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ON THE, QUOTIENT RING OF COMMUTATIVE RINGS

WITH ACCLON ANNIHILATOR IDEALS

Zuane YINHUO . (3REFK)*

Abstract

'he author concludes that every commutative ring with ascending chain condiﬁon
an annihilator ideals has a Kasch quotient ring, which gener‘aiizes the Theorem™ that -
every commutative noetherian ring has a Kasch quosient ring. If follows that if B is a

~ commutative ring with acct, then that @Q(R) is semiprimary is equivalent to that it is
perfect, or to that B satisfies regular condition. Besides, that Q(R) is qua,sz—flobemus
equals that Q(R) is FPF or PF, and that Q(R) is artinian equals that B/N, are of finite
dimension, =1, 2, +-, n. N,=J*n R, '

In this paper we shall study the commutative rings’ with ascending ohain
condition on annihilator ideals. We conclude the following: If B is an above ring,
then the classioal quolient ring of R is Kasch and semilocal, which generalizes
the theorem in [1] thab 'séys every commutative noetherian ring has a Kasch
classical quotient ring. It follows that we can drop off the condition that B must
have finite dimension in well-known Goldile theorem if B is a commutativo
ring. In the final seotion we shall discuss when the classical quotient ring of R is
artinian, perfect and quasi-frobenius. Throughout this paper R is a commuta-
tive ring with a regular element. Q(R) denotes the classical quotient ring of R.

AOC* means ascending chain condition on annihilator ideals.

Lemma 1. Q(R) és Kasch tf and only 4f every fawhful tdeal of B contains a
regular element of R.

Proof We say a ring is Kasch if every dense (right) i_deall is R itself. Here B
Is commutative, thus dense ideal means faithful ideal. Assume Q(R) is Kasch, ¥ is

& faithful ideal of B, AQ(R) =Q(R) by assumption,‘ thus 1———%@@ Wheré @€y, ¢,
: ! ¢=1 .
€ Q(R). There exists a regular element s of R such that gs€ B and s=2aiqis, 4=
. ’ : . $=1
1,2, e, n. s€YU.

Oonversely, for any faithful ideal B of Q(R), RNDB is a falthful ideal of R
since (RNB)Q(R) =B. There exists a regular element s of RNYB. So B contains a
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unit of Q(R) and B Q(R) Thus Q(R) is a Kasoh ring.- e g S
. Theorem:2. .I f R sdtisfies acc?, Q(R) is o ‘Kasch. fr'mg, wnd ’bf B has o unit,
Q(R) =Quax(B). . R - ,

w. Proof Let Mass (R):be the set {PE Spee (R) |P 18 max1mal anmhﬂator prime:
ideal}. Mass (R) is. nob empty since R satisfies acct. Wo olaim that Mass(R) is a
_ finite set., Lot U ={all: finite -interssotions of ‘eloments of Mass (R)¥. Smoe every
element of U is still an annihilator ideal, and R has.ace' on annlhlla.tor 1dea1 there:
exsits a Immmal member-of IJ. 'We say, if is P.AP:N--"NP, for some “integer n.. '
Thus for any PE€Mass(R), PNPiN P2Mo: NP, P1nP2n - P,. by our- choice.
It implies Py .-« N P, P. and PPy« Py P There -exists PP for some 4;:bub.
P, is maximal w. r. § annlhﬂa’oor 80 P;=P. Thus we, have'. proved that Mass (RB)

={Py, Py, -, ,.} is a finite seb. If QI is a falﬁhful ideal of R QIQU P.. Otherwme
AT P, for some ¢ I, and WL P;#0 which is contra,dlotlon. ‘Let se %I\n P.. Then

ﬁ s is a regular element of R. If not so, there ex:lsts b€ R such that sb=0 and b #0..
" Thus s€ (b)*. There exists a P& Mass(R) sueh that P2 (b)l gince B has acct; 80 s

belongs 10 PCU Pi, Whleh is 1mpossable Therefore every falthful 1deal of R

contains a regular elemen’o of R Q(R) is Kasoh by Lemma 1. If R has a nnl‘r
Quax (B) exists, and Q(R) has no proper ratlonal extensmn, sQ Q(R) me (R),

< Corollary 8. ' Every commutative noethe'rwn rrmg or Goldele rrfmg 'bs an. ov'clar of
a Kasch ring. ' '

Corollary 4, Let Rbe a mng with accl N= N (R) os the mlwadooal of RB.
Then Q(R/ N) w- Sem%s’bmlpe wrteman 5 :

" Proof Since R has acct. 7 (B) = =N (R) ©lis a nllpovent and a,nn1h11a1;or 1deal '
Thus R/ N also saiusﬁes aéot since for- -overy ideal of (R/N YU /N (%[/N )= (N: QI) /
N= (‘N ) l/ N. But B/ N is semiprime, ‘henge nonsmguler”J By the prev:.ous
proof overy essen’raa,l idasl 6f R/ N contains a regulrr element Therefore Q(R/ N,
s semlmmple arfinian by Goldile’s theorem, , . ..o :

Gorolla:ry 5. Every semopmme ring with accl ’bs cm orrderr of w sem'bs’bmple
aq*tfmfbwn ring. T o

In the followmg, we shall dlscuss when Q(R) is. artlnmn or quasr—frobenlus

* We say rmg R S‘%tlSﬁeS regular oondition 1f d N CO (0), where O(N ) is the set of
-all regular elements of B modulo N.. " : :

Lemma 6. I f R hms cwc’- then Q(R) is wsemlocal mng, thwt %s, Q(R) /J @ (R))

e.s sem’bs'&mple wmnwn T - Do tet ..
_ ..Proof . First, Q(R\ also satlsﬁes accl Let (Sl)iC(Sg)lC oC(S )lC be an
asoendmg chain of annihilator 1deal of Q(R) Then 8/'s-can be: ’ﬁaken as.ideal’s of
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R For (S)L= (S(Q (B)* SQR)N R)L, we have another asoendmg ‘chain ' of
annihilator ideals of B; annz(S;) Cannz(S,) - . Cannj( S’,.)C -+, Bince-anng(S:) -
=anng(8;) N R. There exists an n such that anng(8,) =anny (S,.) for any ¢=>n.

anng(8y) =anny(8,) for any i>n since annz(8,)Q(R) =ann, (81). That is, the first
ascending chain is stable. Now Q(R) is -i(asch,- henoe the Jacobson radical of. Q (R)
is J = (Soo(@))L. J ' = ({®1, @g, <+, @,})* since Q(R) satisfies ace’ w. r. t. annihilator
ideals. Thus J = (&) * N (@) L N++ N (@s)*, and there exists a monomorphism Q(R)/-
JSB,Q+25Q o +2,Q; where @;'s are in S00:(Q). Smoe Soo(Q) is semisimple Q(R)

A-module Q(R)/J is semisimple arfinian, .- s »

Theorem 7. 'If R satisfies ace, the Sollowing are equivalent.

(a) Q(R) ds semiprfimwd_'g/.- ‘

(b) Q(R) is perfeot.

(0) Soc (Q) és essential.

@) R satz‘-éﬁes régular condition.

(o) Q(R) satisfies reqular condition.

(f) Q(R)/N is regular or seZﬁnjectibe, N=N (.Q) ‘
{(g) Krull-dim (@ =o0.

(h) every non~faithful prime ideal of R s 'ma,mma,l annihilator ideal.

Proof (2)=>(b)=>(0). Olearly (of. [4]). o

(e)=>(a). Siinoce Q is Kasch J(@Q) = (Soo(Q))l VA (Q) J(Q) = N @ 1s niloe-
tent, and Q(R) is semlpmma.ry

(a)=>(f), Obviously. :

(f)=>(e). It suffices to show it fOr the first case, for if Q(R) /N is selﬁn;eohve

then Quax (Q/ N) =Q/N is semisimple by Gorollary 4. For any c€0 (N), ¢ is a unib
- of Q/N. There exists a b of Q such that cb—1€ NCTJ, ¢b is a unit, henoe ¢ is a unit
of Q, O(N) 0(0) is obvious,

(e)=>(d). Lot N be the nil-radical of R, for any o0 (N ), s€O0(N)NR, so
€0(0). Clearly O(N) =0(0).

(d)=>(a). Since Q(R)/N also satisfies acct, and is of ﬁnlte rank by Corollary
4, Q(R) is semiprimary by [1]. _

Flnally, Q(R)/N is regular iff Q(R) /P is regular for each prime ideal of Q(R)
since Q(R) /N is semiprimet™ iff every prime 1dea,1 of Q(R) is maxnna.l 1dea1 1ff
kruh—dlmensmn of Q(R) is 0. .

(g)@(h) This is because there is lattice 1s°morph1sm between Speo(Q (R))
:and the set {P € Spec(R) | P does not contain. regular elements} That is, every
mon-faithful prime ideal of R is maximal annihilator ideal.

Theorem 8. ‘If R swtzsﬁes :wcl and (R) is per fect, the followmg are equwa,l(mt

(a) Q(R) s wfrtqman :
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(b) R/T;, is @ Goldile ring, where Tk= (N(R)")lﬂN(R) 70 =0, 1, 2 s, n—2, n
is the nilpotent indes of N(R).’

(o) R/N. is of finite dimension, _fwhefre N¢==J AR, i=2, 3 y 1 J = J(Q)

(d) The freduced mrn,k p(R) of R is finite, . e., Zp(N "1/N ‘) is finite.

P¢oof (a)<=>(d) Cf [6] Theorem “@).
(a) <> (0). Sinoe Q/J is semisimple, J "'1/.] iis semlslmple module, i=1, 2,

n, J"=0, Thus Soo (Q/JH2Jt/J'. Now Q/J* is of ﬁmte d1men91on smce R/N; ha,s;
finite dimension and R/N;-(R—}-J‘)/J‘ i essential m Q/J‘ as 8 (R+J‘) /T

.module, i=1, 2, e, m, Therefore J¢-3/J* is finite generated and Q(R) is artmlan

(a)e(b). Smoe Q(R) is perfect, R satisfies regulanty eondmon by Theorem
7. On the other hand N*=0, R/T,,_l—R/T =R/Nisa Goldlle 1'1ng by Oorollary
4, Therefore, R igra -Goldile ring, -and Q(R) is artmmn by [9] and [10]
(Theorem 0).

In the followmg, a ring is called PF ring if. avery falthful modnle in Mod—-R
is a generator R. is (vight) FPF if every (right)? ﬁm’oelly generated Iaxthful
module is'a generator in Mod—-R _

Theorem 9. If R swtzsﬁes acet,’ the fouorwmg wre eguwwlem

(A) Q(R) is quasi~frobenius. .

(B) Q(R) is PF.

A©) Q(R) is FPF..
A (D) QR) isa cogewmtoq* in Mod=Q(R). -

(BE) Q(R) is.selfinjective. :

If B has a unit, Q(R) = Qs (B) (A) is equwwlent $o the follafwf:,rngA

(F) For each ideal %[E %”of R, 911-==0 where. = {uieal %I[EleHom(QI R) suoh
that f has 1o ewtemwn} :

(@) For any ideal % of B and komomwrphfasm o %I—>R thefre emsts a fmthful
édeal BY and homomorphism B: B—>R suoh ‘that B|u==as

Proof (A)=’?(B)=)(0) Clearly. _

(0)=>(D). Since Q(R) isa commutative FPF ring, Q(Q) = =@ is selfinjeotive™,
and @ is Kasoh, Q is PF™® henoce Q is a cogenerabor in Mod-Q™.

(D)=>(E). Since Q/J is sem151mple by Theorem 6 and Kasoh, there are only
finite non—lsomorphlc olasses of S1mple Q-modules in Mod-Q. Let 8y, Sz, «+» Sn Do

~ the represen’oa’olves of m non—isomorphio classes, 8,2 (by assumption). B=H(S\)

<Q since H; is indecomposable, ¢=1, 2, -+, m. Thus @= =B (S:D8:D- DS, DX =

E(S,)@D- @E(S,.)@X for some module X. Let E= BEE)®D---®ES,). B is :

projective and injeotive. Since E(S,) is indecomposable, R,=End,(H#,) is local,
'§=1, «+s, n. By [8] propositions 92.5 and 22.6, Ri/J (R ~End(B/BJ), where J
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=J(Q), =1, 2, «+; n. Sinee H,/HiJ is & semisimple Q/Jf—*niodlﬂ‘e“:henee & semisim-
ple @-module whose endomorphism ring is d1v1S10n E./E.J must be simple module
Since &, is f, g,-and E{/EiJ~Ej/EjJ iff By B iff 8,6, iff 1= =By BJ isialso a.
non—lsomorphm simple-module. So each. - sumple Q—module is an. ep10~1mageref B,
and F is projeotive, H is a generalor in Mod—Q by Azumaya s theorem. There isan
integer n such tha.b B (n) Q@M for some module M E is m]eotlve, therforee Q is
selfinjective. )

(E)==>(A) Smce R safasﬁes acc‘L (A) holds by [1]

IfR has a umt Qumas (R) emsts Q Q,m (R) by Theorem 2, me (R) 1s selﬁn-
A Jeome iff (F) holds iff (G) holds H1, '_ ‘
o Gorolla.ry 10. 17 R q,s FPF a"fmg with cwc 1 then Q(R) is guasrz, fa”obenfms

~ Proo f Smce Q(R) ig also FPF Q(R) is quaS1—froben1us by Theorem 9. -

S
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