) X (a,b) and . .-

Z(y) =— W' ) +f () /9(y) for almost all y&€ (A B). (11) .
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E(y)——“((W(a) +F(a)) (G"(b) G‘(?/))’*‘ (W(b) +F(b)) (G(y)
—G(a)))/(G(b) G(a)) on [e,b].

Moreover, the function Z (v) b W' () +F @) /9(y) is given by the formula

G(s) —G(a) ' G() —G(s)
Z(y) = J-G—(Z%——G-K%QS(&W(s))ds IW%,W(s))ds-

+ (W (a) — W(b) +F(a)—F (b))/ @ (b) G(a)) for a.lmost all
cye4,By. - T (1)
For preciseness’ sake, when: a=A, b=B, and W(A) W (B) =h>0; the two
formulae are labelled with(12)%; and (18)%,, respectlvely Next, When F(y) =0 a
o. on [ 4,B], equation (5), is linear and the formulae are still valid, in this" oase
Wo(?!;h) G‘(@/)F(B)/G(B) F(?/) and Zo(?/,h) =—F(B)/G(B) on- [A B]
o | | | (14)
OonverSely, it is esally seen that ‘a nonnega’olve a.'o. solumon We(y; k) “$o the
integral equation (12) % is'a solution t0 problem’ (5)-(6)s . ’

‘We now: prove ‘the existence and umqueness of the soluinon W, (y,h) and expose |

some of its properties we need later. .
Lemma 2. If 81>¢,>0, then forr each fized h>0

' O>Wa(y,h) Wc.(y,h)<J’ JAB(y,S)((/o<s)+81)1’N (k(3)+ez)1/”)h Ndson [A B].

Pfroof We ﬁrst show the left inequality. If E‘bhlS is not the case, then there
will be a point y= ~Y'where W, (ysh) ~Wo(T; h) <0. Whence i follows that there
exists a mammal 1nterva.1 (a b) confaining the point y = =Y such that ‘ v

W (y;h) — W (y;h) <0 in (a b)and Wea(a;h) —Weo(a; h) Ws,(b h) = Ws,(b h) Q.

By the aid of formula, (12) sy W6 00me 0 a contradlotlon

0<W o (g = War(gih) - jJa,,(y,s) (Qu (5, W (5;1)) — Qs,<s,Ws.<s,h>>>ds<o

This shows that the left inequality holds.
From the left inequality and the formula (12)%; it follows hat

O<W o (y;h) —We (y h)".<f J 4z (y,S) Qa8 Walsh)) —Quls, Wals h)))ds

<[ (7 43(0,8) @u(sh) = Qulsh))ds for all g€ [4,B].

Here we have used the fact that W,(y;h)=>h for all y€ [4,B].
In very much the same way, we can prove the followmg two lemmas.
Lemma 8. If hi=ha>>0, then O<W (i) — W (ysha) <hs—hy for dll y€ 4,
B]. : ‘ 3y
Lemma 4. ‘Let W1 (y) and W (y) be solutions %o equation (6)s on [A, B]. If
Wi(a) =Waa) and W1(b) =W2(), A<a<b<B, then Wi(y)=W:(y) on [4, B].
 In particular, the problem (B),-(6)s, =0, k=0, has at most one solutton W,(5; k).
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To prove the existence of the solution W, (y;k), we define a mapping M by the
right hand side of the integral equation (12)%, with >0

- W0) D= Tas(0, 9QG, w(®)ds++ £5) % G (y)~ F(g) -+ for all a(s) € X,

where X 2L {w(s) E_G[A,B]; h<w(s) <(Mh)(s)}, dnd O[4, B] is the set of all
continuous functions defined on [4, B]. By hypotheses H;-H,, it is easy to show
that M is a compaoctly continuous mapping from X into X, The Schauder Fixed
Point Theorem tells us that the mapping M has at least one fixed point, say
W.(y;h), in the set X, Obviously, the fixed point W,(y;k)=h is an a. o. solution to
the integral equation (12)%; with A>>0, namely, a solution o the two~poin1;
boundary value problem (5),-(6), with A>0. S -

- Next, Lemma 3 shows that the solution W ,(y;k) converges to a 11m117 denoted
'.by W (y;0), uniformly on [4, B], as h}0. Inserting W,(y;h), %>0, into- the
integral equation (12)% and then letting 4}0, we obtain the equality (12)%s, by

the Monotone Gonyergence Theorem. This shows that the limit function W,(y;0) is

a solution to the two-point boundary value problem (5),.-(6),.
We summarize the above results in the following statement, .
- Theorem §. Under hypotheses ‘H1~H4, the two-ﬁow'mt boundary "vql_ue probem
(B).-(6)n, =0, h=>0, has a unique solutéOn W, (y:h). Moreover, the fun.om'ov’a Z (y;k)
-def

- (W' (y,h) -+ f (y)) /9 (y) s equmalent to an @myreas@ng, Zooally a. o. functfbon
defined in (4,B).

Theorem 8. As sLO ihe solution W, (g/, O) conver ges to the solutwn Wo(.?/,O)
umformly on [A B], and the function Z (y, 0) co«rwe/rges to the funct’bon Zo(y, 0)
unf formly on [A+8,B—23] whenever 256€ (0,B— - 4). _

Proof We first prove the first assertion. According o Lemma&' for h>0

O<Wo(y;0) <Wo(y;h) <Woly;0) +h for all y€ [4,B].
In terms of Lemma 3, for each fixed A>0, W,(y; k)  converges . to Wo(y;h)
unlformly on [A B], as sl,O Hence there is a positive number & such ’ﬁhat _
W, (ysh) < Woly:h) +h<Wo(y;0) +2h for all y€ [4,B]." |
Note that W, (y,h) is inoreasing in both & and . Consequently, for all ¢€ (0, &)
| O o (;0) <W, (;0) <., (y; B) <Wo(;0) +2h for all y€ [4,B],
which shows that W,(y;0) is the umform limit of W, (y,O) as &l0.
We now prove the seoond asserhon In terms of formula,e (12) 2p and (13) %

we have
|2.(5;0) ~ Zo(g;0) | < (We(y;o)_“Wo(y;O)-)_/ma for all y € [A+3,B-35],

where ms~ min {G(4+3), G(B)—G(B—3)}. This shows that Z.(y; 0)
| oonverges 0 Zo(y;0) uniformly on [A+8,B—3] as ¢|0, whenever 23€ (0,B - 4).
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Theorems 5 and 6 point out that under hypotheses Hj-H, the - ”hwb—po'iht
boundary value problem mVolvmg two small parameters & and b is a’ regular
perturbation problem, " ‘ S ' ' '

S . T

We now Jinquire into the behaviour of the function Z, (y)—f— Z(y; 0) at
the two endpomts y=4 and y=B. For this ‘purpose, we mtroduce hypothesm H;.

In faet the hypotheszs H is a specza.l casge of hypothesm Hs, beeause

L8 a0~ ~F@)={'Tu s>(f ) ds>0 for all y€ [4, B,

Theorem ¥. ~ Suppose that hypotheses Hl, H,, Hs. and H, hold. If and only if

Ji“f”’z (Pe™) " w<ro ([fumn (alirs Ei;) )”N s<tem),

Z(A+0) (Z.(B—0)) s finite.. : : u ,
Proof _We first conolude that — Ws (T (rr)), as a funotlon of bhe Varlable q', is
an a, o, convex funotion défined on [O G‘(B)], where

o
W= 0,
and the funotion y—-T(rr) is inverse to the function r=G'(y). In fack,
W(T(rr)) = QB(T(fr) Wa(T(rr))>0 a e, in
(0 G(B)).

Here we have used Proposwlons 1 and 3, which will be given in the nex} section.

4
If Z,(A-+0) is finite, then @y o

(T( )

7-W§ (T (r)) |e=s0 is positive, by (18)25.

From tne convexity of —W,(T (r)), it follows that W.(T(r))<bor on [0, G(B)],
namely, Ws(y)a<6’0G(y) on [4,B]. By the aid of formula (18)%5, we obtain

— 7.4ty — EB) ijB) —GG) o (6 W.(s))ds

Q(B) Ja. QB
>(1- G((4+B)/2) ) LUORA R
| | T Em - 8.6 (s) =
whioch shows thatb o _
A+BI2 [ B(s) 4 \MY o
| L __G.(_)_,) ds<+oo. - (18)

Conversely, assume that condﬂuon (18) holds. From the convexity of —W,
(T'(r)), it follows that W.(T(r))=0ir on [0, G((4+B)/2)], namely, W.(y)=

6.6 () on [4; (A+B)/2], whore 0; —=W,((4+B)/2)/G((A+B)/2). In terms of
. the representation (13)%s, we obtain

TP <z a0y = FBA ([ 4] VEBEE) 0, .5))ds

G(B) G(B) (A+B)/2 G(B)
. F((A-+B)/2) (@D [ h(s)+e \V¥ o
< F((4+B)/2) +f ( 5.6 ) ds+ i<+

'Whmh shows that Z.(A+0) is finite, Here we-have wused formula (12) as ~ to
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estimate the second integral. The proof is complete. _
Theorem 8, We denote ¢ e,sblut@on_lWa(!/,) and the functdon Z,(y) by W.(y; A
B) and Z.(y;A,B), respectively, o invesiigate their dependence upon A and B,
. If A1<A2<B ‘then the followmg two statements hold:
. (a.) 0<Wa(y,A1,B) W-(C’J;A-z,B)<W (Az,Ai,B) fo’r all y€ [Az,B] ‘Wd
T () 0<Zu (40, B) —Wa(y; 4, B)<2W (45 41,B)/ (G (y) —G(4s)) in (43,B).
If A<Bl<B2, then the following two statements hold: .
(o) o<W, (y,A By) —W,(y; A, By) <W,(By; A, Bz) for all yE[4, B1] and
@) 0<Z:(y;4, B) ~Z.(y A.B;)<2W,(By; 4,B5)/(G(Bs) ~G(y)) in (4,By).
Pfroof The assertion that W.(y; 41, B) — Ws(y,Az, B)>0 d1reob1y follows from
the fach that W, (.A.Q,A]_ .B) >0=W, (42 A4,,B), by Lemma, 4.
By represen’ﬁa’olon (12) 438, it follows from the assertlon proved above that

o 0<Ws(y)-A1,B> Ws<y7A2yB) f JA:B(yYS) (Qs(s W (S, Al’B))

—Qs(s) s(s: -A-21 B}))(ZS+ (;G(%B)) GG<(AZ-2) W8<A2;-A17B)

<W,(454, B) for all [43B]. - . - (16)
The statement has Been proven. e '
Next, from formula (18),,4,<e< B, we have

z(y,Ai,B> 2,045 B) - j B-GO (@6 Ws(s,Az,B))

— Qs (s, W o(s; Ai.B)))ols

(Y G ~CW@) () (W (e 4. By -
. _‘@(‘E—)':'GT(%)“ Q. (S,ngs, Az,B))

—Qu(s,W(s; 4, B)) ) ds+ (W (a; 41, B)
| —Ws‘(a;'Az,B))/ (G(B) -G"(G) for y& (a,B).
Puttmg a=y in the above glves
Z(y;A,B)—Z (?J;AzyB) >0 in: (Az.B)y ,
and then putting a= 4, yields

0<Z (y)-A-I)-B) Z (y)-A-‘-’)B)

in <.A.2,B),
by mequah’oy (16). This shows that the statement (b) is valid,
In very much the same way, we can prove the statements (¢) and (d). .

( G<y) "'G(A.g) G(B) G(.A ) >W9(A2:A1,B)

8§ 5. The.Boundary Value Problem 1)+ (2)

In the last section we comstruct the solution ¥.(s) to the boundary value
problem (1),-(2), utilizing the unique solution W,(y) to the two-point boundary
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value problem (B),- =(6) 0. S

Wo first mtroduce several prop031t1ons a,nd deﬁmtlons
~ Proposition1. If V(s) is am noreasing. functwn defined on [a, b] and @f
W(y) és an a..c. funotfoon defined on [V (@), V(b)], then W (V (s)) has a Jfinite
derivative a. 6. on [, b] and the chain rule 2

7y W(V(S)) W(V(s))V’(s)
holds a. 6. on [a,b], where fw(y) is any fwwctwn equivalent to W' (y).

Prop051t10n 2. If V(s) is an inoreasing a. o. funct@on deﬁned on [a, b1 and &f |

w(y) s o Lebesque 'mtegmble Function defined on [V (a), V (b)], then w(V(s))V'(s)
is fmtegrrable on [a b] and the ch«mge 0 f fvamables Sformula

j w (V ()" (s) ds— [ W () dy = WV @) ~W (V(w))
holds, where W (y) is an indefinite integral of w(y). |

- As Propositions 1 and 2 are Corollaries 4 a,nd 6 in [6], respeohvely, wé om1b-

‘their proofs here, : :
. Proposition 8. If (a, b) dsa finite open fmtefrfva,l and wf Z(y) is a stmctly
dnereasing, locally a. c. functéon defined in (4.b), then the function y= V(s), inverse

: . . . . . R def, - -
os=7 (y), is a str@c»tly inereasing, @. . funct%on defined in (So $), where s, —_ Z(a

+0) and 5= Z(b 0) Morreowr, lim V' (s) =a and hmV(s) =b.

8 sa

Prroof Clea.rly, it sufﬁoes t0 show the a,bsoluta continuity of V(s). By defini-
tion, y=V"(Z(y)) for y€ (a, b) and s=2 (V(s)) for € (s,, sb) Henoe, the equahty
V’(s) =1/Z" (V(s)) holds a. o. m (sa,sb) by Pmposﬂuon 1.,

" AsV(s) is (striotly) inoreasing in’ (Sar sb) Vi(s) is mtegla,ble on any olosed
subinterval [a, B]. Integrating V?(s) over (a,B3) yields '

, _(® ds _("® WAy _prepy
IV (s)ds=|) VAVAO)E Jv<a)z'(v<z< 55y 7 B~V (@),

by the change of variables formula, And then letting als; and Bts, glves
[ @as=v ) -7 @ -b-e,
which shows that V(s) isa. o, in (sa,sb) ‘ ' .

Definition 1. Let (4,B) be'a finite open interval and s= Z(y) an imereasing,
Tocally a. ¢. function defined in (A,B). The function y=V (s) is said to be generalized
4mverse to s=2Z (y), &f ot is deﬁrried on- the whole s-awis, increasing, and possibly
~-muth}ple-valued, so that its total varéation s equal 10 B— A and Uts graph s the .s'dme
locally rectifiable continuous curve as the graph of s=Z (y), providel that at edach
endpoint of ﬁhe latter, 4f necessary, a hal f-line pamllel 10 the s-axls is jomed on to o,

. By the deﬁmtlon mV (s)=4- a,nd llm V(s) B, where sA = Z4 +O) and

s{sa
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def.
=z (B—0). Obviously, V(s) = A for s<<sy4 or V' (s) =B for s>s3 when S4 Or sp is

ﬁnﬂie For example, When Z (y) =0 in (4, B), Vis)=A+ (B AYH(s) on R,

' Deﬁnltlon 2. Let y= Va(s), 8>0, and y=V (s) be Zooally rectifiable continuous
ourves on the s- v plane If for any 8>O there ewtsis an 85>0 such that the mammwl
distance between the two curves is not greater than 3, wheénever s<e then we swy
that the ourve y=V.(s) un@formly upprowimates to the curve y=Vo(s) as & fends fo

2er0, : .
- -By the deﬁnﬂuon, 1f the curve y V,(s) nmformly a,ppromma’ﬁes to the curve.
Y= =V (s) as sJ,O then the funotlon Vs(s) pomi;w1se converges to the funohon Vo(s)
as sJ,O _
Definition 3. Let k(y) be a nonnegatooe mewsumble funct@on ol.,ﬁned on [A B]
such that k¥ (y) 48 Lebesgue integrable on[A, B], where’ N>0. A dlosed subinterval
[@,b] s called an nierval of degene'racy o_f the - functwn k(y) . [A Bl, if the
Sollowing two condétions. hold:: ' :
(i) k(y) =0 a. e.on [a, b], and : _
(11) forr any 8>0 when a— 8<A or b+8<B J hi’N(s)ds>0 or j Ioi’N (s) cl&
>0. - o |
| 'By the definition, between any two adjacent intervals‘of degeneracy of k(y)
in [A4, B] there exists ene aﬁd only one open interval; otherwise, -they would
combine into one. Oonsequently, the oomplemen’o of ﬁhe unlon of all mtervals of
degeneraoy of the funotlon k(y) in- [A B] must be open '> _

We now construct ’ohe solution V,(s) %o the bounda,ly Value problem (1) (2)
Lebt W.(y) be the unique solution o vhe ’swo -point boundary value problem (B) e
(6)0 Theorem b tells us that the funotlon

1 ) G /o®) Trye (4B (11y
is eqmvalent t0 an increasing, locally a. eo. function defined in (4, B). In what.
follows we always regard Z(y) as an inoreasing, locally a. o. funotion defined in:
(4,B). Hence, the function y=V,(e), generalized - inverse to s=Z,(y), exists and.
satisfies the boundary conditions in (2). We assert that the function V(s)
(Vo(s)) is a unique (generalized) solution to the boundary value problem (1).-(2)
(the reduced problem (1)4-(2)). ' -

‘We first prove the following statement.
Lemma 5. If 6<0 or k(y) >0 a. e. on [4,B], then V., (s) is @ solutwn

‘Proof From (11) and (5), it follows thatb .
4 7. (y) = ((b(y) +e)/Wa(®))*  for almost all UAS (A B). 17)
Hence, Z,(y) is striotly inocreasing in (4,B) under the considered condition, and’

the restriction of the generalized inverse function ¥ ,(s) to (sa, sg) is exactly the.
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‘inverse function of Z,(y), where s, RiZE Zs (A+O) and sg L VA (B 0). 'Propo-
sition 3 tells us that the function V,(s) is striotly 1ncreasmg and a. o, in (sA. $z),
and further is a. o. on the whole s-aXig,

From (17 it follows that

We(y)=(k(y)+8)/(Z. (y))N for almost allye (A B), (18)
- because Z! (y)>0 a. e. in (4,B). Inserting y=V(s) inbo (18) yields
We(V(s)) =(k(V:(3)) +8&) (V'(s))¥ for almost all € (s4,88), - 19)

here we have used the fact that 1/Z.(V.(s)) =V.(s) a. e. in' (s4,88) . Moreover,
' dim (B(Vs(s)) +8) (V% (s))N 11111 W (Ve(s)) =0,

8-334:8p

This shows that (% (Va(s)) +8) (V" (s))” is (equlvalen‘a 0) a oontmuous funalnon
‘defined on R. By Proposition 1, it follows from (19) that
(BT () +) [V &) |T7Ve(s) =WV o(s)V () 2. @ in (sasz). - (20)

.Henee, for any olosed submtelval [@,b] of (s4,88).

- I ((k(Vs(s))—i—s){VL(s)[N‘_"V’e(s))'_ds:j W’S(Vs(S))VL(s)ds

—W V@) =W V(@) = HV(s)) +8) IV’ (s) [N“iV’ (8) b, ‘
by Proposﬂnon 2. Leﬁ;mg alss and stB in the above glves o
[y @)+ 7@ T @Y as= W (B) - W3<A> =0,
and further, forall s& R '

ROACYEDIAOC 0% j () +0) 72 () |77, a8
beoaus_e (BT () +e) |[Vils) [Y Wi (s)=0 on (=c0, s4] or [sz +oo) when 54 or sp
is finite. This shows that ((B(V.(s))+e)|ViGE)[¥ Wi(s) is equivalent to.a
nonnegative a. 0. function defined on R with the value 0 al §=—o0 and §== +o0,
~ From (11), we obtain.

W) == Z(n)yg (2/) +f @) f01‘ %ﬂmOﬂ17 all yE (4, B) @y
Subsmtutmg y=V(s) into (21) and then inserting the resulta.nt into- (20) ylelds
(O EDNAO e HONESICIUAONEFICAOI] 410 N (1)3
for almost all s€ (s4,55); when s4 or s is finite, the equalify reads 0=0 in (=oo,
84) Or (83, -+00), All the facts proven above show that ¥, (s) is a solution when s>
Oor k(y)>0 a.e. : ‘
" An 1rgmed1ate consequence of Theoram 6 is the followlng statement, -
Lemma 6. Let V.(s), 80, be generalivel inverse to Z;,(y). Then V., (s)
converges to V(s) potniwise R, as )0.
- Lemmas b and 6 point out that the function ¥,(s), gemeralized inverse bo
Zo (y), must be a generalized solution to the reduced problem (1)¢-(2); moreover,
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Vo(s)is also a solution when k(y) >0a. e on [4, B]. We now turn o the ocase

that the function k(y) has at least one mterva,l of degeneraoy in [4, B]

Let {[a,,, b1; =1, 2, +-} be the collection of all intervals of degeneracy of
k(y) in [4, B]. It follows from (i7) that Z (g) has the same intervals of
,degeneraoy in [A Bl ask(y). As Zo(y)>0a. e. in the open set (A B) \U[w,, b1,

Zo(y) is striotly inoreasing in the Qpen seb. Obviously, on each interval of

degeneraoy, [a;, b;1; =1, 2,++, Zo (y) =s;=constant, and Zy(a;—0) =2, (b;+0) =

s;. Henoe, s=s;, j=1, 3, is a jump point of ¥o(s); at which . : A
- Vo(sj~0) =sj, Vg(s;+0) =b;, and Vo (s;) = [ay, bil. (8

. Because Zo(g) is ‘striotly inoreasing and locally a. o. in -each connected:

oomponent of the open set (4, B) \L’J[w,, b;1, Vo(s) is stmotly 1noreasmg a.nd a. O.

in‘each connected component of the open set (s4, sz) \U {s=s;}, by Proposition 8.
Here we have used the faot that Zo((A B) \U [ai, b) = (54 sB)\l7J {s=s;}.-

Repeating the argumen’us of Lerma, 5, we reach the following concluston: in each
connected oomponenh of the open set (ss, sB)\U{s~—s,~}, E(Vo(8)) [Vol®) [T 7o (s) 1=

equlvalen’ﬁ to a strictly increasing, a. o. funotlon s0 that equlfay Mo a. e. holds
Integrating equlity (21) over [a;,b;], § = 1 2,4, ylelds

s=8,40 '
(k(Vo(s)) l.Vo(s) |- 0 (s) +SG(V0(S))+F Wo@®)| , =0 (7
S=84~ o
by equality (19) and the jump condition ®).
AsV,(s) is the pointwise limit of the absolute continuous solution V. (s) 170}
problem (1),-(2), the jump conditions (7) and (8) are essential, natural properties.
which the discontinuous solubion ¥ o(s) of the reduced problem possesses. :

‘From the above mentioned, it is easy %o ses that 7o(s) can be represented by
Vo(s) A+2(bj——w,) H(s—s)) +J 1(#)ds for all sER, |

Whloh is wha,t is known as the Lebesgue decomposﬂnon of the funohon Vo(s)
relative to the Lebesgue measure.
" Fuarthermore, Theorems 2 and 4 are respectively direct consequences of Theorems:
7 and 8,'_‘and the uniqueness of the solution ¥,(s), as the pointwise limit of the
solution ¥ (s), is an immediate oconsequence of Theorem 4. Up to now we have
completed the proofs of Theorems 1-4.
Remark 1. From the jump condition (7), it can be seen that the jump point:
s=g; §=1, 2+, of the solution ¥(s) is not known a priori, unless k(y)=0,
Remark 2. Tho solution ¥, (s) to the reduced problem (1),-¢{2) depends upon.
its perturbation procedure. For example, a boundary value problem of the form

(sgV () +f W (s)))V'(s) =0 for s€ R,
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V(—o0) =0, ¥ (+00) =1
oan be regarded as a reduced problem of the boundary value problem
V" (S> s CIAONE AU ($))(V )V (8).= =0 for sE R
R V(-°°) =0, ¥ (+00) =1,
where f (y) and g(y) are funstions sainsfymg hypobhesm Hs, and A(s) is a positive
continuous function defined on [O 1]. In torms of formulae (22) and (14), we

at

obtam
def

Vols) =H(s—s,) for s€R, 5, * J: h(s)f(s) ds / J:h(s) g9(s)ds.

This shows tha} the unique jump point s=s; explioitly dependes on the values of
the funotion % (y) which can: be chosen a,rbﬂsrarlly '
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