A NOTE ON WEAKLY PRIMITIVE RINGS

Guo Shanliang (郭善良)*

Abstract

It is well known that, for a subring of a full linear ring over a vector space, 2-fold transitive implies k-fold transitive for every natual integer k, and a primitive ring with minimal oneside ideal is a two side nonsingular ring and every isomorphism can be induced by a semi-linear one to one transformation. This paper generalizes these results to weakly primitive rings.

Throughout this paper, unless specifically indicated otherwise, rings need not possess an identity element. By a module we will mean a right module, and an effort will be made to consistently write module homomorphisms on the side opposite to that of the scalars. A partial endomorphism of a module M is a homomorphism from a submodule of M into M. A nonzero R-module M is called compressible if it can be embedded in each of its nonzero submodules; it will called critically compressible if it is compressible, and, additionally, cannot be embedded in any of its proper factor modules.

Lemma 1. The following conditions are equivalent for a compressible module M:

- (i) M is critically compressible;
- (ii) Every nonzero partial endomorphism of M is a monomorphism.

Proof Refer to [6, Proposition 2.1].

A module which satisfies condition (ii) of the above lemma is called a monoform module.

- **Lemma 2.** (i) If M_R is monoform then elements of $D = \operatorname{End}(M_R)$ have unique extensions to elements of $\Delta = \operatorname{End}(\overline{M}_R)$ and Δ is a division ring, where \overline{M}_R is the quasi-injective hull of M_R .
- (ii) If M_R is critically compressible then D is a right Ore domain with right quotient division ring Δ .

Proof Refer to [6, Proposition 1.2].

We call a triple $(A, \triangle V_R, M_R)$ an R-lattice if V is a A-R-bimodule with A being a division ring, AM = V, and R acts faithfully on M. And we say that R acts

Manuscript received September 30, 1988

nstitute of Mathematics, Fudan University, Shanghai, Ohina.

on R-lattice $(\Delta, \triangle V_R, M_R)$ k-fold transitive if for given $v_1, v_2, \dots, v_k \in V$ linearly independent over Δ , there exists $0 \neq \alpha \in \Delta$ such that for any elements $n_1, n_2, \dots, n_k \in M$ one can find $r \in R$ with an $i = v_i r$ for each $i = 1, \dots, k$. A ring R is called a weakly primitive ring if it has a faithful critically compressible module. For weakly primitive ring Zelmanowitz proved the following density theorem.

Theorem (The Density Theorem). The following conditions are equivalent for a ring R:

- (i) R is weakly primitive.
- (ii) R acts on R-lattice (Δ , ${}^{\triangle}V_R$, M_R) k-sold transitive for every integer k.

Remark. In the (ii) of above theorem, the R-lattice (Δ , ΔV_R , M_R) satisfies following conditions: (a) M_R is a critically compressible module, (b) V_R is quasi-injective hull of M, and (c) $\Delta = \operatorname{End}(E(\overline{M}_R))$ where $E(\overline{M}_R)$ is quasi-injective hull of M_R .

Theorem 3. If R acts on R-lattice $(\Delta, \triangle V_R, M_R)$ 2-fold transitive, then R acts on R-lattice $(\Delta, \triangle V_R, M_R)$ k-fold transitive for every integer k.

Proof For any $v \in V$ there is $0 \neq a \in A$ such that for any $0 \neq u \in M$ there exists $r \in R$ with $vr = au \in M$, that is, V_R is an essential extension of M.

Let N_R be a submodule of M_R . We take an $0 \neq n \in N$. Then there exists $0 \neq a \in A$ such that for any $m \in M_R$ one can find some $r \in R$ with $nr = am \in N$, i. e., $a \in \operatorname{Hom}_R(M, N)$ and obviously that a is a monomorphism, that is, M_R is a compressible module.

For any $\tau \in \operatorname{End}_{\triangle}V$ and $v \in V$ and $m \in M$ one can find r, $s \in R$ with $(\tau r - s)|_{AV} = 0$ and $r|_{Am}$ being an automorphism. Indeed, let $u = v\tau$. If u and m are linear independent over Δ , then there exists $0 \neq a \in \Delta$ such that for m, 0 one can find $r \in R$ with mr = am, ur = 0. For v one can find $s \in R$ with vs = 0. Hence $v(\tau r - s) = v\tau r - vs = ur = 0$, i. e., $(\tau r - s)|_{AV} = 0$ and $r|_{Am} = Is$. If u and m are linear dependent over Δ , that is, u = dm, for v there exists $0 \neq a \in \Delta$ such that for any $m \in M$ one can find $t \in R$ with vt = am. And for $a^{-1}dm$ one can find $0 \neq b \in \Delta$ and $r \in R$ with $a^{-1}dmr = bm$ $\in M$ and also one can find $s \in R$ with vs = abm. Then $v\tau r = ur = dmr = a(a^{-1}dmr) = abm = vs$. Thus $(\tau r - s)|_{AV} = 0$ and $r|_{Am}$ is an automorphism.

Secondly, we show that M_R is a critically compressible module; in fact, we only show that M_R is a monoform module by Lemma 1. Let N_R be a submodule of M_R and let $0 \neq f \in \operatorname{Hom}_R(N, M)$ be given; say $f(m) \neq 0$ for some $m \in N$. Given an arbitrary element $0 \neq n \in N$, we choose $\tau \in \operatorname{End}_{\triangle}V$ with $n\tau = m$ and take r, $s \in R$ with $\tau r = s$ on Δn , and with $r|_{\Delta(m)}$ being an automorphism. Then $f(n)s = f(ns) = f(n\tau r) = f(mr) = f(m)r \neq 0$, so $f(n) \neq 0$, and it follows that f is a monomorphism.

Finlly, we must show that $\Delta' = \operatorname{End}(\overline{M}_R) = \Delta$. By Lemma 2 and the fact that V_R is an essential extension of M_R we have $\Delta \subseteq \operatorname{End}(E(M_R)) = \operatorname{End}(\overline{M}_R)$. For any

 $\sigma \in \operatorname{End} (M_R)$ and for any $m \in M$, $\sigma(m)$ and m must be linear dependent over Δ ; if not, then there exists $0 \neq \alpha \in \Delta$ such that there exists $r \in R$ with mr = 0 and $\sigma(m)r = am \neq 0$, but then $0 \neq \sigma(m)r = \sigma(mr) = 0$ which is a contradiction. Hence $\sigma(m) = dm$ for some $0 \neq d \in \Delta$. Now let n be an arbitrary element of M_R . There exists $0 \neq \alpha \in \Delta$ such that there exists $r \in R$ with $mr = an \in M$, that is, α is an element of $\operatorname{End}(M_R)$ and $\sigma(n) = \sigma(n) = \sigma(mr) = (\sigma(m))r = (dm)r = d(mr) = \operatorname{dan}$. Hence $\sigma(n) = \sigma(n) = \sigma(n)$

Lemma 4. Let M_R and N_R be two R-modules. If there exist monomorphisms $M_R \rightarrow N_R$ and $N_R \rightarrow M_R$, then $\overline{N}_R \cong \overline{M}_R$ where \overline{N}_R and \overline{M}_R are quasi-injective hulls of N_R and M_R respectively.

Pacof Since there exist monomorphisms $N_R \xrightarrow{f} M_R$ and $M_R \xrightarrow{g} N_R$, and we extend two monomorphisms $E(N_R) \to E(M_R)$ and $E(M_R) \to E(N_R)$, by Bumby Theorem ([3, Proposition 3.60]) we know that $E(N_R)$ is isomorphic to $E(M_R)$. Without loss of generality we can assume that $E(M_R) = E(N_R) = E$ and M_R , N_R are two essential submodules of E_R . $S = \operatorname{End}(E_R)$, then $\overline{M}_R = SM_R$ and $\overline{N}_R = SN_R$. f and g can extend two monomorphisms of E, say \widehat{f} and \widehat{g} . Then $\widehat{f}(\overline{N}_R) = \widehat{f}S(N_R)$ $\subseteq \widehat{f}S\widehat{f}^{-1}(M_R) \subseteq SM_R = \overline{M}_R$. Similarly, $\widehat{g} \colon \overline{M}_R \hookrightarrow \overline{N}_R$. Since $\overline{M}_R \hookrightarrow \overline{N}_R$ and \overline{N}_R is quasi-injective, \overline{N}_R is \overline{M}_R -injective by [2, Proposition 16.13]. And $\overline{N}_R \hookrightarrow \overline{M}_R$, we have $\overline{M}_R \cong \overline{N}_R \oplus L_R$ for some submodule of E; but this contradicts the assumption that N_R is essential in E_R . Thus $\overline{M}_R \cong \overline{N}_R$.

Theorem 5. Let $R_i(i=1, 2)$ be two rings which act on R_i -lattice (Δ_i, V_i, M_i) 2-fold ransitive and contain a linear transformation with finite rank. If σ is an isomorphism from ring R_1 to ring R_2 , then there exists a semi-linear one to one transformation τ from V_1 to V_2 such that $r^{\sigma} = \tau^{-1}r\tau$ for every $r \in R_1$.

Proof We consider rings R_1 and R_2 as the same ring R under isomorphism σ . Then the R_i -lattices (Δ_i, V_i, M_i) are R-lattice, and R acts on (Δ_i, V_i, M_i) 2-fold transitive and contains a linear transformation with finite rank on V_i (i=1, 2).

By Theorem 3 we know that R acting on R-lattices (Δ_i, V_i, M_i) is dense. Let r be a linear transformation with finite rank. Then we may write $Vr \subseteq \sum_{i=1}^{t} \Delta m_i$ with $m_1, \dots, m_t \in M$, linear independent over Δ . And we can choose some $r' \in R$ such that $m_1r' \neq 0$ and $m_ir' = 0$ for $2 \leq i \leq t$. Thus we know that $rr' \in R$ with rank 1.

Let us now assume that $r \in R$ is a linear transformation of rank 1 on V. Then $V = \ker r \oplus \Delta m$ and for every nonzero element $r' \in rR$, $\ker r' = \ker r$. So $r' \neq 0$ iff $mr' \neq 0$, that is, $rR \rightarrow M$ via: $r' \mapsto mr'$ is a monomorphism. By Theorem 3 we know that

M is a compressible module, so there also exists a monomorphism $M \rightarrow rR$.

From above discussion we know that for each R-lattice (Δ_i, V_i, M_i) there exists $r_i \in R$ such that $r_i R \hookrightarrow M_i$ and $M_i \hookrightarrow r_i R$. And by [4, Theorem 4.1] we know that R is a right nonsingular prime, and $r_1 R$ is a uniform right ideal of R. So there are two monomorphisms $r_1 R \rightarrow r_2 R$ and $r_2 R \rightarrow r_1 R$. Thus we have two monomorphisms $M_1 \rightarrow M_2$ and $M_2 \rightarrow M_1$. By Theorem 3, $V_1 = \overline{M}_1$ and $V_2 = \overline{M}_2$. Thus $V_1 \cong V_2$ by Lemma 4, and we write it as τ . We restore τ to an isomorphism from R_1 -module V_1 to R_2 -module V_1 . Then we have

$$(r_1v_1)\tau = (v_1)\tau(r_1)^{\sigma}, v_1 \in V_1 \text{ and } r_1 \in R_1.$$

We think r_1 as an endomorphism of V_1 and $(r_1)\sigma$ as an endomorphism of V_2 . Then $r_1\tau = \tau(r_1^{\sigma})$, that is,

$$r_1^{\sigma} = r^{-1}r_1r$$
, for every $r_1 \in R_1$.

It remains to show that τ is a semi-linear transformation from vector space V_1 over Δ_1 to vector space V_2 over Δ_2 . Since τ is an isomorphism from abelian group V_1 to abelian group V_2 , the correspondence

$$\theta \colon \operatorname{End}(V_1) \to \operatorname{End}(V_2)$$

$$r_1 \mapsto r^{-1}r_1r$$

is an isomorphism from ring $\operatorname{End}(V_1)$ to ring $\operatorname{End}(V_2)$ and $\theta(R_1) = R_2$. By Theorem 3 we know that the centralizer of R_i in $\operatorname{End}(V_i)$ is Δ_i . Hence $\theta(\Delta_1) = \Delta_2$. Thus

$$\begin{split} (d_1 v_1) \, \mathbf{\tau} &= v_1 L_{d_1} \mathbf{\tau} = v_1 \mathbf{\tau} \, \mathbf{\tau}^{-1} L_{d_1} \mathbf{\tau} = (v_1 \mathbf{\tau}) \, L_{d_2} \\ &= d_2 (v_1 \mathbf{\tau}) = (d_1 \varphi) \, (v, \ \mathbf{\tau}) \, , \end{split}$$

that is, (τ, φ) is a semi-linear one to one transformation from vector space V_1 to vector space V_2 .

Corollary 6. If R is a right order of $M_{n_i}(D_i)$ (i=1, 2) where D_i is a division ring, then $D_1 \cong D_2$ and $n_1 = n_2$.

Proof It is obvious by using above theorem, we omit the detail.

Theorem 7 Let R be a ring with a faithful critically compressible right ideal.

Then

- (i) R is a left nonsingular ring.
- (ii) If R has a uniform left ideal, then either R is a two side order in a matrix ring Δ_t for some division ring Δ , in case R contains a subring isomorphic to D_t for some two side order D of Δ ; or else for each positive integer t there exists a two side order D of Δ and a subring of R which maps homomorphically onto D_t .
- *Proof* (i) By the theorem of Zelmanowitz ([6, Theorem 4.1]) we know that R is a right nonsingular, prime ring with a uniform right ideal. Let I_R be a uniform right ideal of R and $S = \operatorname{End}(I_R)$ and $RM_s = \operatorname{Hom}_R(I, R)$. By Lemma 2 we know that S is a right Ore domain, so Z(s) = 0. Let $x \in I$ and $f \in S$ with f(x) = 0.

Then I/ker $f \hookrightarrow I_R$, and since R is right nonsingular and I_R is uniform, we have f=0, that is, $_SI$ is a faithful module.

Now we take $r' \notin Z_l(R)$. Then there is a large left ideal L of R with Lr' = 0. Take any $x \in I$ and put $J = \{s \in S : sx \in IL\}$. This is a large left ideal of S; indeed $sx \neq 0$ if $x \neq 0$ and $s \neq 0$. In this case there must exist some $g \in \operatorname{Hom}_R(I, R)$ with $gs(x) \neq 0$. In fact, otherwise we would have $I/\ker g \hookrightarrow R$, but $I/\ker g$ is a singular module and R is nonsingular. Since L is a left large ideal of R, there exists some rR such that $\operatorname{rgs} x \in L$ and $\operatorname{rgs} x \neq 0$, and then there exists some $x' \in I$ with $x'\operatorname{rgs} x \neq 0$ by the prime of R. It is easy to verify that $x'\operatorname{rgs} \in S$ and $x'\operatorname{rgs} x \in IL$. Hence $x'\operatorname{rgs} \in J$, that is, J is a large left ideal of S, and $Jxr' \subseteq ILr' = 0$. Then it must be xr' = 0 by the above discussion and x is arbitrary, so Ir' = 0. Thus r' = 0, i. e., $Z_l(R) = 0$.

(ii) In fact, we have proved that there exists a Morita context $(R, {}_RM_S, {}_SI_R, S)$ where I_R is a uniform right ideal of R, $S=\operatorname{End}\ I_R$ and $M=\operatorname{Eom}_R(I, R)$, and this Morita context is nondegenerate. Let ${}_RJ$ be a left uniform ideal of R. We assert that IJ as an S-module is a uniform module; if not, let J_1 and J_2 be two nonzero S-submodules of IJ with $J_1 \oplus J_2$ being a direct sum as S-modules in IJ, then $(M, J_1) \oplus (M, J_2)$ is a direct sum of left ideals of R. Indeed if $r_1 + r_2 = 0$, $r_i \in (M, J_i)$ then $Ir_1 + Ir_2 = 0$, but $Ir_i \subseteq I(M, J_i) = [I, M]J_i \subseteq J_i$, hence $Ir_i = 0$. Thus $r_i = 0$ since R is prime, but $(M, J_i) \subseteq (M, IJ) = (M, I)J \subseteq J$, which contradicts the fact that J is uniform.

We take $0 \neq x \in IJ$. Since IJ is a uniform module as S-module for every s_1 , $s_2 \neq 0$ which are two elements of S, $0 \neq s_1x \in IJ$ and $0 \neq s_2x \in IJ$, we can choose s_3 , s_4 which satisfy $s_3s_1x = s_4s_2x$. Then by Lemma 2 we know that it must be $s_3s_1 = s_4s_2$, that is, S is a left Oro domain.

Applying the dense theorem we know that R acts on R-lattice (Δ, V, M) densily where $M = I_R$, $V = \overline{I}_R$ and $\Delta = \operatorname{End}(\overline{I}_R)$.

Suppose that dim $\Delta V \geqslant t$ and choose $m_1, \dots, m_i \in M$ linear indendent over Δ . For each $i=1, \dots, t$, set $A_i = \bigcap_{j \neq i} (0:M_j)$ by [6, Lemma 2.1], $A_i \not = (0:m_i)$ for each i, and so $N = \sum_{i=1}^t m_i A_i$ is a nonzero submodule of M. Put $D = \{a \in \Delta \mid aM \subseteq N\}$; an easy calculation proves that D is a two side order in Δ . For given $0 \neq \lambda \in \Delta$, $\lambda^{-1}(N) \cap N \neq 0$; so choosing $0 \neq a \in D$ such that $aM \subseteq \lambda^{-1}(N) \cap N$ yields $0 \neq \lambda a \in D$. And since S is a left order of Δ , there also exists $0 \neq b \in S$ such that $b\lambda \in S$. Then taking $0 \neq c \in D$, we would have $0 \in cb \in D$ and $cb\lambda \in D$.

Next we set $W = \sum_{i=1}^{t} Dm_i$, $W' = \sum_{i=1}^{t} D^{1}m_i$. Observe that $\operatorname{Hom}_{D}(W', W) \cong D_t$. Now given $f \in \operatorname{Hom}_{D}(W'W)$, f is completely determined by the values $m_i f = \sum_{j=1}^{t} d_{ij} m_j$, $d_{ij} \in D$, $i = 2, \dots, t$. Since each $d_{ij}m_j \subseteq N$, we may write each $d_{ij}m_j = m_i r_{ij}$ for some r_{ij}

 $\in A_i$. Thus $m_i f = m_i r_i$ where $r_i \in A_i$. Setting $r = \sum_{i=1}^t r_i$ yields $m_i f = m_i r$ for each i. Thus by letting $S' = \{r \in R \mid W'r \subseteq W\}$, the assignment $r \mapsto$ right multiplication by r on W' yields a homomorphism of S' onto $\operatorname{Hom}_D(W', W) \cong D_i$ whose kernel $K = \{r \in R \mid W'r = 0\}$.

If, in fact, $\dim_{\triangle}V = t$, then m_1, \dots, m_t forms a basis for V and K = 0 since M_R is faithful. In this case then, R is a two side order in End V, and S' is a subring of R isomorphic to S_t .

Then we obtain the Theorem 1 of [4] again by using verious methods.

Corollary 8. Let R be a right prime Goldie. Then R is a left Goldie ring iff R has a uniform left ideal.

Acknowledgments. I want to express my gratitude to my supervisor Prof. Xu Youghua for many helpful discussions.

References

- [1] Amitsur, S. A., Rings of quotients and Morita contexts, J. Alge., 17(1971), 273-293.
- [2] Anderson, F. W. & Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1973.
- [3] Faith, C., Algebra I: Rings, modules and categories, Springer Verlag, Berlin, Heidelberg, New York, 1981.
- [4] Guo Shanliang & Gong Zikun, A note on Goldie rings,, Chin. Ann. of Math., 11A: 2(1990), 179-186.
- [5] Xu Yonghua, On Faith-Utumi theorem (to appear).
- [6] Zelmanowitz, J. M., Weakly primitive rings, Comm. in. Alg., 9: 1 (1981), 23-45.