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Abstract

If & non-normal quintic surface is birational to a K3 eui:'f'écé,' theén there ‘are three
possibilities: either it is singular along a conie; or it is. :si.ﬁg‘u'lﬁar along two mutually
. interséeting lines; or it is singular along a line and has an isolated triplé point outhide. thet::
- line. Conversely : if & K3 gurface contains a hyperelliptic curve of genus three:with-a: /
node or simple cusp, then it is birational to a quintic surface of the first. type mentmnec'L

above For the other two cases, the mmxma.l models are also chara.ctenzed Y ':" -

A K-8 surface is a regular (complex) surface wﬂah tnvlal canomca,l bundle
The snnplest olassical example is a nonsmgu.lar quartio surface in P%. Some
singular quintio surfaces aro also’ K3. In [8], the qumtlc K3 surfaces with
isolated singularities were discussed. They might have upto three iriple points,
Their .minimal models were chara,cterlzed by the exlsbence of certain special
divisors.’ The a,J.m of this pa,per is to find the m1n1ma1 models of quintic K3
surfaces which are smgular in codlmensmn one, The main result is that there are
essenhally three klnds of such qumtm surfaces ’I‘he firgh kmd of quintie surfaces
is singular along a conio, The second kmd is smgular along two- coplanar lines
and the third kmd is smgular along a hne and has an 1so]a,ted tnple pom’u away
from that line. o

This paper “was Wmtten wh1le the author was wsutmg the Insmmﬁe of"

Mathema’olcs of Academza Smlca whose hospltallty is greatly apprecla.ted

§ 1 PrOJectWe Maps of K3 Surfaces

e\.e

" ‘ In th:ls sectzon we are. gomg to dlSOllSS the suﬁiclent condﬂnons for’a K3
surface to .be. blra’mopal to a qummc surface which is singnlar-in codlmensmn one,

Theorem 1.. Let X be @ K3 surfage. Assume that there is « hyperelloptw curve
O 0 f geometmc genus 3 'whwh has - node.or- sfz,mplo cusp p-as its only s'mgulmmty Thcn
X is bwatwml to @ quintic swrface in Pe. whwh is singular. along @ conde, -
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Here O being hyperelliptic means that the normalization of O has a g.

- Proof Lebt X/ be the blowing-up of X at the point p. Let B be the
exoceptional divisor and D be the proger transform of 0. Since X is K3, E is the
canonical divisor of X', Leb py and p, be the irtersection points of B and D. It is
possible that p1=p,, The adjunction formula implies that D?=2, Take the divisor
A=E+D, Then A°=B since ED=2. We will show that the complete linear
~ system | A| gives rise o the desired birational map,

Fll'S'li we have the exaoh sequence - -
. _ 0—>O(E)——>O(D+E)-—>OD(D+E)—>0 - @
Smoe X is. regular by the dofinition of K'3 surfaces, .H* (Ox) =0, Thus H* (O(E))
=0.by Serre’s duality. We have a°(0(H)) =#*(0(H)) =1 for H is the canonical
divisor: THe- a,dJunoiuon formula implies that the restriotion of the divisor D+E
“on D is the canonical divisor of D, Thus 1 (0p(D+E)) =3 and hi(OD(D-i-E)) =1,
Serre’ s Duahty 1mphes tha.t h2 © (D+H)) = h"(O( D)) 0. Hence (1) 1mphes
‘,~'Bha,t‘ A _ ) o
e  RO@my-4 N )
-‘and h1<0<D+E)> 0. S o
Lemma 1. h°(0(D)) 2,
P/roof Serre s Dua,hty 1mphes thab k”(O (D)) h°(0(E D)) 0 By the
Rlemann—Roeh theorem B (0 (D)) >2 On the other hand, the exaot seqnence
e T 0-0-0(D) —+OD (D)-—->0 ‘
1mphes that A (0(D))<3 for A°(0Op( D))<2 by Ohfford’s theorem ([, p. 343])
Suppose h° (O(D)) =3, Then £° (Op (D)) =2 and the map H°(O (D))—»H° (OD (D)) is
surJeotwe The umqne 0% is the restriotion of iD] on D. Thus the complete linear
system |D| has no base ‘points on D. Since the restriction of D+E on D is the
‘canonical d1v1sdr of D, whleh 1s twme of ‘the g-.., the le‘lSOl‘ P1+ps also belongs o
the g3. So any ‘member of |D| passing through p1 must pass through p, as well,
But a generio member of |D| meets B at two poinis different from p; and Pz.
Hence |D| has no base points on H. Therefore |D|"is base point free, Let @p be
the morphism decided by [DI It is a morphism into P2, Obvmusly, Pp (D) and
@5 (B are distinde lines on P2, The map from' B to its 1mage isa doublo oover By
dhe canonical resolution of Jouble coverings (see, 0. g [4]) there i a double |
covermg w:X'<>Y; where Y is obtained from ‘a séquenoe of blowmg—ups of P2,
Sinde w3 E—m (H)is a double cover;' m:(E) 15 not in the bra.nch Ioous of ax: So E”
must be an even. integer. This eonbrad.lcts oo Wi o
Therefore r°(0(D))=2. o : : SR
Next we show that the oomplete hnea,r system lA ] = |D+E ] has no ba,se
point, e
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Sinoe #°(0(E)) <K (0(4)), D is not a fixed component of |4]. Sinée 1 (0(D))

<h(0(4)), E is not a ﬁxed componént of |A|. Therefore |A| has no fixed.
components. ' . . | - T

Applying Lemma 1 to the exact Sequence. -
- o_->0(D>-+0(D+E)—>0E<1)—>0

we see that the map H° (@ (D+E))—.>H°(OE(1)) is surjective; Thus |4| has no.

base points on H, For the same reason, (1) implies that |.A| has no base points on
Thus far we have proved that | 4| is base point free. Hence the linear system
| A| induces a morphism from X’ into. P%, (Reca'llj that #°(0(4)) =4 by (2).)
Denote this morphism by @. Since AH~1, ®(H) is.a line, Since @ induces the
eanonical map of tne hyperelliptic carve D of gerus 3, .®(D) is a .conic,  Since
®(H) and $(D) are different curves, @ (X’) must be:a surface..Since A2 =B, Whl@h}

is'a prime number, @ is a birational morphism onto a quintic surfide. Since @:1

—>® (D) is a double cover, the quintio surfabe is singular-along fhe eonit G:(M ).
Theorem 2, Let X be a K3.surface with two nonsingular-elliptio.curves Oy ard

e a3

Oy intersecting with each-other at three disfinct Points Py, Pz and pa Then X tsbirational

t0 a quintic surface singular along two Tines crossing edch other:. - - 1. . . yiiel!
~Proof -Let X’ bé the blowing-up of X' at the pomt e Lok E be. il
exceptmna,l divisor, D; and D, be the proper transforms:of Oy and Oy Fespechiyely:.
Take the divisor 4=HE-+Ds+D,. ‘We show that ‘the oomplete linear Sys’oem fA[
gives rise fo the desired morphism. - = ¢ R o
Since & is the canonical divisor.of.X’, a sitaple applma’omn of . the adjunation.
formula réveals that D?= =1 for ¢=1, 2. Thus 4*=5." i
Since Df=—1, K°(0(Dy)) =1. By the Riemann-Roch theorem; we. also have
W (0O(Dy)) =0. Then the exact sequence
o 050(D1)>0(Dr+Dp)=>0p, (D1+D2) -0 . o
1mphes that h°(0 (D1+D2)) 2 and 1 (0(D1+Dy)) =0. Fma,lly ’ahe oxaot sequenoe
. Lt - 050(Dy+Dy) —5’0 (A) —0p (1) -0
-1mphes that h°(0(A)) =4, Co e
'+ Since the map H(0 (A))-—>H o (OE (1)) is sur]ectlve |A| has no base poin ts on
B, The exaot sequence : S
S : oo 0——>0(D1)P—>0(D1+E)—->0E—->0 - _—
:phows that h°(0 (D1+E)) =2 and »*(O(Ds+E)) =0, And the exaot sequenoe
vl 0250 (H +Ds)~50(4)~>0p,(4)—0 ~
"1mphcs that the map H° (O(A))-—»H"(GD,(A)) is surjective. Thus [4 has no. base
.?f.pomts on'.Ds, By symmetry |A| has no base points on D1 eithos, Therefore the
complete linear system |A4| is ‘base point free. -
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Let @: X'—>P? be the morphism defined by |A|. Since the subsystem of |A]
containing Dy has codimension 2, the image of Dy is contained in a line L4 in P3,
Bub D14=2. So the map ®:D;—>L; is a double cover. For the same reason &
mduoes a double cover from D, onto a lme Ls. Sinoe

R (0 (Dy)) =h°(0(Ds)) <h° (O (Di+Dy)),
Iy and L, are distinot. Thus @(X’) must bs a surface. Sinoe. A?= =b, @ must bea
birational morphism onto a quintic surface which is singular along L+ L.

Theorem 3, Le¢t X be a K3 swfwce with two curves Oy and 02 on 4t swtzsfymg

the Sfollowing conditions: < . e
0 1) -0y 4s @ nonsingular curve of genus 2;

ii). Oa.is @ nonsingular elliptic curve; : :

- 1ii)..Oy and. O, intersect at three diftinet points. Then X is birational to a qumtw
surface which is.singular along @ line and has an isolated triple point.

" Proof (Sketoh) Let X’ be the blowmg—up of X at the three intersection
points of Oy and O;.:Let By, Ea Fs be the exceptional 'divisdrs and let Dy, D, be
the proper transforms of Oy and O, respectively. Using the adjunction formula,
we have Di=—1 and D§=—38, Take A=FE;+Hy+ H-+Di+D,. Then A2=5,

Using the similar method as in the proof of Theorem 2, one can easily see that
the complete linear system. |A| is. base point free and it defines a bimﬁional
morphism @ from X’ onto a quintio surface in P23, . : o

 Since AE;=1 for ¢=1, 2, 8, the images of Hy, Hj, Es, are lines, These three
lines are distinot., The map @ induces a double cover from Oy onfo another lino,
Henoe &(X') is singular along B(0y). Since 4D, =0, &(D,) is a point p and D, is
the only curve contracted to p under @. Henoe p is an. isolated triple poinb on the
quintio surface (of, [7]).

'§ 2. Quintic Surfaces Singular in COdimension One

In this seotion we reverse the direction of the discussion. Given a quintio
surface singular in codimension one, we want to find the conditions.for the quintio
~ surface to be birational to a K3 surface. Here we restriot the disoussions to the
. generic cases. In partioular, all K'3 surfaces mentioned in Seotion 1 do.exist, .
Let X; 5-bo. a quintio surface in P Let O.be the unjon of all curves along .
"’whmh Xoids: smgular Since the case that X, is:normal is a.lready disoussed in. [81,
here we always assume that O is not empty. As 2 matter of fact O is a reduced
~ #ourve:. We call O the singular loous of Xy of codlmensuon 1.Let 0, be an irreducible
:component of ¢. Then, the multlphmty of X, at the gener:o point of 0; is called
#he multiplicity of O, ‘ '
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Lemma. 2.. If the singular locus of codimension 1 of @ quintic -surjface: X o
contains. @ component-of multiplicity .gfreatefr than 2, th_en ,X o 4s birational to @ ruled
:sur face. . . ) .
- Proof - - Let.0' be an irreducible curve- of multlphclty>3 on. X 0. Flrst assume
‘that O’ is not a line. Take $wo diskingb points in general position on O'.iLet L be
‘tho: line “assing through these two peints, Then the generie plane passmg through
L outs X, ab an irreducible plane quintic ¢urve with hwo n~tuple points, where
#>>3 is the multiplicity of ¢/..So n must he 8 and the quintio-curve is rational.
‘Hence the pro;eo’olon with-center at I glves rise to a rational map.from X o onto
_1’1 whose generw fiber is a 1a1710na1 ourve. Thus Xois a ruled surfaoe

' Next assumé that O’ is a hne Then the interseotion of X and a genenc plane
passmg through O is the umon of O' (of multlphol’oy 3 or 4) and & rational curve.
‘Hence the prOJeomon Wl‘bh conter at O gives rise 10 a rational map from X, onto
P! whose generio fiber is a rational curve Therefore X is a ruled surfaoe

Lemma3. Ifa quindic swrfwoe Xo smgulwfr in codwmenszon one is bwat@onal to
@ K3 surfwce, then the smgulwr locus of codimension one must be a plwmzfr cwrfve

| Pfroof Let 0= 21 C; be the smgular loous of ccdlmensmn one, W1th 1rredue1ble

«components Oy, ++, O, According to Lemma 2, the mult:.phoi’ﬁy of each O; is equal
40 2, Lot w:T—P* be the blowing-up of P* with center at 0. Let. B=a""(0) be
_the exceptional divisor.. Then the -canonical divisor K r is linearly equivalent to

wr* (Kp) + B Let X o the proper transform of X in T': As a divisor in T,. X is

linearly -equivalent fo «* (Xo) —2H. Let H be a hyperplane in- P2 Then the
divisor Kp+X is linearly equivalent to =*(H)—H. Let X’/ be .the minimal
resolution of X. By the adjunction formula, for W*(0(K z,)) >0 it is necessary that
" (H) — B is' effective for some hyperplane H. in P3 In other ‘words, 0 is
_necessarily a planar curve. . : AT

- Lemma 4. Let S bea nonsmgular suo‘fwce with an ¢ ffecme d'z/vzsorr D which is
hnewrly eqmwlent to the ownonwal divisor of S. Suppose thait every conneoted cmnponent
<of D isa nonsfmgulwr mtzonal cwrrue ’_f /wn wu these components are. (— 1) —cumes
o Prroof Tet E be a component of D Then 2E” E2+EK 5= —~2 by fhe
ad)unotlon formula “Henoe- B?=—1. e AU

Lemma 5. Eweq'y wreduczble curve on an Abalmn sm'fwce has no«n—negatwe ;elf—
wtorsectwn ' o . . o

Proof Let O be an 1rredu01ble curve on an Abehan surfaee S’ Smee OK s=0
“the adJnnotlon formula. implies that 02<0 if and only if 0 is a ra’olonal ourve Wl’oh
o0 = —2 Suppose there were one suoh ourve. Thenany tranglation of. Q' would
. also be a(— 2)-curve, This. ‘would con’ora,dio‘n a well-known' fach bhat a complete
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surfice has only finitely many (— —2)-ourves.
~ Definition. An effective divisor D on a nonsmgulwr surface s called numeriocally-
n—conmnected ef D1D2>n Sor all divisors D;>>0, Dy>0 with Dy+Dy=D.
Vanishing Theorem (2, p. 178]) I f an effective divisor D on @ surface S is-
numerically 1-connedted with D?>0, then H* (8, Os(—D)) =0.
We briefly mention some standard notions concerning 1solated smgulantles
of surfaces, For details see [1], [6] eto, S R
- Let p'be an isolated-singulariby of a surface I and lsb o ! M-V bethe minimal
resolution of J2 ‘The set, A=x"*(p) is called the exceptional seb of p. Write A=

U 4, where 4y, .- " A, are ’ahe 1rredu01ble oomponen’as of 4. A oycle on A is an-

mtegral combma.hon of the A, s,-There is a natura,l pa,rtla,l ordermg, denoted by-
<, among all oyocles. 'l‘here ,15 & unique. oycle Z,. called. the fundamenta,l eyole
satisfying .

i) ZA<0 for all % L -

i) Z<Y for ‘any oyocle Y suoh thafb YA,<O for a.ll 2.

It x(Z) 0 then p is a rational point. If x(Z) =1 then P is called a weakly
elllpiuo pomt ‘An’ ordmary iéolated triple point is a weakly elliptic point, An.
isolated singularity iy called esseritial if it is nob a rational doubls point,

 Let X, bo & quintic surface with smgular losus O of codimension one; ‘Denote -
the equation for X, by f (s, Y, 2)=0 under ‘the affine ‘coordinates. Acoording to-
Lemma 2'and Lemma 3, in order that X 0 s K 3: ‘we -only need $o-disouss the

' fellowmg three cases: ‘ R : ’
‘Case 1 "0 is a conie,
~ 'Without loss of genera,hty, we may- assume that 0. is the zeros of the equaiuons
z=0and g(a; ) =0, where g(, ) is an irréduciblet {guadratio equa,tlon '
' The equaﬂuon f(a, Z 2z) =0 may be written as SR

a8y, ) +eg (@, )b, Y) + (@ y)c(w, =0, @
wﬁere a, b ond ¢ are polynommls -of degrees 8, 2and 1 respeotlvely Let H be the-
x, y—pla.ne Then, the canonlcal d.lVlSOl‘ of the mm1mal resolutlon of X, 0 is’ cut otu:
by H So X, has no essential isolated smgula,rltles outmde H. On the othel.-“hand
(3) also shows that X, 0 has no smgulamiues on’ H—O Henoe X o—-O has no essentlaI
isolated smgula.rltles “For' the’ slmphclty of dlseussmn we 1gnore ‘the ratlonal
| double pomts From (3) We also see that H nX 0ds the umon of o and the lme L
glven by c(m y) __0 N A ST T AR S a
Lt A(, y) =b"(a, &) 4 (& g, O)c(a: ¥): Lob wiP=>P* be the blowmg—up of
P35tk denter at @. Lot & be: the eXdeptional divisor: av“(@)‘ anid let.X be the
£preper $ransform of: Xy, Thon s indtess &. ‘map from X %0 X. Liet & be the inverse.
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image of O in X. Let H' be the proper - transform of H in T, Slnoe H intersscts
X, along O with multiplicity two, G is not contained in. H' Thus H’ NX is the
proper transform L' .of L. - '

We are 1nterested in the case whera a(®, Y, z) b(a: ¥), c(w;y),a,,rg sgufﬁoienﬂy
,general So. we may assume that 4(z, ¥) is nob identiocally equal t0.zero.. . Then the
map w? C'-->O is a double cover. The ramlﬁca‘aom divisor is decided by ﬁhe common
soluhons of eqna’mons A(m, y) =0 and g(a, y) =0, There are 8 distinoet solutions due
to the generahty of. @, b, ¢. Thus the eight ramification pomts are all distinet, and
mone of them ison the line L. Hurwitz's formula implies thab 0 is a nopsingular
.curve of genus 3 and I C=2. Smce .w:0—0 is a double cover over a rational
curve, 0 admits a g 'I‘he two interseobion points. of I/. and @ are mapped to
distinot poinds. So these two points do not belong to the gi. Now X is nonsingular,
so I/ isa (—1) —ourve by Lemma 4. Let £:X—>8 be the blowing-down of L. Then
£ (0’ ) is @ noded ourve of geometrio genus 3. The canonical divisor of 8 is zero,
According to,the. clasmﬁoatlon ‘theory. of surfaces™, S is either a K3 surface. or
an abelian surface. : SO o

. Suppose that S Were an abehan surfaoe Leis Qo be. 3 generw hyperplane
:seotlon of Xy and let Q be the proper bransform of Qp.in X. Then @ is a nonsingular
curve meeting I/ at one point. Thus the genus of -Q is 4 for @+QK x——5+1 6.
Let D=£(Q). Then D is a nonsingular curve of genus 4 on 8. We also ha,ve o

RS, 0s(D)) >H(E, O(1)) =4 v

We olaJ.m tha‘a D is numerically 1-connected: Assume that Dy>0, D2>0 and
-D1+ D, is hnearly equivalent to. D..By Lemma 5 the intersection nnmber of any
two effective divisors on § is nonnegaiuve If D1D2>O ‘then. we are done. If DD,
=0, then D;D>0 since every curve in X, meets a hyperplane section. So. 83=DD
>0 for ¢=1, 2, -which, oontradmﬁs the. algebralc 1ndex ‘theorem, Thus D. is
numerma,lly 1-conneoted.

By the vanishing theorem we have (S, Os(— D)) =0. By Serre s duahty
RS, Os( D)) =h°(S, OS(.D)) >4. Henoe x(0s(—=D))=4: .From’ the  standard
sequence 0-—>0(— D)—->0—>0D—>O we have x(Os) %(0g(— D))+ 2(0p)=>1; But we

know that A° (OS) =h? (OS) =1. Henoe h1(03)<1 This - con’uradmts $he: assumptmn.

that S is abelian. - R . SR
The above discussion is snmmanzed as. bhe foIlowmg

_Theorem 4 In the collectm of ~ alk; qwmtfw rsurfaces,. swgulwr along: a..comde, ,_q-

ganafrwl membar s bwatwml to0.a K 3:surface Batisfying the conditions in- Them‘em 1.
~ Case R . 0.is the umon of two.lines; orossmg ea:eh obher,. . v vt v
W_1 bhoub Joss of generality, we may assume that @ is the zeros of ‘the. equatmns

m@/ . P -
=z d -] ] emwl o gt [ . Ty A P RS S RIS TESPRNIME SalR
'\ﬂg‘ o O 6%2 pepan AN ;“,;051 [ S X P LT A RS R ] WE G . é.f,\ LT v PRI RO R AR IR

I
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‘The equation f (o, ¢, 2) =0 may be written as
o 7@, 4, &) +aogb (@, y) +'yo(s, y) =0, (4)
where g, b and ¢ are polynomials of degrees 3, 2 and 1 respectively, Let H be the

@, y-plane. Then the canonioa] divisor of the minimal resolution of X o is out out

by H. From (4) we also sse that N X, is the union of @ and the line I, given
by ¢(@, y) =0. Denoto the lines 5=0 and y=0on H by 0y and 0, respeotively. By
the generality of @, b, ¢ the three lines L, Oy and 0, have no common points.

" Lot @:T->P3 bo the ‘blowing-up of ‘P* 'v‘vit’h. center at O, Let H be the v

exoeptional divisor @ *(0) and let X be tHe proper transform of X,. Then &
induces & map from X to X,. Let O, be the inverss image of O, in X for ¢=1, 2,
Lot H"be the pfﬁpér’ transform of H in T Since H interseots X, along O, with
multiplioity two, &, is not contained in A’ for i=1, 2. Thus H'N X is the proper
transform I'of L. - - ' S B
" "W are inberoshod in the case where 4(, Y, %), b(a, y), o(a, y) ars suffisiently
general. So the map w:Fy>0, is a double oover. The ramification divisor is decided
by the common solutions. of equations 4(s, y) =0 and #=0. Thets are 4" distinot
solutions due t6 the generality of o, b, 0. Hurwitz's formuls implies that &y is a
nonsingtlar elliptio ourve and E'Cy=1. For the same reason 0, is alio a
nonsingular elliptio curve with L'0,=1, Furthermore, the inverse image of
01N O; vonsists of Hwo points, Hence Ci0,=2. o

Now X is nonsingular, so I/ is a (~1)~ourve by Lemma 4. After shrinking

- I''wé got a minimal surface §. The same argument ag in Oase 1 shows bhat At (Os)
=0. 808 isa K3 sﬁrfaoé‘saﬁsfying the conditions in Theorem 2, | '
*The above disotission is summarized ag the following ‘ ‘
“Theorem 5. T the collestion o f all quintic surfaces singular’ along two coplanar
Vines, o genoral member is birational i6.a K3 sur face with two elliptic 'éum)es_?inteqﬂsectmg“
at three points. Cos ] -
Case8. O isaline.
7 Without loss'of genéTality, we may assume bhét'dis the zeros of fheé‘tjuations:

2=0and g= 0.

- The equation f (#; y, £) =0 may be written ag * .-

2a(w, y, 2) +22b (o, y) +a% (2, y) #b, o (5) |

where @, b and ¢ are polynomials’of ‘degrees ‘3. If a(a) v, 2), b(2,y), ¢(s,y) are

'~ :generio,: then  the surfacé-ﬂWOull-Ft;néﬁ":bvéi-'-K?i,, becatise all hyperplanes passing
through O would oub out an'effective divisor linearly ‘equivalent 4o ‘the canonieal:
divisor of bhe ‘minima,xl‘-.re"solutiontof"thé»q'umt'ifo""sufrféi’oé;*"SO‘ there should"be some

-«s‘oi_idiﬁéhsf-féh“d; b6 o1 X, to b K i e o . ._ |
Subcase 3.1, Blowing-up at O does not resolye the codimension 'one
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s;ngulanby - ' :

Since the mult;phol’ﬁy of O is 2, this case happens when. there is a plane E
intersecting X, at O with multiplicity at least 4. We may assame that H is ther
@, ‘y-plane, Then equaiuon (5) .can be written as , e

' Pa, y. 2) +zw“’d(m y) +zte (s, ) =0; : e T (8)
where d(a; ¥, e(a; y) are polynomials of degrees 2 and 1 resneoiuVely Let L -he-
the line e(s, y) =0 on H Then HNX,=0UL.

- Let. w:T->P? be the blowing-up of P? with center ‘at O; Let B be the.
exceptional divisor #~*(0) and let X be the proper transform of X, Let H' be the-
proper transform of H in T For general a(w, y, z), the eguation a(0, y, 0) has
‘three distinot roots. So X N E is the union of four rational curves M, Mi, M, and _
M, where M is also oontained in H’ and MM;=1, M,M;=0 for i#j. By (6) X is.
singular along M. Let o :T'—>T be the blowing—up of T with center at M. Let B’
be the exceptional divisor o *(M)-and let X’ be the. proper transform of X. Let. -
H4 e the proper transform of H' in'T". = S RS R

Assume that-a(w, y, 2), d(@, ), e(a: y) are sufﬁmenﬂy general Then X' is.
nonsingular. Let D be the curve X’ N.E'. Then oa:D->0 is a double cover ramified.
~at 4 points, for the ramification is decided by the oguation

' o - 430, y).— 4.a(0 Y, O)e(O y) =0,
.'Henoe D is an elliptic curve. i : : o
Let F ‘be the proper transform of L in X’ and lot Hy, Ez, E3 be the proper-
transforms. of Mi, Mj Ms respectively.: Then F,  Hy H, Hs are mntually-
- disconnected while each of them meets D, a} exactly one point. ‘

;. The canoniocal divisor of X’ is cub out by H’, which is the intersection of H*
-and X', By the ‘above congtruction . we sec -fhah H'\NX'=F. By Lemma 4 the
‘_curve Fisa (=1)-curve. Let X’~>8 be the blowing-down of § o e o

- Suppose that § were an abelian surface. Let Qo be a generio hyperplane section
of Xy and let @ be the proper transform of @y in X', Then Qis é,.'nOnsingulalr ocurve-
meeting F at one po_inb.'_ Thus the genus of Q is 4 for Q*+QK x=B+1=6. Let D be
the image of @ in:§. We also have A°(S, 0s(D)) =r°(P3, O(1)) =4..

The same argument as in (ase 1 shows that D is humerically 1-conneoctcd. By
the va,mshmg theorem we-have h*(S; Qs(~D)) =0, By Serre’s duality -

o - B(8,05(—D))=h"(8; 0s(D)) 4. ; |
»Hence x(Og( D)) =5, From thie standard sequence 0-30 (—D)—>0->0p—>0 we have
%(0s) =2(0s(=D)) + 2(0p) =2, But we know that. 1(Qs) =H? (Os) =1, Henoe y (05)
;—0 Th.’ls oontra.d:ots the assumption that § is abelian, . .
L Therefore Sisa K3 surface. Let Z, Z1, Za, Z4 be the 1mages of D Ei, Ez, E,
dn S respectively. It is easy -bo see that 10s(Z +Z1+72+Z3))>1 and (Z+Zs



180 ' OHIN. ANN. OF MATH. . _ "~ Vol, 12 Ser. B

+Z3-+75)?=0. Bertini's theorem implies that thers is a nonsingular elliptic
ourve ¥ linearly equivalent to Z+Z1+Zs+ Zs. Obvlously ZY =3. Henoe S is a
K3 surface satisfying the conditions in Theorem 2. ‘

Subease 2 Blowmg—up X, at O resolves the singularity of codimension one, -

In this oase X, should have ab least one essential singularity in order 1o be -
K3. All essential singﬁlarities together with O should be on a. plane H because
otherwise there would be no effective canonical divisor on the minimal resolution
of Xo. Since H [} X, is the union of O and a curve of degres 3, X, has at most one
isolated singularity on H. Henoce we only need %o consider the case that X, is
singular along U and at a point p (nob belongmg to J), and nonsingular elsewhere,

- Lemma 8. Let X, be a quintic swface which is singular along a mee L. If X,
has one essential isolated double point p away from L, then X o @ not K3..

Proof Let ¢: T—>P? be the blowing-up of P2 at the pomt pand let B be the

~exceptional plane. Let X be the proper transform of X, The canonical divisor Ky _

of T' i3 ¢*(Kps) +2F and the divisor X in T'is linearly equlvalent to p* (X 0)_ 2H.
Thus Kr+8. is linearly equivalent to ¢*(H) where H is a hyperplane in P2,
. Buppose that X were birational to a K 3 surface. Thon the effective canonical
divisor of the minimal resolution X’ of X i§ owt out by the hyperpla.ne H spanned
by p and L in P®. Since X has at most double points or double curves on H, the
canonical diﬁso_r of X’ contains the exceptional set A. of the double point . Since
X' is birational to 4 K3 suiface, A should be. ‘part of the exceptional set of a smooth
point on a K3 surface, which oontra,dmts the assumpinon that p 1s an essential
singularity. Therefore X, cannot be K3. ' '

By this lemma we ‘may assame that p is a triple point of X,. The interseotion
of H and X, is 20+ Ly+Ly+L; where Lj, L, and L, are three lines passing
through p. In the generio case these three liries are distinot and the triple- point p
is ordinary. In othet words the exceptlona.l set of p is a nonsmgula.r elliptio curve

. of self intersection —3. -

Let X be the minimal resolution of X o Liet .D Mi, Mi, M, be the inverse
images of 0, Ly, L;, Ls in X respectively. Leb B be the exoeptional curve in X.
Using the similar argument as in ‘the previous cases We oan’ easily see’ that D is a
double cover-of O ramified at 6 points Thus, D-is’a nonsinguler curve of genus 2
The conﬁguratlon, of the five: ourves are easily deczded MM;=0 for i+j, ME=1

-and M, D=1 for: q,==1 2, 8. The canomoal leJ.SOl‘ of X is Ms+Ma+ M. By Lemma

4, Ms, M;and M, are (—1)-ourves. Let ¢ X =8 bo the’ conitiaotion of these threa
curves. Then Kg=0. Using: an- argument s;mlla.r to that in Qaige” 1, 'we can show

. that #*(Oy) <2. Thus S .cannot be an abelian surface, for the first cohomology of an
sabelian surface. has dimensmn 2. 'Therefore § i8 & K3 sdrfics samsfymg the
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conditions in Theorem 3.

Therefore we have

Theorem 6 - In the collection of all quintic surface whwh has -an isolated tmple
point and has a line as its singular locus of codimension ong, & general. member s
- birational to.a K3 surface which has a nonsmgulwr CUTV6 0 f g@nus 2 and a nonsingular
elliptic curve mtersectmg at three points.
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