HORN-TYPE THEOREM IN FRÉCHET SPACES AND APPLICATION**

LIANG JIN (梁进)* HUANG FALUN (黄发伦)*

Abstract

This paper establishes a Horn-type fixed point theorem in Fréchet spaces which is an answer to Burton's problem^[6] in these spaces. As an application of the result, the authors obtain an existence theorem of periodic solutions for functional differential equations with infinite delay.

§ 1. Introduction

Horn has showed a fixed point theorem in Banach spaces in [1], it is the extension of Browder's Theorem 2 in [2]. This fixed point theorem has proved very useful in getting the existence theorem of periodic solutions for the functional differential equations with infinite delay (see [6—9]). In this paper, we shall set up this Horn-type fixed point theorem in Fréchet space which is an answer to Burton's problem¹⁶³ in these spaces, and as an application of the result, we obtain an existence theorem of periodic solutions for functional differential equations with infinite delay in Fréchet spaces.

§ 2. Some Lemma

Lemma 1^[1]. Given a complex K, let K_0 be a subcomplex and C_0 a closed, bounded, acyclic subset of K_0 . Suppose that f is a simplicial mapping of the nth barycentric subdivison of K into K such that, for some positive integer m, $f^{\mathfrak{s}}(K_0) \subset C_0$ for $m \leq j \leq 2m-1$. Then f has a fixed point in C_0 .

Lemma 2^[1]. Let X be a finite-dimensional linear topological space and let S_0 $\subset S_1 \subset S_2$ be bounded convex sets of X such that S_0 and S_2 are closed and S_1 is a neighborhood of S_0 , relative to S_2 . Let $f: S_2 \rightarrow X$ be a continuous map such that for some integer m>0 we have

$$f^{j}(S_{1}) \subset S_{2}, \ 1 \leqslant j \leqslant m-1,$$

Maunscript received February, 2, 1988. Revised March 26, 1990

^{*} Department of Mathematics, Sichuan University, Chendu, Sichuan, China.

^{**} Projects supported by National Natural Science Foundation of China.

and

$$f^{j}(S_{1})\subset S_{0}, m\leq j\leq 2m-1.$$

Then f has a fixed point in S_0 .

Lemma 3^[3]. Let X be any metrizable space and $A \subset X$ a closed subset. Let E be any locally convex linear space. Then any $f: A \to E$ has an extension $F: X \to E$ with $F(X) \subset conv f(A)$. In particular, there exists a retraction of a Fréchet space onto any compact, convex subset of itself.

Lemma 4^[5]. Lex X be a Fréchet space, with topology τ . Then there exists a countable separating family of seminorms $\{p_i\}$ such that the metric defined by

$$\rho(x, y) = \sum_{i=1}^{\infty} 2^{-i} \frac{p_i(x-y)}{1 + p_i(x-y)}, \text{ for any } x, y \in X$$

is compatible with T.

Lemma 5. Lex X be a Fréchet space and let $D \subset K$ be subset of X, let f be a uniformly continuous mapping of a set K into itself. For any given integer m>0 and any s>0 there exists $\delta=\delta(s)>0$ such that, if $g\colon D\to D$ is a selfmapping on D and $\|g(x)-f(x)\|<\delta$ on D, then $\|g^{i}(x)-f^{i}(x)\|<\epsilon$ on D for $1\leqslant j\leqslant m$.

Proof For m=1, the statement is true naturally. Assume it is true for 1, 2, \cdots , m-1. Then

 $\rho(g^m(x), f^m(x)) \leq \rho(g(g^{m-1}(x)), f(g^{m-1}(x))) + \rho(f(g^{m-1}(x)), f(f^{m-1}(x))). \tag{1}$ Since f is a uniformly continuous mapping on K, there exists an $\eta > 0$ such that $\rho(f(x), f(y)) < \varepsilon/2$ whenever $\rho(x, y) < \eta$. We choose $\delta > 0$ so that $\rho(g(x), f(x)) < \varepsilon/2$ on D, $\rho(g^j(x), f^j(x)) < \varepsilon$ for $2 \leq j \leq m-1$ and $\rho(g^{m-1}(x), f^{m-1}(x)) < \eta$, then $\rho(g^m(x), f^m(x)) < \varepsilon$ by (1). So the result is true.

§ 3 Fixed Point Theorem

Theorem 1. Let $S_0 \subset S_1 \subset S_2$ be convex subsets of the Fréchet space X, with S_0 and S_2 compact and S_1 open relative to S_2 . Let $f: S_2 \to X$ be a continuous mapping such that, for some integer m>0,

$$f^{j}(S_{1}) \subset S_{2}, \ 1 \leqslant j \leqslant m-1, \tag{2}$$

and

$$f^{j}(S_{1}) \subset S_{0}, \ m \leq j \leq 2m-1. \tag{3}$$

Then f has a fixed point in So.

Proof According to Lemma 4, we may assume the metric in X just is

$$\rho(x, y) = \sum_{i=1}^{\infty} 2^{-i} \frac{p_i(x-y)}{1 + p_i(x-y)},$$

where $\{p_i\}$ is a countable separating family of seminorms on X.

We also may assume $f(S_2) \subset S_2$, since if this is not the case then by Lemma 3,

there exists a retraction $r: X \rightarrow S_2$. We may then define a new map $\overline{f} = rf$ which has properties (2) and (3) and whose fixed points in S_0 are also fixed points of f.

Since S_1 is open in S_2 and S_0 is compact, there exists $\varepsilon > 0$ such that $N_{\varepsilon}(S_0) \cap S_2 \cap S_1$. By Lemma 5 there exists $\eta > 0$ such that for any map g defined on a subset D of S_2 we have $\rho(g^j(x), f^j(x)) < \varepsilon/100$ for $1 \le j \le 2m$ and for all $x \in D$ whenever $\rho(g(x), f(x)) < \eta$ for all $x \in D$.

Since S_2 is compact, there exists a finite collection of points $\{x_i\}$ in S_2 , such that for any $x \in S_2$ there exists an x_i with $\rho(x, x_i) < \eta/50$. Obviously, we may assume one point x_i in $\{x_i\}$ belongs to S_0 . Let H be the finite-dimensional linear manifold generated by $\{x_i\}$. Let $R_0 = S_0 \cap H$, $R_1 = S_1 \cap H$, and $R_2 = S_2 \cap H$. Then R_0 , R_1 , and R_2 are nonempty convex sets in H. Therefore, there exists a triangulation $T: K \to R_2$ for some complex K. Since f is uniformly continuous on R_2 , there exists $\delta > 0$ such that $\rho(f(x), f(y)) < \eta/50$ whenever $\rho(x, y) < \delta$. We may assume that the mesh of the triangulation T is less than δ , since a barycentric subdivision will give this.

Define a map $g: R_2 \to R_2$ as follows. For each vertex $v \in R_2$ of the triangulation let $g(v) = x_i$ such that $\rho(x_i, f(v)) < \eta/50$. For any $x \in R_2$, if $T^{-1}(x) = \sum \alpha_i T^{-1}(v_i)$, let $g(x) = \sum \alpha_i g(v_i)$, then g is defined for all of R_2 .

Now if v_i and v_j are vertices of a common simplex in R_2 , then we have $\rho(g(v_i), g(v_j)) \leq \rho(g(v_i), f(v_i)) + \rho(f(v_i), f(v_j)) + \rho(f(v_j), g(v_j))$ $\leq \eta/50 + \eta/50 + \eta/50 = 3\eta/50.$

For any $x \in R_2$, if $\{v_i\}$ are vertices of any simplex containing x in R_2 , then

$$\rho(g(x), g(v_i)) = \rho(\sum \alpha_i g(v_i), g(v_i)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(\sum \alpha_i g(v_i) - g(v_i))}{1 + p_n(\sum \alpha_i g(v_i) - g(v_i))}.$$

By the increasing property of function $f(x) = \frac{x}{1+x}$ and the property of seminorm, we have

$$\rho(g(x), g(v_i)) \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\sum \alpha_i p_n(g(v_i) - g(v_i))}{1 + \sum \alpha_i p_n(g(v_i) - g(v_i))}$$

Since $\rho(g(v_i), g(v_i)) < 3\eta/50$, that is,

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(g(v_i) - g(v_j))}{1 + p_n(g(v_i) - g(v_j))} < \frac{3\eta}{50},$$

if $p_n(g(v_i) - g(v_i)) \ge 1$, then

$$2p_n(g(v_i)-g(v_j)) \geqslant 1+p_n(g(v_i)-g(v_j)),$$

that is,

$$\frac{1}{2} \leqslant \frac{p_n(g(v_i) - g(v_j))}{1 + p_n(g(v_i) - g(v_j))}.$$

Hence

$$\frac{1}{2^{n+1}} \leqslant \frac{p_n(g(v_i) - g(v_j))}{2^n [1 + p_n(g(v_i) - g(v_j))]} \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(g(v_i) - g(v_j))}{1 + p_n(g(v_i) - g(v_j))} < \frac{3\eta}{50}.$$

Obviously there exists an integer n, such that $\frac{1}{2^{n+1}} \ge \frac{3\eta}{50}$ whenever $n \le n_1$ and $1/2^{n+1} < 3\eta/50$ whenever $n > n_1$. So we have $p_n(g(v_i) - g(v_j)) < 1$ whenever $n \le n_1$ (n_1 is not related to i). Then

$$1+p_n(g(v_i)-g(v_i))<2$$
, $(n \le n_1)$

that is.

$$\frac{1}{1+p_n(g(v_i)-g(v_j))} > \frac{1}{2}.$$

Hence,

$$\sum_{n=1}^{n_1} \frac{1}{2^n} p_n(g(v_i) - g(v_j)) \leq \sum_{n=1}^n \frac{2}{2^n} \frac{p_n(gv_i) - g(v_j)}{1 + p_n(g(v_i) - g(v_j))}$$

$$\leq 2 \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(g(v_i) - g(v_j))}{1 + p_n(g(v_i) - g(v_j))} \leq \frac{3\eta}{25}.$$

In the other hand,

$$\sum_{n=n_1}^{\infty} \frac{1}{2^n} = \frac{1}{2^{n_1-1}} = \frac{2^3}{2^{n_1+2}} < \frac{12\eta}{25},$$

SO

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\sum \alpha_i p_n(g(v_i) - g(v_j))}{1 + \sum \alpha_i p_n(g(v_i) - g(v_j))} \leq \sum \alpha_i \sum_{n=1}^{n_1} \frac{1}{2^n} p_n(g(v_i) - g(v_j)) + \sum_{n=n_1}^{\infty} \frac{1}{2^n} < \frac{3\eta}{25} + \frac{12\eta}{25}.$$
It follows that, for any $x \in R_2$,

$$\rho(f(x), g(x)) \leq \rho(f(x), f(u)) + \rho(f(u), g(u)) + \rho(g(u), g(x))$$

$$< \eta/50 + 3\eta/5 + \eta/50 < \eta,$$

where u is any vertex of any simplex containing x.

By (3), we see that

$$g^{i}(R_{1}) \subset N_{\epsilon/100}(f^{j}(R_{1})) \subset N_{\epsilon/100}(f^{j}(S_{1})) \subset N_{\epsilon/100}(S_{0}), \ m \leq j \leq 2m+1.$$

But $g: R_2 \rightarrow R_2$, and so we have

 $g^{j}(R_{1}) \subset N_{s/100}(S_{0}) \cap R_{2} = N_{s/100}(R_{0}) \cap R_{2} \subset \operatorname{conv}(N_{s/100}(R_{0})) \cap R_{2}, \ m \leqslant j \leqslant 2m+1.$ Let $R'_{0} = \operatorname{conv}(N_{s/100}(R_{0})) \cap R_{2}$. By the same arguments as above, we get $R'_{0} \subset N_{s/2}(R_{0}) \cap R_{2}$. Hence \overline{R}'_{0} is closed and $N_{s/4}(\overline{R}'_{0}) \cap H \subset R_{1}$. But $g^{j}(R_{1}) \subset \overline{R}'_{0}$ for $m \leqslant j \leqslant 2m-1$, and so by Lemma 2, g has a fixed point in \overline{R}'_{0} .

Let $\{\varepsilon_n\}$ be a null sequence of ε' s as considered above, and let $\{g_n\}$ be the corresponding maps with fixed points $\{x_n\}$ respectively. By the compactness of S_2 there exists a subsequence $x_{n_i} \rightarrow x_0$, so $f(x_0) = \lim g_{n_i}(x_{n_i}) = \lim x_{n_i} = x_0$. Since $x_{n_i} \in \overline{R}_{0(n_i)}^i = \overline{\operatorname{conv}}(N_{\varepsilon_{n_i}/100}(R_{0(n_i)})) \cap R_{2(n_i)}$, it follows that $x_0 \in S_0$.

§ 4. Application

As an application of Theorem 1, we obtain Theorem 2 as follows, where the concept of continuous dependence in condition (iv) is initiated in [6]. So Theorem 2 is not the same as the result in [7, 8].

Theorem 2. Let the system

$$x' = h(t, x) + \int_{-\infty}^{t} q(t, s, x(s)) ds,$$
 (4)

where $h: R \times R^n \to R^n$, $q: R \times R \times R^n \to R^n$ are continuous and h(t+T, x) = h(t, x), q(t+T, s+T, x) = q(t, s, x), satisfy

- (i) Let $g: (-\infty, 0] \rightarrow [1, \infty)$ be a strictly decreasing continuous function, g(0) = 1, $g(r) \rightarrow \infty$ as $r \rightarrow -\infty$. If $\phi: (-\infty, 0] \rightarrow R$ is continuous and satisfies $\|\phi(s)\| \leq rg(s)$ for $-\infty < s \leq 0$ and some r > 0, then there is a unique solution $x(t, 0, \phi)$ of (4) on $[0, \infty)$.
- (ii) Solutions of (4) are g-uniform bounded and g-uniform ultimate bounded, i. e., for each r>0 there exists $B_1(r)>0$ such that if $\phi\colon (-\infty,0]\to R^n$ is continuous and satisfies $\|\phi(s)\| \leqslant rg(s)$ for $-\infty \leqslant s\leqslant 0$, then $\|x(t,0,\phi)\| \leqslant B_1$ for $t\geqslant 0$, and there is a number B>0 such that for each r>0 there exists K>0 such that if $\|\phi(s)\| \leqslant rg(s)$ for $-\infty \leqslant s\leqslant 0$, then $\|x(t,0,\phi)\| \leqslant B$ for $t\geqslant K$.
- (iii) For each r>0 there is a continuous function of t L(t,r)>0 such that $\|\phi(t)\| \leqslant r$ on $(-\infty, 0]$ implies $\|x'(t, 0, \phi)\| \leqslant L(t, r)$ on $[0, \infty)$.
- (iv) For each r>0, if $U=\{\phi\colon (-\infty,\ 0]\to R^n|\phi \text{ is continuous, } \|\phi(t)\|\leqslant r\}$, then solutions of (4) depend continuously on initial functions in U relative to $(X,\ \rho)$, where $X=\{\phi|\phi\colon (-\infty,\ 0]\to R^n \text{ is continuous}\}$ and for any $\phi_1,\ \phi_2\in X$,

$$\rho(\phi_1, \phi_2) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(\phi_1, \phi_2)}{1 + \rho_n(\phi_1, \phi_2)},$$

$$(\rho_n(\phi_1, \phi_2) = \|\phi_1 - \phi_2\|^{c-n, 0} = \sup_{\substack{n < t < 0}} \|\phi_1(t) - \phi_2(t)\|.$$

Then (3) has a periodic solution of period T.

Proof Obviously X is a Fréchet space.

By (ii) there exist B, $B_1 = B_1(B)$ and $K_1 = K_1(B)$ such that $\|\phi(s)\| \le Bg(s)$ for $-\infty < s \le 0$ implies

 $||x(t, 0, \phi)|| \le B \text{ for } t \ge 0, ||x(t, 0, \phi)|| \le B_1 \text{ for } t \ge K.$

For the same reason, there exist B_2 , K_2 such that

$$||x(t, 0, \phi)|| \le B_2 \text{ for } t \ge 0; ||x(t, 0, \phi)|| \le B \text{ for } t \ge K,$$

if $\|\phi(s)\| \leq (B_1+1)g(s)$ for $-\infty < s \leq 0$.

Determine a number H>0 with $Bg(-H)=B_1+1$.

Construct a continuous strictly decreasing function $r: (-\infty, -H] \rightarrow [B_1+1, B_2+1]$ with $r(t) \leqslant Bg(t)$, r(-H) = Bg(-H), $r(t) \rightarrow B_2+1$ as $t \rightarrow -\infty$, $r(t-H/2) < (B_1+1)g(t)$ for $t \leqslant -H/2$.

Chosen J>0 with $r(-J)=B_2$. By (iii), we have

$$||x'(t, 0, \phi)|| \leq \max_{0 \leq t \leq T} L(t, B_2 + 1) \stackrel{\text{def}}{=} L^*$$

whenever $\|\phi(t)\| \leq B_2+1$. Find an integer m with $mT > K_2+J$. Define

$$S_0 = \{ \phi \mid \phi \in X, \ \|\phi(t)\| \le r(t) \text{ if } t \le -H, \ \|\phi(t)\| \le Bg(t) \text{ if } -H \le t \le 0, \\ \|\phi(u) - \phi(v)\| \le L^* |u - v| \},$$

$$S_1 = \{ \phi | \phi \in X, \ \|\phi(t)\| < r(t - H/2) \text{ if } t \le -H/2, \ \|\phi(t)\| < B_1 + 1 \}$$
 if $-H/2 \le t \le 0, \ \|\phi(u) - \phi(v)\| \le L^* |u - v| \},$

$$S_2 = \{ \phi \, | \, \phi \in X, \quad \sup_{-\infty < t \le 0} \| \phi(t) \, \| \le B_2 + 1, \ \| \phi(u) - \phi(v) \, \| \le L^* | u - v \, | \, \}.$$

For any $\phi \in S_2$, define

$$P(\phi) = x(t+T, 0, \phi), \text{ for } -\infty < t \leq 0.$$

According to (iv), $P: S_2 \rightarrow X$ is a continuous map. By the periodic property of h, q, we see that

$$P^{2}(\phi)(t) = P(P(\phi))(t) = x(t+T, 0, P(\phi)) = x(t+2T, 0, \phi), \text{ for } -\infty < t \le 0.$$
 In general

$$P^{k}(\phi)(t) = x(t+kT, 0, \phi)$$
, for $-\infty < t \le 0$ and $k=1, 2, \cdots$

By the strictly decreasing property of g and r, we have $S_0 \subset S_1 \subset S_2$, S_0 , S_1 , S_2 are convex subsets of X, and S_1 is open relative to S_2 . By the construction of S_0 , S_1 and S_2 , we have $P^j(S_1) \subset S_2$ for $j=1, 2, \dots, m-1$ and $P^j(S_1) \subset S_0$ for $m \le j \le 2m-1$. S_0 and S_2 are compact subsets of X by the proof of Theorem 1 in [6]. Then according to Theorem 1 there exists a $\phi \in S_0$ with $P(\phi) = \phi$ such that $x(t, 0, \phi) = x(t, 0, P(\phi)) = x(t+T, 0, \phi)$ and the result is proved.

References

- [1] Horn, W. A., Some fixed point theorems for compact maps and flows in Banach spaces, *Tras. Amer. Math. Soc.*, 149(1970), 391—404.
- [2] Browder, F. E., On a generalization of the Schauder fixed point theorem, Duke Math. J., 26(1959), 291-303, MR21 4368.
- [3] Dugundji, J. & Granas, A., Fixed Point Throry, V. I., Printed in Poland, 1982.
- [4] Armstrong, M. A., Basic Topology, Springer-Verlag, 1983.
- [5] Rudin, W., Functional Analysis, McGraw-Hill Book Company, 1973.
- [6] Burton, T. A., Periodic solutions of nonlinear Volterra equations, Funkcialaj Ekvac., 27(1984), 301—317.
- [7] Arino, O. & Burton, T. A. & Haddock, J., Periodic solutions of functional differential equations, *Proc. Roy. Soc. Edinburgh*, A101 (1985), 253—271.
- [8] Burton, T. A. & Zhang, Shunian, Unified boundedness, periodicity, and stability in ordinary and functional differential equations, ANN. MATH. Serie Quarta, Tomo, CXLV (1986), 129—258.
- [9] Wang Ke & Huang Qichang, C_h space and boundedness and periodicity of solutions for functional differential equations, Scientia Sinica (Series A), 3(1987), 243-252.