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Abstract

Thls paper mekes some mvestlgatlon to the question whether there exists an. .expansiye:..
flow on some compact metric space, The main result is tha.t there exists no expa.nslve ﬂow
on & eompaet 2—-ma,mfold

Many papers have been pubhshed for the dynammal properiues of expansi)
homeomorph1sms since W, R, Utz mtrodueed the notion of expansﬁreness for
homeomorphlsms At the same time, people paid attentlon to the exmhenee of such
homeomorphlsms on a general mamfold for example, [5] and [6] proved the

nonexistence of any expanswe homeo~morphxsm on the closed mterva,] the olosed

disk and the oirole; [7] and [8] showed that there . emsts a certam expanswe
homeomorph1sm on each compact orientable surface with posmve genus and on
each n~dimensional open ball,

" In [1], R. Bowen mtroduoed a. notlon of expansweness for eontmuous ﬁows
a,nd gave some oorrespondmg results to homeomorphlsms for example, expansive-
ness is a oonjugacy invariant. Later a series of papers, for example [2-—4]',

1nvest1gated the properties of expanswe flows. In tms paper we make some -
mveshgatmn to the question. whether there exists an expanswe flow on some ...

sompa,ot metrio space. We shall prove the followmg results*’ :
Theorem 1 Let K be a connected n—dmenswml finite cmnplew (n>1) If its

Buler ekwmetermstw 2(K ) does note equat fwzth 260‘0, then tlw/re ewists no ewpwnswe Jlow -

on the polyhedm IK .
: Theorem 2. There exisis no empamswe ﬂow on a compwct 2—m¢mefold

" Let (X d) be a oompaet metno sptwe, ‘and ®: X xR-—>X & contmh
X. For every t€ R, let @, denote a homeomorphlsm of X onto X eﬁned by D,

'=d5( £).. The orbi (posxt;ve seml—orblt) of @ throngh o 18 ‘d_ehoted by 'y(a:) e
e (w)) The notablon m(:v) (a(m)) mdmates the co-——hmlt sob (a—-limﬂi set) of S

v (@),
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Definition 1. & is expansive if V>0, 58>0 with the propea'ty that fz,f
d(D;(x), Dst;()) <8, VEE R for @ pair of points o, y€ X and @ continuous map s:R
—R, s(0) =0 then y = -0y (), where. |tl<8

Let (Y [9) be aoompao’a metno space, f Y—-)Y a homeo—merphlsm and :Y

—(0, +<>0) 2 continuous map. ‘ -
Deﬁnttlon 2. The swspenszon of f under qb is the ﬂow P on the space

U (@ ) @ b @)~ @), OF

0<t<w( )

defined for small non-negative time by @,(y, 8) = (g, s+18), 0<t-+s<P(y).

Lemma 1™, If (15 fz,s an ea;pcmswe ﬂow on X, then ecwh ﬁa:ed pomt of D is an
zsolwted po'mt of X, R

" Lemma’ 2%, Toh f be a hameomorpiwsm of (7, p) amd i Y——>(0 +°<>) be a
* eontinuous map. The suspension of f under  is ewponsive if wml Only if f 18 ewpansive.
Remark By Lemma 2, we may conolude bha,t any simple olo—sed ourve L
n‘_expanslve ﬁow In faot, let Y={ J} be a smgle—pomt sPace, z[:(y) -1,

jso the susPens1on '® of f under gb is a,lso expanswe It follows thab there existy an

:‘expa,nswe ﬂow on I smee expansweness isa oon]ugacy 1nva.r1a,nt
‘ Lemma 3 Let K be an m—dzmenswn ﬁmte complem tmd 2 (K) qAO Thon efvary

-fcontmuous self—mwp on the polyhedm [K | which is homotopw %0 identity mwp has a

' fiwed point. ‘ )
. Proof Because the Lefsohetz number of 1den1;1ty ma,p equa,tes Wl‘bh the Euler
eharaotenstm x(K ) “of K, and two homotopm maps . have the sa,me Lefsoheﬁz
number the Lefsohetz number L(j‘) of f does not equa,te with zero. By Lefschetz
“fixed point ’oheorem f hes a fixed pomt : B
~ Proof of Theorem 1 Suppose ‘to the contrary tha,t there GXIS'bS an expanswe

“flow @ | K| xR—»]K | The homeomorphlsm 9151/,,. a,nd 1dent1ty ma.p ts are '

homotopio (Ym€ Z“) A homotopy between 451,,,. and lis 1s F: |K| %[0, 1]—>|K |
" difined by F(a, 5) = @(m s/m), V(, 8) € |K|x[0, 1I. By Lemma 8, @y/n bes &
" fixed point . The assump’olon n>1 and Lemma 1 show that ‘the pomt D 18 not a
fixed point of &. Hence @, is a penodm point whose penod 0<7,,.<1/m, g0 the
orbit 7(=) is a penodio orblt Smoe [K | is oompaob W1thout loss. of generahty,
- We can assume tha’o m,,. converges to v. We claim that y isa ﬁxed pomt of 0, i. 0.
:‘@(y, 1) =y for all ¢€ R, In faot, for any m€ Z+, ‘there exists a K,€Z suoh that
=K ,,,/m+t,,,, where 0<tm<1/m Therefore, hm t,,.-—O Q(w.,,, )= (D(w,,., t,,.), and

@(y, t) hm D (@, t) = lim (D(a:,,., im) =y. So, y is a fixed point of @, Lemma, 1

shows that y is an 1sola,1;ed point of | K. |, and this- contradiots the assumptlon $hat
K is conneotive. The proof-of Theorem' 1is completed, -

Y a,nd a unl’o 011'0].0 S* are homeomor hio, and soare ¥ a,nd L. f is expanswe
¥ f P b y
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Proof of Theo'rem 2 .Assume this is not so, Let @ be an expanswe ﬂow on
M2, ‘We may assume that M?* is connective beeause a flow is also expans.we when
it is restrioted o any of its closed in'variant sets, Now ‘the genus; ‘the number of
boundary circles and the Kuler charactéristio of M*aré denoted by g, m, x(M ),,
respectively. We have the following relation: i PR
2-—2g—m, when M? is orlentable, i

f

M:‘a - { .

x( )= 2—g—m, when M? is nonorientablei: P Tl

It is enough to prove the theorem only for x(M”) 0, When x(M 2) =0, M 214" one
of the following four:cases:. L A T SIS I N E RENR A NS E A o

(1) The olosed circular ring.
(2) The torus.

o (8)- The. Mobius drip, -~ * - e T 7 h e 3

..(4): The. Klein/ bottle: - /1. e Tt D L TR

' We:shall first. show: thet P possesses -al most ﬁmte perlodw orblts any of
wh;wh is non~homotopio to Zero.. Lo e R T ST I N
- Supposd 7y is a-periodio orbit-of @.: If: 7 -is. zero~homoﬁopw ‘then 7y bounds &

' olosed disk.D.on M2 vhioh is invariant for.®. Thus @], * (@ restricted $0'D)" is
expengive;’' By Theoreni: 1, this is lmpossuble, beoause x(D) 1=,é0 Thus 'y is

non-homotoplo to zero. I PR S SR R ST L TR SR S O

'We now suppose thal @ possesses mﬁmﬁa perlodm orbits, any of Wh1ch is
non-homotoepio to zero:: Paketu, S M?suoh..i:hg_’n u;, belongs to 4/ periodie*orbib and
Un &y (4,) when m+#n, By the compactness of M2, {u,} has-a-convergent subse
quency; Without.loss of generality, we may assume. that ,—>u.Then u’is &
nonwandering. point of @, By-Lgmma 1 and the assumption that"M? is connected;
neither: w'(u) nor'a‘(u) eontains fixed pdiht"*Henoe; the orbit «y(u) is a Posgiotw
gtable orbit. Note: thada @ does:not havo nontrival Possion: :stable orbib; so:  (u) 1§
-8 _periodic orbit, - AT e ' . e
Assume hat 7(u) isa two—sude perlodlo orblt For any 8>0 191; N e (y) be K
8/2—ne1ghbourhood of Y. Beoause 'y(u) is, oompaot there are ﬁmte pomts Y=t

PRTIN g/., on 'y(u) suoh ‘hat 7(u) CN UN m(y,) Let o be ’ohe m1n1ma1 1nteger
suoh thaﬁb 'y(u) c:U N 5/2(y¢) We oan assume tha’ﬁ Yy y, are taken in proper

order as time goes on. ’Take a.point: o€ N2 (4) N Najs(gigr) G=15 oy s00): -gudh ‘thaf
@ belongq to the orbit aro y,gm from Y to Yiszs ] Lot I, be a 1ooa1 oross seoiuol;x for
0] through @;. Usmg the oontmmty of D, we may take n large enough so than‘;
(@), u, &y ), 'y(u,,) NI={m.} and it the orbit aro a;;a;,+1CN 6,2(y,+1) “then
the orbit axo ﬂ’/;»:ﬂi_ui-r-wCMzsiz(yu-i)a Lob =0 (0.8, $121) y Wy = B W24} i) (62, “ansif
a+1) where wuy1 =1, Guays=o.. Lot T be the period of y(u), T, be th’e“-'p‘el{_iod -of.



216 - OHIN. ANN. OF MATH, Vol. 12 Ser. B

v (u). ThenEt‘-—T Et,,,—T Lot v;= zt,, s = Et,,j(j =1, ., d), To="7,0=0,

First we define a map sp: [0, T']<[0, T,.] by se(t) = —E’ﬁ—’-—;v"—’ (t—v;) +7., where
Ti41 Ty

t€ [75 7i41] (§=0, »-, @). Then we define the. map s: B—>R by s(t) —sT(t') +KT,
for any {€ R, where KGZ and t=KT-+#, 0<t'<T. It is obvious that s is a
continuous map with s(0) =0, and satisfies & (D (y, t), B (., $(t)) <. Bub u,ty ()
and this contradiots the expansiveness of . _ A :

 The same idea as above can bhe applied When v (u) is a one-side periodio orbit.

We shall go on with the proof of the theorem for M? bemg each of the above
cases, reSpectlvely

Case (1): M? is a olosed 01rou1a.r ring. :

We may assume that @ has no other periodio orbits: .except the boundary
oireles 7y, vs. Hence, for any o€ M?— (v1U V2), 0(&) =71; a(B) =3, 0T @ (@) =7,,
@)= 1. Wenow suppose that w(z) =7y, a(s) =7, Let §>0 be given. Using the
same method as above, we can obtain the nelghbourhood N. of 4, the pomts x
€71 and the loeal oross seotions I; of & through o (§=1, «-,. ). Take o€ M?
o > (71U 72) .. Because ¥ (#) will spirally approximate to 7 with the inorease of time
¢, there exists a large'enough 7'>0, which satisfies the following condltrons

(8) (@, T) is an interior point of Ii,

(o) 7*(@(a, T))=N; :

(0). (D (a, T)) will successuvely mtersect the local oross seotions Iy, Ig, s,
Ia, Iay1=1, in their interiors, .- __— o

- In the order of time, we write the intersection points as on=D (3, T), tni,
+++, regpectively (where wraimu€l, K€L, i=0, 1, «v, a=1). By the continuity
of @, there exists a %>0 small enough such that d(y, D(w; T))<n implies that

v*(y) ‘will successively interseot the local oross sections: 11, woo, Iy ITypa=1TI1. From
the compactness of the orbit are @ (w, [0, T]), there exists points @p=a, 1, @a, +--,
=@ (a, T) such that @y =8 (@, 1) (>0, =0, «, m~1) and @(m [O T7)

CU Na/z(ﬂ?‘) = Ny, Usmg the contmmty, the relations d@(m t), @(y, £))

<min (8/2, 7;) (O<t<T) and D(y, [0, TN, hold for any y olose enough to .
Take the points go=y, yi=Noa(@) Nv* () (6=1, 2, -, mi— 1), Yzarmu€ LN y*(y) _
(6=1, 2, »-,. a-—-l K=0,1, ) which sahsfy Yix1=D(y;, ,3,) Bi>0, for all i€ Z*,

Le’n = Et,, o-',— 2,8,(3 =1, 2, =), wo—cro =0, Now we define & map s+ R+—>R+,
where R‘“ = [0 +00) by S (t) = gi‘-‘—l-—-_—"l(t-'m) +0y for i€ [m, vm] It is easﬂy seen
Tig1

' %hat S is g contmuous ‘map with s, 0) =0 ‘and satisfies d(P (v, ¢), @(g/, 8 (t)) <d.
for i any £=0,. 3 :
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Now let @*(w, t) =@ (2, —¢) for any (s, £) € M?X R, Then thie w—1imit set of
the orbit. ¥ (#) under @* is v, The same proof for @ and 7, as has been stated
above can be used to @* and 5. Hence, for any y olose enough to @, there exists
#lso continuous map si: R*—>R* wﬂ;h $%(0)'=0 such that d(P*(z, £), D*(¢*, s* (®)
<9 for all £20. Sinoe both y and ¢* are any pomus nearby @, we can take y y*.
o, if we define a map s:R—>R by o

5 ={ s+ (%), t20,
S —si(=~19), t<0,
-then s is a continuous map with s(0) =0 and satisfies the relatlon (D (w, 1), D(y,
$(£)) <8 for all ¢€R. But yety(s), this contradiots the assumptlon that @ is
«expansive,.

Case (2) M2 is the torus ,

There are two possibilities to consider,

(2) @ has at leash a penodm orbit y.

By the proof of case (1),. we oan assume that Q5 has the only penodlo orblt R
“because any two pemodlc orbits non—homotopm 10 zero bound a olosed clroular
‘ring in M? which is an invariant sets of @, Now we have co(m) a(a;) =1y for any
@€ M2, The followmg proof Is similar o tha.t used in. the caise (1)

(b) @ has no periodic. orbit. In this case @. has non-trivial mmlmal set v/
“which is a elosure of nontrivial Possion stable orbits. . Clearly, co(a;) =a(z) =L, for
any o€ M2, Let v (#) be an nontrivial Possmn stable orbit. By [11] we see that
there exists a oross oircle O through & which is nonhom j
-obvious that y(y) must intersect O along positive and nega.mv . d _r,eoblons of v (y)
Afor any y€ M2, Thus the Poincaré map is difined on the whole oircle 0. Let f: 00
'be the Poincare'map. As M? is orientable and by the con’ommty of @, it follows
that f is an omentatlon—preservmg self~homeomorphism. - The deﬁminon of
-Poincare map shows that if f(@) =y=2(w, t,) for. any wEO then t¢>0 is uniquely
.determined. Thus. we. may define a map r:0— (O +00). by np(a;) —-t, for any #€0,
Clearly, l!l is a continuous map.

Let the ﬂow W on. the spaoce

U 1@ )@ s@)~ (f(z/) 0)}

0<t <y (y)

“be the suspension of f under .. A map h: M”-—>Of is deﬁned by h(w) (y, t,,) for
:any #€ M?, where yC 0, and. £,=0 satisfies 2= (y,. t,) and @ (y, [0, t,1) N0 = {y}
It'is easﬂy seen that h is well deﬁned and is a homeomorphlsm from M ¥ 1;0 O

‘o o zero It is

-on M 2 and ’ﬁhe ﬂow ’!P’ on O, By the fa.o{: thaxb expansweness is GOnJugacy mvarmnt
and by Lemma, 2 we see “that '!F‘ is expanswe, and so is f of 0 However from [6]
we know that this is 1mpossible “Hence there exist no expansive flows on the torun
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"Cage (8): M? 1saMob1ns tnp.;» T Cor

It follows from: Theorem 2 of .[10] that di has ‘the. only one—mde penodm ‘orbit
7i. By the fopological propertiés of MGbius trip, we can assume that the boundary
oiréle 7y, is the only two-side periodio . orbit of '@, - Therefore, for any x€ M2
= (11U72), @@ =71 a@) =7y or o(@)=7;, a(@)= 71. ‘The followmg proof is.
sumlar to that used above in case (1) . o :

COase (4): M* is & Klein bottle.” S o,

It follows from [10] that d5 has at lea,st a pemodlo orbﬂ; 7 whioh 1s non-
homm‘fopm 0 zerd. “Thbre & are two pOSSJ.blllt‘l.eS ﬁo consader '

(a) @ Has's ﬁWO—sude penod.m orbit y.’ v

If » separates M? into two oconnected componets M M théﬁ, by the.
topogloical properties of Klein bottle, we know that 'both' M : a.nd M a‘re"'"Méibius,
trips. Thus the rest is the same proof as m oasa (3) . ' o

If 7 does not out M? in two parts i. e M- 7 1s connecbed By the #opologloa.l
properhes of Klem bob’ﬁle':m Wwe oan see that M2 7 is & clroular rmg Thus the
‘followmg proof is’ oomple’aely analogohs to that m ease (1) ) o

* (b) @ has’ 10 'iJWO—Slde perlodlo orbl’ﬁ '
v The topologmal prOperines of Klein boﬁﬂe (see[9]) and Theorem 2 m [10]
"show that'® has two one—sude penodw orblts 71, 72, and does not have any penodw
'orblt other tha,n 71, 72 Thus a)(w) 71, ‘(@) = 72 or w(w) =, os(m) 71 for any
a:E M 2 (#1U 72) The followmg proof is sumlar to tha,t m case (1)
3 So far the proof of Theorem 2 is oompleted o ~‘ _'
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