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Abstr'aét

Thls paper establishes a Horn—type ﬁxed pomt theorem in Fréchet spaces whlch isan
answer to Burton’s problem® in’these spaces As an application of the result, the authors
obtain an existence theorem of periodic solutions for functional differential equations with
infinite delay. ’ ' |

§1. Introduction
Horn has showed a fixed pomt theorem in Banach spaces in [1], ib is the
extonsion of Browder's Theorem 2 in [2]. This fixed point theorem has proved
very useful in getling the existence theorem of perlodlc solufions for the
funci;lonal dlfferentlal equatlons with infinite delay (see 6—~9]) In this paper,
we shall seb up thls Horn——’oype fixed pomt theorem in Freohet spaoe ‘which is an
answer to Burton’ s problemm in these spaces, and as an apphoa’olon of the 1es1111;

we obtain an existence theorem of periodio solutions for functional dlﬁ'erentlal _

equations with infinite delay in Fréchet spaces.

' §2. Some Lemma

- Lemma 1%, Given a "co'mplecv. K, let K, b a éubcompleiv and Oy @ closed,
bounded, acyclic subset of K o Suppose thas f s @ simplicial mapping of the nth
barycenirde subdivison of K énto K such that, for some positive imteger m, fI(Ko) <
O, for m<j<2m—1. Then f has a fived point wn Co.

Lemma 2%, Lt X be a finite-démensional linear topologfwal space and let So
8.8, be bounded comves sets of X such that So and S; are closed and S s @
neighborhood of So, relative 40 Ss. Let f: Sz>X be a continuous map such thas for
some nteger m>0 we have

(81 <8, 1<j<m-—1
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and
f7(8y) C:So, m<j<2m -1.
Then f has a fiwed point in So. A :

Lemma 8%, Let X be am/y metmzabla spzwe wml ACX @ closeol subsst Let B
be any locwlly conves linear space. Then any f: A—>E has an ewtonsion F: X—E with
F(X) oonw f(4). In partioular; there emists @ reiraction of a Fréchel space onto
any compact, convex subset o f éiself.

Lemma 4%, Low X be o Fréchet space, with topology v. Then there evists @&
countable sepwmtmg fwm@ly of seminorms {p, } such that the metmo deﬁnecl by

9=t plo—y)
p(w y) = § -_'"'—""‘"—1+p,_( .y),fm'tmyw, z/GX

is compat@ble with .
Lemma §. Lew X be o Fa échet space and let DK be subset of X Zet f be o
uniformly continuous mapping of @ set K 4mto tiself. For any given @ntegea m>0
and any €>0 there eists 3=3(s)>0 such that, if ¢: D—->D is a selfmapping on D
and | g (@) f(w) | <8 on D, then | ¢’ (@) ~ ~f (@ I<eon D for 1<9<m
P/) 00 f For m=1, the qtatement is true naturally Assume it is ’ﬁrue for 12
., m—1. 'I‘hen ' '
plg” (w), Fm @) <p(g(g™ (@), f(g’”’i(w)))+p(f(g”‘ 1(w)) f(f’”"i(w))) @)
Smoe fisa unlformly continuous- mappmg on K, there exists an 1>0 such that
p(f(a;) f(y))<s/2 Whenever p(m y) <m. We choose 50 so that p(g(w) fl@)<
g/2 on D, p(g’(a,) f’(m))<8 for 2<y<m 1 and p(¢"™*(s), f’”"i(m))<o7, fhen
p (g™ (@), f’”(w)) <e by (1). So the result is true

§ 3. Fixed Point Theorem

Theorem 1. Lot 808185 be convew subsets of the Fréchet space X, with 8,
and 8z compact and 81 open relaitve. to Sz Let f: 5’2—>X be @ coniinuous mapping
such that, for some 'ontegea" m>0, ' _ .
f’(;S’i) 8, 1<j<m—1, _A - 2
and |
J7(84) C;S’o, m<‘7<2m —1. ' 3)
Then f has a fiwed point in S, '

Pfroof Aocording to Lemma 4, we may assume the metmc in X just is -

p( ) =§ R i e _{ﬁw y)y) ,
where {pz} is a countable sepa,ra,tmg family of seminorms on X.
We also may assume f(S;) <8, since if this is not $he case then by Lemma. 3,
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(900 —g@))>1, thon

there exists a retraction r: X—>8;. We may then define a new map f=rf which
has properties (2) and (3) and whose fixed points in 8, are also fixed points of f.
Since § is open in S and S, is compaot, thers emsts s>0 such that IV, (;S’o) N
8:N S81. By Lemma, 5 there exists >0 such that. for any map g ‘defined on a subset
D of Sz we have p(¢(a), f’(w))<s/100 for 1<j<2m and for all ®€ D whenever
p(g(@), f(@))<n for all o€ D. |
Since 8, is compact, there exists a finite collection of points {w;} in S, suoh

‘that for any o€ QS there exists an with p(m, w,) <7/80. Obviously, we ma,y

assume one point @y in {@} belongs o So. Let H be the finite~-dimensional linear
manifold generated by {w}. Lt Ro=SoNH, R1~SiﬂH and Rz—SzﬂH Then
Ry, Ry, . and R, are nonempty convex sebs in- H. Therefore there exists a
triangulation T': K—>R, for some comp‘ex K. Sinoe f is unlformly continuous on
R;, there exists 3>>0 such that p(f(w), f (y)) < 7/80 whenever p(w, y) <5, We may
assume that the mesh of the trlangulafolon T is less than 3, since a baryeentrm

subdivision will give this,

‘Define a map g: Bo—>Ro as follows For each vertex fvE B, of the triangulabion

let g(m) =, such that p(a, f(fv))<77/50 For' any € R, if T“i(w) =i T-1(v,),

lot g(@) =Sag(v;), then g is defined for-all of Ry, .
Now if o; and v; are Vertloes of a common simplex in R, then we have

p(g(®y), g(@))<p(g@y), f(v))+p(f (), f(w))+P(f(va) g (w))
<1/50-+1/80-+1/50.=37/50.
For any o€ Ry, if {v;} are verbices of any 31mplex con’ﬁammg o in Rz, then

o(9(@), 9(0)) =p(Seag (), 9(2)) = 3} 5= ﬁfﬁggofj;;z@ e

By the increasing property of function fw) —_,—v'lim

and the property of seminorm,
we have AR |

p(9(@), 9<@f>><21 - E%‘fféft(ﬁz»}g?&f»

Since p(g('v;) g(v;)) <37/50, that is,

S 1. p.(g)— g(w))
22" T pa(g(e) —g () 50’

2}77» (9('” D) — g('ua)) >1+Pn (g(w) — g(’”:))y
that'is,

1_ (g —g(p))
2 _1’*'2’» (9 (’f{t) —g(@;)

Hence

1 pulg@)—g(@)) 3 1 p(g)—g@)) 3
T < T po () —g )] > Tp. (g (o) —g (o)) B0
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1
2n+1 P 50

'1/2”+1<3°7/50 whenever rm>n1 So w> have p,.(g(fv,) g(w)) <1 whenever n<n,
(ny is not related to 4). Then

1pa (g () —g(0)) <3, (<)

Obvmusly there exists an integer m, such that —_ 7 whenever <1y ‘and

that is,
L >
1+pn(g(0) —g(vs))

pof =

Hence,

< mg(m) y(v))
<2 ??2=1 2" 1+pa(g(w:) — géw,)),

-___.

In the other hand,

&1 1 2 1

=2 T T T o
S0 . -
S 1 Saplge) ~g(v)) n ~ By _ 124
AT T+ S, g0y —g0)) 2“’,;-21 5 Lo nilo@d ~g o))+ R 2,,,< 5% 55

It follows that, for any o€ R,,
6(F@), 9@)<p(£@), £0))-+o( £, 9(1))-+p(g(w), g<m>>
<n/60-+3n/5+41/50<n,
where u is any vertex of any simplex containing .
By (3), we see that
9 (Rl) CNe/100(f (Ry)) CNs/iOO (f (81)) CN,/100(80), m<g<2m+ 1.
Bub ¢: B;~>R,, and so we have
9 <R1> CNe/100(80) N Ba=N /100 (Ro) N ch 6onv (N,/100(Ro)) N Rs, m<j<2m-+1,
Let Ry=conv (N,/100(Ro)) N Rs. By the same arguments ag above, we get R, N, /s
(Bo) N R;. Henoce R; is closed and N, (Ry) N HCR,. But 14 (Ri) c R} for m< 3<2m
—1, and so by Lemma 2, ¢ has a fixed point in R},

Let {e.} be a null sequence of ¢’ s as considered above, and let {g.} be %he
corresponding maps with fixed points {z,} respeetlvely By the compaotness of 82
there exists a subsequence w,~>wo, 0 f(wo) =limg, (2,) = =limw,, =2,. Since m,.,E
Ry = conv (N 600/100 (Rom,)) N By, it follows that chE /S'o '

§ 4. Application

As an application of Theorem 1, we obtain Theorem 2 as follows, where the
ooncept of continuous dependence in condition (iv) is 1n1t1ated in [6]. Seo
Theorem 2 is not the same as the result in [7, 8],
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Theorem 3. Let the system

:v =h (%, a:)+J q(, s, :v(s))ds, o (4)

where h: RxR"—»R” q: RxRxR"—»R" are conmnuous and h(t+T m) h(t w), q@@
+7, s+T @) =g(% s @), satfz,sfy . ' L o

(1) Let g: (—o0, 011, o) be @ stmctly decreasing contfmuous funcwon, g(O)
1, g(r)~>o0 as r—>—oo. If ¢: (—o0, 0]>R is conwnuous and, satis fies Ilqb(s) ||<frg (s)
forr —-<>O<s<0 wnd somé r>0 ‘then th@a'e s @ umgue solutwon w(t O qS) of (4) on [O
(i1) Solutions of (4) are g-uniform bounded and g—umfoa m ult@mwte bounded 3.
e., for edch >0 there ewists By (r)>0 sich, that faf qS (——oo O] >R is oont@nuous and
satisfies [|p(s) | <rg(s) for --o0<s<0, then ||w(t 0, qS) I<Bi foa' =0, and there is @
number B>0'stich that foa' éach >0 there emsts K >O such tha,t ’bf Iqu(s) [I <rrg (s) for
i-—<>0<s<0 then | (%, 0, qS) II<B for =K. '

“(1ii) For eath fr>0 ihere is @ contémuous functwon of n L(t fr) >0 such tkat
|l<{>(ﬁ) |l<rr on (-—oo 0] @mplws %’ (% '0, &) ||<L(t ) on [0 oo) | '

' (i) For edich' 10, wa ¢+ (——oo 0]—>R"|p is cont'muous, IIqS(t) 1|<rr}, then
solusions 'of (4) depend corntmmously on Gnitbal fumt@ons ‘in U relative to (X , p),
- where X ={¢|P: (—oo, 0]—>R" is ‘ontimucus} and for any ¢y, $2€ X,

N Svon. Pu(Pr Ba)
o (s, h3) = 212 T pa(fs, P2

(on(p1, B2) =l pa—pall ™™= _sap |l¢>1(t) ¢z(t) ll)

Then (8) has a perdodic-solution of period- T

Proof Obvlously X is a Fréche} space,

By (ii) there exist B, Bl——Bi(B) a.nd K 1—K1(B) suoh ’sha,t l]qS(s) |I<Bg(s) for
—-00<s<0 ;mehes . L

o lo(z, 0, $)|<B for $>0, |o(3, 0, ¢) | <Bj for t>K
For the same reason; ‘there exist Bj, K,'such hha’u
: =G, 0, ¢) | < B for :=0; llw(t 0 qS) ||<B for t>K
159 1< (Brtd)g() for —oo<s<0. it
“ " PDetermine a number H >O Wlth Bg( H) Bi—l—l

Construct a conbinuous sbrmtly deoreasmg function r: (-—-oo —H]—>[Bi+1
" B,+1] with »(8) <Bg(®¥), r(—H) =Bg(— H), r(1)—>Bs+1as t~>—c0, r((—H/2) <
(B1+1) g () fori<—H/2.

Chosen J >0 with r(—J) =B,. By (iii), we have

def " ’
“w (73’ Oy qS) “ <£2§L (t’ B2+ 1) ==L

whenever |¢ (&) | <Bs+1. Find an integer m with mT >Ko+dJ.
Define
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So={3|6€ X, () |<r(®) ift<—H, () |<Bg() if —H<t<0,
@ —¢ @) I<L*|u—n]}, -
B1={|$€X, |¢p@) | <rt—H/2) if 1<~ H/2 I¢ @I <Bu+1
it - H/2<4<0, | W) ~$(v) |<L*|u—0|}, S
Si={$I9EX, _sap I$®)I<But1, I6w) b0 |<Llu—o]}.
For any ¢ € 8, define B |
- P($) =a(i+T, 0, &), for —oo<i<0.
Aeoordmg to (iv), P: 8;—>X is a continuous map. By the penodm property of h
g, We see that =
P2(qS) (&) =P(P(¢)) O) ——a:(t—{—T 0, P(qS)) —-a,(t+2T 0, qS), for -oo<t<0
In genera,l L _
Pk(gb) (t) a:(t+loT 0, qS) for —00<t<0 andk =1, 2 »
By the strlotly deoreasmg ploperty of g and r, we have S’OCSlCSz, So, 81, Sa
aTe convex subsets of X, and 8, is open relative to S, By the construction of S,
8 and 8,5, we ha,ve P’(:S’i) CSz for j=1, 2. o, m—1 and P’ (8.8, for m<jg
am—1. 8, and Sz are com paoch subsets of X by ’uhe proof of Theorem 1 in [6]. Then
aocmdlng 10 Theorem 1 there exists a $€ S with P(¢p) =¢ such that »(, 0, ¢) =
" 5(4 0, P($)) a;(t+T 0 qS) and the regult is proved,
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