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A NOTE ON WEAKLY PRIMITEVE RiNGS
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Abstract

It is well known. tha.t for & subring of a. full lmea,r ring over a vector spaee, 2—fold
transitive implies %-fold tra,ns1t1ve for every natual integer &, and a pnmmve rmg with
‘minimal oneside ideal is a two side nonsmgular ring and every 1somorphlsm can be mduced '
by a semi-linear one to one transformat:on Thig paper generailzds these resvlts to Weakly o
primitive rings. ‘ R

Throughoub this pa.per unless specuﬁcally mdloa ted othermse Tings need not
possess an identity element. By a module we will mean’ a, right modulé, and an
effort will be made %o - -consistently write module. homomorphisms on “the- side
. oppssite to that of the scalars. A paritial endomorphlsm of & module M is a
homomorph1sm from a submodule of M into M. A nonzero R-module M is’ oalled
compressible if it can: be embedded in each of its nonzero submodules it will
called oritically compressible if it is ocompressible, and, addl’amnally ca,nnot be
embedded in any of its proper factor modules.- N

Lemma 1. The following conditions are equwwlent foa' @ compress@ble mdule M

(i) Mis cmt@cally compressible; : ' " '

(ii) Ewvery nonzero partial endomoa"phzsm of M S a monomoa‘phzsm

Proof Refer to [6, Proposition 2.1]. ; A _

A module which  satisfies ‘condition’ (ii) of the above lemms ig- called a
monoform module, co SRR ' TR

_ Lemma, 2. () If My is monofoq'm then elements of D= End(MR) have unique
extensions to elements of A=End(Mz) and 4 is a-division fmng, rwhea oMy @s the quwm—
anjective hull of M. _ B T I DU

(i) If My is cmtwally compa'ess'bble tken D isa mgkt Ore dommn mth mght
quotient. do,mszon ring 4. SRR : SRS

Proof . Refer t0-[6,. Pmpos;hon 1 2]

We call a tnple (4; AV a, M) an. R~1a%109 ifiV is'a A—R——blmodule with ‘4

’vbemg 2 d1V1smn rmg, AM =V, and B aots falthfully on M And we’ sa.y tha.b R a.cts

')'u';‘ . ~ = ORI i s ‘;‘4' P
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on R—lattxce (4, AVR, Mp) k-fold transitive if for given vy, vs o=, 0, EV lmearly
independent over 4, there exishs 0+%a € 4 sush that for any elements ny, Tz, oo, Mg
"€ M one can find rER Wlth an;=u;r for each §=1 , b. A ring R is called a
weakly primitive ring if 1_13 hag a faithfal ontmally compressible module. For
weakly primitive ring Zelmanowitz'pfoxr'ed the following density theorem.,

Theorem (The Density Theorem). The following conditions are equivalent for
a ring B: | ' '

(i) Ris fwewkly primitive.

(ii) R acts on R-lattice (4, 2V, M R) k—solol transitive for every integer k.

Remark. In fhe (ii) of above theorem, the R-lattioe (4, .V z, Mz) satisfies
follbwing conditions: '(a.) Myis a oritioally compressible. module, (b) V5 is quasi—
injective hull of M and (o) 4=End (B (Mz)) where E(M R) is quasi-injective hull
of Mp. .
. Theorem 3. If R acts on B-lattice (4, \Vr, Mg) 2-fold transitive, then R acts
on R-lattice (4, \Vr, Mz) k-fold transitive for every integer k.

Proof - For any vEV tnere is 0+#a€ 4 such that for any 044 € M there exists:

r€ R with furr=wu.é M, that is, V5 is an essential extension of M. '

Let N be a submodule of M. We take an 0nE N, Then there exists Oa

€ 4 such that for any m& My one can find some r& R with nr= =am&N, i. e.,
acHomz(M, N) and obwously that. @ is a monomorphlsm bhat is, My is a
compressuble module, g

For any 7€ End,V and v€V and m€ M one can find r, sER with (fvrr——s) | av-
=0 .and r{m being an automorphism. Indeed, let u=9v. If % and m are linear
independent over 4, then there exists O*ac 4 such that for m, 0 one canfind rER
with mr=am, ur=0, For v one can find s€ B with vs=0, Hence »(77r—s) =vwr—os

=ur=0, i. e., (zr—8) |,y =0and r|m=1Is. Ifu and m are linear dependent over 4,

that is, u=dm, for v there exists 0%a€ 4 such that for any mEM one can find

¢€ R with vt=am. And for o “tdm one can find 045€ 4 and rE R with a~dme=bm
EM and also one can find . SE€R with vs=abm. Then ver =Ur=dmr= w(w‘idmr)
=abm=uvs. Thus (vr—s)| w=0and r | am is an automorphism,

Secondly, we show that M » is a critically compreasible module; in fact, we
only show that My isa monoform module by Lemma 1, Let Nzbo a submodule of
My and let 0%.f€ Homyz (N, M) be given; say f (m) %0 for some mE N, Given an
arbitrary element 0%n€ N, we choose v€End V7 with nw=m and take r, SER
with wr=son. 4n, and with #|s @ being an- automorphism. ‘Then f (n)s=f (ns)
=1 (m'fr) =f (mrr) =f (m)rra&O :80 f(n) %0, and 11; follows that fisa monomorphlsm

Finlly, we mnst show tha,t 4'=End(Mz) =4, By Lemma 2 a.nd .the fact thatb
Vz is an essenbial extension of My we have ACEnd(E(Mz)) wEnd(ﬂlg).- For any
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o€ End (Mp) and for any m€ M, ¢ (m) and m must be linear dependent over 4; if
not, then thox: exists 0%a € 4 such that there exists r & B with mr=0 and o (m)r
=am+0, but then 040 (m)r =0 (mr) =0 which is a contradiotion. Hence o(m) =dm
- for some 0+#d € 4. Now let n be an arbitrary element of Mj. There oxists 0#4aC 4
suoch that there exists +&€ R with mr=an€ M, that is, q is an element; of End(M &)
- and oa(n) =0 (an) =0 (mr) = (o'(m) ) r = (dm) r= d(mr) =dan., Henos ca=da or o= .
But by lemma End(Mz) is an Ore domain and 4'=End(My) is a right quotient
ring of End (M), so 4=End(My). By the density theorem of Zelmanowitz, we
know that B acts on R—laﬂnce (4, AVR, Mp) densely Thus we compelete bhe
proof ' : -
- Lemma 4. Lot My and Ny be two R-modules. If there ewist monomorphisms
Mz—>Ng and Ng—> My, then Np=My where N x and M » a8 quwsz—mjeotwe hulls of Ny
aad M r Tespectively. .

Paoof Since there exigh monomorphisms N R-f—> M R'an‘d My AN z and we
extend two monomorphisms E(Nz)->H(Mz) and E(M r)—>HE(N ), by Bumby
Theorem ([3, Proposition 8.60]) we know that BE(Ng) is isomorphio to E(Mg).
Without loss of generaliby we can assume bhalb HEMp)=HE(Np)=E and M, N ®
are two essential submodules of B,. §=End (Egr), then Mp=8SMy and Ny=SN z f
and ¢ can extend two monomorphisms of B, say f and g. Then F(Np) = 10 R)
CFSF2(Mz) CSSM =My, Similarly, g: Mz<>Ny. Since Mze>Ny and N » is quasi-
injective, N is M R—m;]eotlve by [2, Proposition 16.138]. And Ny<>Mz, we have My
& Nx@® Ly for some submodule of H; but this oon’ura,dlots bhe assumptlon tha’o Ng
is essendna,l in Bp. Thus Mp=N;.. ‘

Theorem 5. Let Bi(i=1, 2) be two rings which act on Ri-lattice (4; V. M 5)
2~fold ransitive and contain a linear tmnsformatzon with finite rank. If o -is an
isomorphism from ring By to ring R, then there ewists a sem-hnewr one to one
transformation v from Vi to Vs such that r° =v"trv for every r€ Ry,

Pfroof We consider rings Ry and R, as the same ring B under 1somorphlsm c.
Then bthe R-lattices (dy; Vi, M,y are R-latbice, and R aots on (4, V, M) 2-fold
transitive and contains a linear transformation with finite rank on V(i=1, 2),

By Theorem 3 we know that R aoting on R-lattices (4, Vi M ) is dense Let

| r be a hnear transformatlon with ﬁnﬂze rank. Then we may. write Vrrc:z Am,

with my, o+, m& M, linear mdependent over A And we can choose some € R
.such tha,t myr’ #0 and myr’ =0 for 2<i<Cs. Thus we know bhat- '€ R with rank 1.

Let us now assume that rERisa linear transforma,tlon of rank 1 omV, Then;v
¥V =ker r@4m and for every nonzero element r Ger kerr'=kerr. 8o ¢"40 i ma®
aéO thab i8; rR—M via: #ome’ is s monomorphlsm By Theorem 3 we know that



210 . %+ :  OCHIN. ANN. OF MATH. . . . Vol 12 Ser..B

M is & compressible module, so bhere also exists a. monomorphism M—>rRB:

From above discussion: we know thab for. each R-lablice (4, Vi M) there
ex1sts 7€ R such that 7R M, and MiorR., And by [4, Theorem 4. 1] we know
that B is a right nongingular prime, and #uR is a uniform right: ideal of- B. So
there: are two ‘monomorphisms rmR-—wrzR and .rsB—»riR. Thus we. have itwo
monermoerphisms Mi—M, and MMy By Theorem '3, Vi=My and Va=HM,. Thus
V1V, by Lémma4, and we write it-as 7. We restore vto an ‘isomorphism from
Ri—module Vito Rz—module V1. Then we have . o
‘ * (rw)T="(v) % (r)? v € V1 and 'l‘1€ Ri
We think ry as an endomorphlsm of Vi and (0‘1)0' ag an endomorphlsm of V. Then
riv=7(r{), that is, " : '

o ' r° =7 Yy, for every r1€ Ru.

It remains to show that = is a semi-linear fransformation from veotor space V1
over 43 10 vector space V2 over 4s. Smee 7 is an 1somorphlsm from abelian group
71 o abehan group Va, the. oorrespondence ‘

9: End(V1)-> End (Vz)

b iy
is an 1somorph_18m from mng End(V,) to ring End (V'z) and H(Ri) Rz By
Theorem 3 we know that the centralizer of B, in End(V:) is 4. Hence §(ds) =
Thas '
(dw)v=vilgr= fvfm' Ld;tr (v17) L, _'

(o) = ([dup) 0, %),
thab is, (7, ) is a semi-linear one to one fransformation from veotor space Vi to
veotor space V.- -
, Oorollary 6. IfRisa fmght order of M,,, (D;) (¢= 1 2) where D; is @ division
1ing, then D1 Dy and ni=mns. _

Pr oof It is obvioug by using above theorem we omib the debail.

- Theorem 7 Let R be @ ring rwzth a faztkful cmtwwlly compressible mght tdeal.
Then ~ _ -
(1) Ris a left nonsingular v fmg . v

. (i1) If R has @ uniform left ideal, then e@the/r R is a two side order in @ matris

mg 4, for some division Ting 4, in case R contains @ subri ing zso'rnm'phw to Dy for
some twa side order D of 4; or else for each positive mtegefr t there ewists @ two side
order D of 4 and a subring of R which maps homomooﬂphwally onto D;. L

- Proof (1) By the theorem of Zolmanowﬂ;z ([6 Theorem 4.1]) ‘we know that
‘Ris a right nonsingulsr;, prime ring with & umform right ideal. Let Ir be a
umform right idesl of B and § =End(Iz) and zM.=Homy (I, R). By Lemma 2 we
know that 8 is'a right Ore domain,. so Z (8) =0. Tet wGI and f€8° WJ.’oh f(@) =0.
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Then I/ker f¢->I &, and since R is right nonsmgular and I B is nmform we have
=0, that is, oI is a faathful module.

‘Now we take r ‘¢ Z,(R). Thon there is a large left ideal L of B with Ly’ =0.
Take any »€ I and 'put J={s€S: sw€ IL}. This is a large left ideal of §: indeed
swan if 0 and s+0. In $his case bhere must exish some g€ Homg(I, R) with
gs (zv) #0, In faot otherwme we would have I /ker g R, but I/ker ¢ is a smgular
raodule and R is nonsmgular Since L is a left large ideal of R, there exists some
rR such that rgsa€ I and Tgsw#0, and then there cxists some o' €I with @ rgs:v#—-O
" by the prime of R, Tt is easy to verify that o rgsES and @ rgsmE IL Hence o rgs
€J, that is, J is a laa.ge left ideal of §, and Jz or 'CILr =0, Then it must be or’ =
by the above discussion and @ is arbltra,ry, s0 Ir' =0, Thus ' =0, i. e. Z; (R) = O

(ii) In faoh, we have proved that bhere exists a Morlta. context. (R, RM s slr,
8) where Iy is s uniform nght ideal of R S = End I, ® and M= EomR(I R), and
this Morita context is nondegenerate, Let ,J be a lefh uniform ideal of R. We
asserb that IJ as an S-module is a uniform module; if not, let Jy and J, be two
nonzero §-submodules of IJ with J1@J 2 being a direct sum as S-modules in 17,
then (M, J1) @ (M, J2) is a direct sum of left ideals of R, Indeed if n-l—frz—-() (P

€ (M, J+) then IT1+I’I’2-—-O but Iq',C‘.I(M J) [, M]J;CJ,, hence Ir;= =0, Thus
7=0 since R is prime, but M, J 1;)CZ (M IJ ) = (M I)J c:J Whlch contradmts
bhe fact that J is wniform. = * - : o

We take 0%asC IJ. Since IJ is a. umform m,odule as. S—module for every 31,
$27%0 whioch are two elements of §, 0#s82€ IJ and 0+#s,2€ IJ, we can ohoose S3, Sa
whioh satisfy 85510 =8452». Then by Lemma 2 we know that it must be 8361 8452,
- that is, § is a left Oro domain.

Applying the dense theorem we know that R acts on R-lathice 4, Vv, M)
densily where M =Ig, V =1, and 4=End(I5). ,

» Suppose that dim 4V >¢ and choose ‘my, +-o, my& M linear indendent over 4.
For each ¢=1, +-, #, sot 4,= ﬂ(O M;) by [6, Lemma 2.1], 4,5 (0: m;) for each 4,

and so NV = EmgA.; is a nonzero submodule of M. Put D {e€ 4|aMTN}; an easy

caloulation proves that D is a two side order in 4. For given 0AE 4, A1 (N YNN
#0; s0 choosing 0+ &€ D such that e MTA*(N) NN ylelds 0#Aa€D. And since S
' i8 & left order of 4, there also exists 0%bES such that bAES. Then taking O%e
€D, we would have 0€cbE D and ¢bAE D,

. ) o
Next we set W=2 Dmy, W’ =2 D'my. Observe that HomD (W' W) =D,. Now
given f &€ Homp (W’W) f is completely- determined by the values m;f = 2 diym, dhyy

€D, i=2, ., t Since each dymy &N, we may write each dymy=myry for some 1y
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€ A;. Thus m,f=mr; where r;€ 4;. Setting 'r=21 v yields myf=myr for each 4.
. T 4= oL . o .
Thus by letting 8'={r€ R|W'rCW?}, the assignment ri>right multiplication by
¢ on W' yields a homomorphism of 8§’ onto Homy (W', W) = D; whose kernel
| K= {frE R IW' r=0}, . ' _
If in fa,ct ‘dim .V =t, then mi, -, my forms a basis for V and K 0 since Mz

is faithful. In this case then, Ris a ﬁwo side order m End V, and S’ isa subnng of
R isomorphio to S;. ‘

Then we obtiain the Theorem 1 of [4] again by using verious me’shods

Corollary 8. Let Rbea mght pfmme Goldie. Then R is a left Goldw ring if R
has a umforrm left zdeal
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