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ON CERTAIN CRITERIA FOR THE PRIMALITY -
OF MEROMORPHIC FUNCTIONS

L1 Baoqin (FZ 8 SONG GUODONG(*Q’P?)

Abstract

-The authors obtain, a,mong other thmgs, the followmg result: Let f bea tmnscendenta.l
‘meromorphie functlon, then there exists an integer n, such that the set -

{a€C; f(2)"(6—~a) is not prime}
is an at most countable set. o

§ 1.. Introductlon

A meromorphlo funotxon F(z) f (g(z)) is sald to have f and g as left and
nght factors respectively, provided f is meromorphlc and ¢ entire (¢ may be
meromorphio when f is rational). F is said to be prime (pseudo-prime, left-
‘prime, mght-pnme), if every fa.oﬁorlzatlon of F' of the above. form into faotors
lmphes that e bher forgis hnear (elther f is rational or ¢ is a polynomml f
“linear Whenever g is transoenden tal, g is llnear Whenever I 1s tra,nsoendental)
For an erntire funotion, when factors are restrioted to entu‘e funotlons we define
‘the corresponding notions such as E-prime, E’—pseudo~pr1me E—left~pr1me eto,
"Two factorizations ¥ =f(g) and F=fi(g1) are-said o be eqmvalent .whioh is

«denoted by f(g) ~f1(gs), if there is a ].mear transformation A such that
fi=f) and gu=ai(g).

In what follows we shall emp10y ‘the no¥ations and theorems of Nevanhnna.
‘theory of meromorphio fanotions™, ‘

Ozawa®™ gave several oriteria for E——left—pnmahty of entire funotlons Then
Noda,“ﬂ improved Ozawa 8 resulis and obtained '

“Theorem A. " Lgt' F be @ tmnscondenml entrz/re functwn fmth at Zeast one. szmple
zeoros satisfying - TR ‘ : :

A= N(tr,'ﬁ") N(fr. ) (""F) >70T 'r, F RO (1)
Jor some lo>0 -where “n. 6.” maans that ﬂw mequwlzty holds as re>o0 - ezcept’ “for a sat
of r of ﬁmte measure. Assume that t}w” AR
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pos
(2) =0 S |
have only finitely many solutlons for any nON-ZeTo constant 0 Then F is E-left—
prime,

We shall extend the above resul}. by proving -,

Theorem 1. Suppose that.F satis ﬁes all. the. h/ypotkeses of Theomm 4. Than F
is lefi—-prime. ¥ e Coer L :

-. Furthormore, we . sha]J; glve 2 S1m11ar cnterlon for the left—pnmahty of
meromorphlo fanction, thab is . . T .
- Theorem 2. Le: F be a tmnscemdcmtwl meromoq'phw functwn 'wzth at Zeast one
szmple zero or szrmpla pole satisfying (1) for some-constami E>1/2. Assume that the
simultansous equations (2) hwfve only ﬁmtely 'many solutwns foa' wnfy NON—2ETO constcmt’
O. Then F is loft-prime. = . - ‘ . '

Coneerning the pnma]ﬂy of eniure and meromorphlc fanetion, we haive

Theorem 3. Suppose that in. wddq,tzon to 'the hypotheses of Theorem 1, the
simultaneous equations (2) hwus at-mist one solution for amy non—wro aonsmnt O Then
P zs]omme, wnbess - ¢ SR S o "
whefref'isentfiv‘e.wnd» o
PR - RN P(z)‘ wo+ w(z z e T (@
with wo, @; %o being eonsmnts aiitd p>2 an integor. Ceaa et B Reniale T e

‘Theormi’d. “;S'wppose that - in addition 10" the  hyjpothdses o f Theormm 2 ‘the
simultaneous equations (2) have at most one solution for any non—ze/ro constwnt 0. Then
F is prime, unless (3) holds with f befmy maromwphzc and, P- bemg of the form (4).

Finally, we shall give an apphoahon of ‘our oriteria in section 4 C

\" N
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§ 2 Prehmmary lemmas

. '4.' P :" i MR o
gLt R B wy TR

'Lemma. 1%, Let f be mea’omorphw wm% g mwe, both tmnscmzde%ml Then

oo T T, 690D o,
NS 153% G

. Lemma 2.. Let j‘(w) Hi(fw)exp (Ha(w)),. where. .H1 isq mw-canstant mtwml
fwwtwn with: at lawst one. zefro, and Hs ¢ non—constant: ,palg/nomal len there ewisis &
complaw Wo, szwh that f’(wo) =0 and f(wo) F04 s
' ' D ot a{i'&, i. e. every zero off is one off Wrrbo
Ha(’ID) AII(w w; Y9 f'.’"” o t

whera A+0, wmﬁb,, M=1, N?Q Pnt

R

S
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3 — )t _
Haw) =27 )+ ) By 1. G

I;I (’Ill—ﬂ;) 1{1.4—1

Obviously

Hy(ay) 9"0 oo, H3<bl) #*0, oo, 6)
50 that Hj is a polynomial. If @ is a zero of Hj, then by (5) and (6), » is a zero of
f'=(Hi+H:H})exp(H,). Henoe. it is also a zero of Hy. ’I‘hercfore there existsan
ay(1< 3<M ) suoh f$hat #=gay, which contradiocts (6). Thus H, mnst have no zeros,
i.e. Hs is a constant, B(%O) say. We have

i [ (v~ @) "‘”] (Hi+ L) = BH(w Ok

. But S : -
degree of left hand side in (7) >2m,+N :

>§}(m,—1) degree of nght hand side in m,

WhlGh isa oontradmiuon And the lemma. follows . .

Lemma 8. Let F be a transcendental meromorphic function with af least ons
zero satisfying (1) for some k>>0. Assume that (2) have only finitely many solutions
" for any non—zero constant O. Then F is pseudo—prime. :

Proof Let F=f(g) with f being meromorphio. and g entire, both transoenden-
tal. We claim first that there exists a.complex w, such that f’(wo) =0 and f(w,) %
0. Suppose the contrary, i. e.. we assume that f* has no zeros or every Z8r0 of f' is
one of f. Then we have . .

, }N(fr, F,)%N(r, -) N(r, F)+N(¢, --)
4= (r )= (¥ 3) ¥ Pl ()

Frond (1) we deduce

B )N Bt (o 2

<4<l N(rr, y>< 140D pe o, e, (8)

which implies

F ok
'If f has infinitely many zeros, {w,} say. then by the second fundamenta.l

theoram of Nevanlinna’s, for g=>3 .
(g—2-0D)) T (r, 9)<§N('r, )<N(r, F)<-1—'*1(-1—)— T(r, 9) _n.e.

which is 1mpossib1e when g is large Therefore. f mus} have only ﬁmtely many

zeros, and we may write =

f(w)=H1(W)exp‘(H2(@)§" o
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where H is a meromorphio function having at least one but finitely many zeros,.
and H, is a non-constant emnre funotion. If Hy has infinitely many poles, so does:
H 1/H 1+ Hy= H (say). Henoe H is transcendental, But since

o ’}fj)) ~f@EGE), a0
by Lemma 1 we have : | o . |
T(,,., g) (’f ), me. o 11y

which contradicts (8). 00nsequen1;1y, H 1 has ab most finitely many poles. Thus
we may assume that Hyin the form (9) is'a rational funotion, On the other hand,
if H, is transoendental, wo may deduce (10) with H ‘transoendental -and (11) .
again a contradiction. Therefore, H, must be a non-constant’ polymomal
‘Now we make use of Lemma 2 ‘and see that it is impossible that f’ has no zeros:
or every zere of f’ is one-of f. Therefore, there isa complex w, guch that ' (we) =0
and f(wo) 0. We agsert that g(z) ~fwo has only firiitely many roots, for otherwise
the simultaneous equations .
{F (Z) f (wo),
F'(z)=0" :
Would have mﬁmtely many solutions, Whlch vlolates $he assumpfion. Thus we.
may write

9(&) = wo+Q<z>exp<M<z>>, I
where Q is & polynomml and M. entzre. L

Further, if a;aefwo is a zero of. i then f (w) 0 O’ohervnse, by the same reason--
ing just syb@foed, » wqu_ld be " an- ‘other’ Pioard’s excepjuonal value of g, which is:
impossible, Therefore, we have '

N(T’T}"><N(°” (9. ) N(r’ .; )
| <N (r, F) N(fr, F)—i—O(logfr) +N(fr, ——)
or R . | L
A<N (r %)‘agoaag‘@). b

From (12), we can esaﬂy denve "

S

TR Tt N(v", ——-)+0(10gr) o{T(v, g)‘r, T RS

g h B PR L : FRNICE A T T
-_ !';. PR S PSS SO SRR S A S SR vl A S I L R
.

Thus we obtain i »° = = ¥

N(rr, )<N(¢, 7 )< o{T(a‘, N}, ni e

Therefore, 1f w*'is a zero'of f other z\bhan fwo (f must have a zero- by the
assnmptzdn), then by the second fundamental theorem, we have ' todd
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)+N<¢’ )
g—w*

<O(log ) +N (m, ) ofT (r, ¢)} n. e.
This contradiction completes the proof of our lemma.

Lemma 4. Suppose that in addition fo the hypotheses of Lemma 3, the
simultaneous equations (2) have at most one solution for any mon—2ero constwnt g.
Assume that F has o factorization of the form (8) with f being tramscendental
- meromorphic and, P entire. Them P must be o polynomial of the form (4).

~ Proof By Lemma 3, F =f(P) implies that P must be a polynomml Suppose
P =deg P>2. We discuss two cages separabely. -

A=o@)T(r, )<F (q»,

Case a). f' has infinitely many zeros {w,}. We claim thab for all large i, w,
m.ush be zeros of f Otherwise, bhére exists a subsequenoce of {w,}, still denoted by
{w.}, such that f(w,) #0 for large n and P(z) =w, has p. (>2) d.lstmct roots which
are the solubions, of the simulianeous equations

F (z) =f(w,),
{F-" (@) =0
'"This contradiots the assumption. Therefore, F=f(P) has mﬁmbely many ZOT0S.
On the other han& we have '

[ (- f<1 w75tV ()= H T p))
N¢, )= ( >+0(10grr) N(w, )+N(q~, )

= 0 (log r),
which is a contradiction.

Case b). f’ has finitely many ZeTos. Then :

X ;><N<~;>w< )
-4 [¥ (e gy (e )] ot

‘Hence, F has finitely many zeros, so does f. And we may write
f (w) = H1(w)exp (Ha(w)), B |

where H is a non-constent. meromorphic function having finitely many zeros,
and H, is entire, If H; has mﬁmtely many poles, then H, \/ H1+ Ha, is. transcens-
dental, so is ) o S S
m_l""" (Hy ,> S e

See P H 01? .
Bul ,
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T (r. %'-)<_1-N(q~, ) N(tr, g} >+N(o~, # )] ‘L—-“o"-':(léé'%r")i“ an
o contradiotion. Thus we may aSSUMe that H 1 is a rational. funofion; Further if
H, is transcenden’oal “$hen so are HY/Hi+ H2 and F’/ F and We shall get a
eonbradiotion again, Therefore. H, , must be'a polynomlal '

By apolying, Lemma 2, we see that there oxists a complex wo sueh bhat f’(ws)
=0 and f(wp) #0. In this oase, if P(z) = wo has ab least two dlstmet roots then
bhe sumultaneous equatlons .

- ‘{F%Cz)‘r—'f(é‘ba) A
ey 1 F'(2) =0 : -
Would have at leas’o two solutions, which violates the assumptlon Hence, P(z) =
w, has only one, root w;ﬂah mul biphclty P i e. P 1s of the \form (4) And the.
lemma follows., ~ o - e e

Lemma 6. Let Q(w) be a mtfwml fumtwn hamfng ot lewst one-simple zero. Then
thefre is @ complen w, such that Q' (rwo) 0 and Q(wo) *0, unless Q is @ linear polynomial.

_The proof of Lemma 8 is an. elementary wotk, which should be omitted.

" §3. Eroofs of Thetrems

- Proof of. Theo'rem 2 Without: loss of generality, we may assume that F has a
simple zero; otherwise we disouss F=F-1 .

By Lemma 8, F is pseudo-prime. Leb F= =Q(9), Where g is transeenden bal
meromorphio, and Q rational. Obviously, Q has -at least- one simple zero, wi say.
By Lemma B, there is a complex Wo such that Q’ (fwo) 0ﬂand Q(fwo) #0, and g(z) =
w0 has 8t most finitely many roobs by the same "‘re _s‘oi, ng a8 before We ﬁrs’o

assume

Then we have

’Q.goo)-aos.‘i‘ | (13)

<o{T(r, g)}+;N(fr: g)+N}('r, = L1
<F(r, 0 +olTig, Plimo. .
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(14) and (15) give: . .. L |
| | ‘JAKJ-V(")‘;H!)) +o{T(a~, 9)}, -"Hn{a." o
Nolnomg (13), we have. B .V -

N(r, 9+ 8- )<N<a~, P8 (nd)-8(n L)

| LKL NG, +olT(r, 9}, .o,
IV(rr, —:-L—-) (—%——1)-1_\7'-(0‘, N¥o{T(r, 9}, noo. - (18)

We olaim that Q has no zeros other than wi. Otherwise, lot ’W2(=;é’w;1) be a 7ero
of Q Then by thé second fundamental theorem and ‘(16), we have -

T, g)<N(rr, L )+N(¢, gjwi"j+'iv(r,g L1 )-l—o{T(fr, e

<0(logfr)+N('l‘, )+o{T<o~, 2

g(%-_-—l)N(r, g)-i—o{T(fr, )N TN N P (17)

Since £>1/2, from (17) we obvlously geb a contradiction,

Thus Q has only one:simple zero wy. Also, due: to (13), we eonelude that @ is -
8 lmear polynomlal
- Now'we ‘cofisider tHe case when Q(oo) aé.oo Then Q ‘has & ﬁnx’ue pole, w* say.

Let{-—_ 1

and deno bo

L @@ Q.'(.fw+c) g(z) @ sl
Then F Q(g) Q*(g") a"d N Q* (9. Olearly, Q” satlsﬁes Q* (00) —-oo so ’ohat
Q* (C) -—czC Y5 with ei ¢z bemg constants. Therefore

Q) - QD) =e e as

i. e. Q is a fractional lmear funotion. The pr oof is completed

Pfroof of Theorim 1 Enhrely similar 0.the proef of Theorem 2. It suﬁiees to
notiog that when F is entire and (13) is ‘assumed, Y mugb be entire, and N(r, g)
=0, Therefore (17) holds for' ain‘""“k>0 whwh‘eauses a een*bra.dmiuon
_ Remark 1. Under the hypotheses of Theorem 1 (or Theorem 2), we oan neh

_ob bam the pmmahty of \F :For example, let ’

S F(2) = (2*—1)exp (z’) (p>2)
Then f satlsﬁes the hypotheses of Theorem 1, but F is elearly not prime,

Proof of Theorem 3 Tt follows. from Theorem 1 a,nd Lemina 4

Proof of Thewem 4 It follows from Theor m'2 and Lemmia 4.

‘'yRemark 2 'l‘he fanét:oﬂ P il th“q‘preoéd;ing exainple shows that in Theorom
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3 (or Theorem 4) the faotorization (3) with (4) may. actually ocour, Also if the:
simultaneous equations (2) in Theorem- -8 have at least two solutions, then fhe
conclusion may not be valid, Fer éx-am'ple,'lei;
A - F@) =G +2)exp(z +2)%.
Then the. szmultaneous equahons o -
F(z) =~ 9"1,

_ {F’ (2y=0 -
have three solut;ons while F s nelther prime nor of the form (3) with. (4)

Remark 8. Ibis easily seen that the condition (1) in all four theorems may -
be replaced by i : ‘ |

kT(r, F)<A+0(10gfr), ne o, o (1')

We shall use ‘bhlS fac’o in the next. seotion.,

§ 4 Apphcatlon

‘We shall solve the' followmg

Problem A. Given any transcendental meromorphm funefuon f, ‘doss there
szish a meromorphic function g.such that. f+g is prime?

This problem is originally due to Gross-Osgood-Yang™, who posed 1’0 for
entlre funotion f. Noda™ gave the answer to problem A with f entire by proving

Theorem B Let f be a; tmnscemﬂental entwe fumtwn Then the set

U 1a€C; £(2) » (2—a) ds mot pmme}

'z,s at most & countable set.

'The answer t0 problem A in general case 1sr ap“pa,renﬂy contained 1n the
following theorem, which we are about to prove. . PRt B

Theorem 5. Let f be @ transcendental meromorphw functzon Then them ewists
an integer n. sz,wh that the-set.. S : L
. {aGG f(z)z (z—-a) is mt pfrwme}
ts.at mostwcountwbleset Tt I SR ST RN

In proving Theorem 5, we shall need %wo more’ lemmas TR -

Lemma 6. Let F boa meramorphic function. Then there. erisis o oounmble set
¥ such that, for any non~zero constant ¢ and o€ C— B, the simultaneous equations & .-
| L {F (&) ¢ (#—a) =6,

[1" (z') (z w)]’

hawe at most one solubion. Liv SO

- BotAm¥ 6 i9 dn- exﬁénsi@n of: Lemma 2 in [4], and the-»proof s simxhr, -whieh
should be omltted R O I T Rt A LA th
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- Lerama ¥. Let f bé'a meromorphw fwwtwn Thion: there emsts an 'mtege'r w wnd
& countable sot-F{ such that for any a€ B4 the fwctormmtwn o "
—a)¢'f & =g(P®@) -
with g being transcendental and P polyynomial. smjplies: that P is linear.
Proof We choose an mteger n suoh tha.t PRI sxmple ‘w6ro" of 2"f (£)-

Denote

i
S

By= {0} Uz ~f‘<z)';6 or <o}
Suppose that there aTe uneounta.bly many complex numbers @ in G E1 such

that -

F, (z) (z w)%"f(z) y<P(z)), ool Dl ey

-yvhe're'g is transoendental, . and ;R'_?@s‘PQ.IY:anl@L Qf,ldegr,‘ee p=>2. We may assume

P(o) =0. Sinoce g(P(0)) = g(0) =0, each 26T0 of: Plsa, zer0 of Fg; Also, since 0 and
@ are simple zeros of F,, we may write SU e
' P(z) —z(z w)"ﬂ('n’ 23),
where ,8 =0 or 1, and #;, j=1, m, aTe 7eT0s of f, 2#0. Obviously, all possible

{z;}1* forms an at most ooun’ﬁable sob. Therefore, there eéxist ay, €0 —FEyand a

polynon:ual denoted still by e T e
H(z ?«'5) t_l('a‘) (Say), R S 28

z w«)f(?«) g¢(2(% ws)"q(z')) = -1, 2 (wﬁéwz),
where ¢4 and gz are meromorphlo We deal Wl"bh two oa.ses separa.tely
Cage a). B=0. Then :

o §;§g§§§§=g<zq<z>> @D @D

Since deg (2¢(2)) >2, ¢ (zq (z)) =ay has’ eﬂzher no roots OF atb lea,st tworoots,: Wthh

is 1mpos91ble by (4:2).- FERIREIR G e :
Case b). B=1. Then there are uncountably many aEC -:Hy suoch that
P G=a) F@) =g E-ae®),
where g, is meromorphic, and ¢ () is of the form (4 1) Smce ga(o) =0, We may
wute ga(fw) fwh,,(fw) W11ﬁh Fig(0) 0! Henee CREE cieuaT i
T "(z w)f(%) “z(z W)Q(z)ﬁa(Z(Z*w)Q(Z))

: Pu,b [ J Lt :‘-.,‘i':‘; . Linh 3 WIS ;_t._,:,~ ':
| H(= ha (z (z w)q (Z)) = ""1f (Z) / q (z)
and . &g if . ’
' (z) -—z(z--w)g(z) sl g Lo 2 (418)

W 'sse tHgt H does 1ok depend on .4 ahd Hl=h) (GG)G' i Thierefors,: Sif: G (a;’) =0,
then H'(2) = O or @ is & pole of f. And from (4.3), : i 5d Diaeds
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alg (@) +af (W)] 2-’09 (@) +a¥g (w) . (4.9
If g (@) -i—a:g (m) #0, we have ‘
oo 20g (@) +a°¢ (@)
(@) +ag (@) o
This 1nd10ates bhat there are uncountably many & which are éither poles of f or

zeros of H’, Thus H must be a comsbtant, which imphes that f is . ratlonal a.I
contra,dmtmn Therefore, any zero @ of G’ satlsﬁes R :

q(w) +wg’ (&) =0.

And by (4.4),
2wq (o) +2¢ (zv) 0. .

. These two equaduons imply oq(z) =0. If 2#0, then ¢(x) =0. And by (4.4) g(w) =0
for o=0. That is to say that each zero of G is a zero of ¢(z). However, i} is easy to
verify that there must be a zero of G, () =[2(z—a)¢(2)) which is not a zero of
q(2). This contradiction completes the proof. .

Proof of Theorem 8 By Lemma 7, there exists an integer n and a countable
set Hy, such that for any € C— H, the function Fo(z) =(z—a)2"f(2), which has a
simple zero @, can not be factorized into F,=g(P) with g being transcendental
.and P g polyxiomial of degree at least two. Putb |

)
H@ =2+ sy

It is easy to verify

i (r, E‘-><T(rr, H)—ITO(leg r)

(e ) S (o)) 9 )

Also, using the second fundamontal theorem, we know that for a+ay, ég a_ﬁd .ws
(sey); | |

and -

3 - 1 )

-ZT(o", H) <N(¢, T—7) ™o

Put H,={H (¢); H' () =0}. Then we derive from the preceding three inequalibies
that for ¢t By U Ha U {as, @5, as}=Ho o

T(rr, 7. )<N<fr, ;(,;)——{NG, ;,) N(rr, ﬁl, )}—i—O(logr), n. 6.
By Lemma 6, there exists a countable set Hs suoh that for any o€ Hs,
| Fo@®=c, |
{F L(2) =0
have at most 0ne solution for any non-zero constant ¢. Let B = =HoU Hs. To F, (z)'-——s
@@—a)2"f (z) applying Theorem 4 and Lemma 7, We conclude that for any a€ C-
iy F, is pnme The proof is completed.
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