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COMPARISON THEOREMS FOR GREEN FUNCTIONS
| OF 'MARKOV CHAINS

" Chen Mufa (%7}‘\5%)*

Abstract '

The author presents some stralghtforward proofs for two comparlson theorems for
‘Green. functions of Markov chains, which shghtly 1mprove the previous results by
Va.ropoulos["' n Durrettf‘ﬂ and Yan and Chen 9% A yecont result by Rogers and Williams™
about instantaneous Markov chains is also 1mproved by using the same idea.

§1 Introductlon

Let B be a countable set and P a, transutmn probabllmy on E Denoﬁe by é’.,_
the set of all nonnegative funotlons on E A measure /.b on B is oalled excessive for
Pif ‘
M.>2#;Pn, 'bEE

and is called invariant for P if the above inequality becomes equa.h‘r:y, The
measures w and » on E are called equivalent if ' '
\ O—1< (lzﬂ’ul <G

for some constant 0<J<co, .

Since the transience of symmetrizable I Markov Chains ig well understood (see
“@Griffeath and Liggett [4], Lyons [6] and Varopoulos [8, 9]), it .is mterestmg to
know the transience of non-symmetrizable Markov chains by using the criteria
for the transience of symmetrizabl'e ones. The following is one of the ‘results of

such kind.
Theorem 1. Let P wnd Q be two drreducible transition _pﬂ“obdb’bl‘bty wh'wh have

BaCOSSIVE MOASUTE W and LnvaTiant Measure v 'respectwely S’uppose that

(8) wand v are eqmwlent
(b) Q is symnwtmmble with respect tov; 4.6,
v =viQx
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tim L4 (t) -
“0 q;;<°° ’ll?“j
and o '
> gu<gs, t€E.
In this note, we regbriot oui'selves on the conservatbive case, That is
2 Q=g €KX, | |

Theorem 8. Let P(t) be a standwml Mwo‘kov chwfm fw@th ma,tfmw Q= (qu) amd
620635100 MEASUTe Jb. . : .
=23 i Piy(8), 20, § i€ H., 4)
Then P (%) is a sirongly continuous and contractive  sSemigroup on L”(;w) Denote by L
the generator of P (8) on L*( ;w) aind deﬁne DR

&° (fyf) EMsta(fi f£)2

{fELz(/w) £, <o}
Then Q(L) c2° In pwrtwulwr, D9 is dense in L ().

‘ This result is proved in [7] in the case of P(f) being irreducible and

* recurrent. Refer to [7] for the applicabion. of this result. Oertamly, it is ‘more

1n‘uerest1ng if we require w;>0, ¢E€ H. | \ ' |
Theorem 5. There exists a positive emcessive measure for P(t) if and only <f

there is no transient state 4 such that. o :

. .P,,(t)}O. B e P .(6),

fo'r some recwrfrent stwte q. ' '
Corollary 7. If Q= (g,,) is wra*eoluczble, then fO’r any P(t) @Gf e.msts),

condition of Theorem b holds.

§2 Proofs

For the reader’s convemenoe ‘we restate a resulb whloh is easy to oheok due
to Baldi, Lohoué and Peyriére™, VTR U R SR P T R I T
Lemma 8. ' Let A and B be two invertible opemtoq's on @ real Hilbert space with
0< (4w, 8)< (Bw, @)
‘ forr all @ wmi A be symmetric. Then -
(.B w, w)<(A ia;, m)
Jor all @. : SO
Proof of Theo'rem 1 Let qa dv/dpu and deﬁne -
| =I+P)/2,
Q’== (14 9/20)I+(p/20)Q,
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iy e e R S i S

where I denotes the identity operator, Then i} is easy o cheok that P’ and Q are
bransition probabilities having u as their excessive and invariant measures.

reSpeohvely Since O“1<<p<0 we have P'< [1 /\s]Q’ Set 6—-—-/\8 Henoe (P’

3Q’ ) /(1~9) is a transwlon probability and oon fractive on L? (,u,), and so
0<{(P' - 0Q)f/ (1~ =8), POusLS, four

Thus for every. A<1, we obtain

T-AP)F, f5,28{(I - AL, fOue
Similarly from the equality N , | _
Q- (¢/20) Ql/ (1 -p/20)=1
it follows that -
I -A)f, f>u><cv(1 AQ) S, f>u/20 (1/20)< I- ?»Q)f, f>y

| Therefore

GROKI-1Q)f, Du<UT-APYS, fm ((1-2 rP)f. 5, <0<(I—-———P)f

f> From this and Lemma (8), the oonolusmn follows 1mmed1ately
~ Proof of Theorem 2 Let . v . :
| ¢@=(FP)@0),

a=(Ze )

Then {G'(): #€ X'} and {G,:4 € B} are the minimal nonnegainve solutions %o the.
-followmg equations ' :

and

U= 2 Qf;’ll3+Q¢6y tER

respeotively. Put
fv¢- min G (),

CLoatlel=d

As usual (ef [2]) we need only o show that _
lvi>2 Qiiv!+ QGO) % E E

Ohoose o™ € {x, |x| =k} such that
 =G(a®).
Without loss of genera,hty, we may assums that 0<v,<<oco. Then
vo=9(2®) —-9(0) = .=, PO n&Ew) +P.(_0, 9)

> P(0, ?/)”1+(1+00)P(9 8). ;

wlyl=

This can be rewritten as
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ylyl=

5} P(6, ) (-0 >0

and 50 95=>v4. In general

n=G@®) = 3} > P@® G+ F PGS OEQ)+PGD 6.

31=0 ,y
% .

=2 2 P(w"", v+ B P@®, y) v +P @, ),
i=0 yplyl=§ y:iyl=k+1

Hence

S Pl@®, g) (v tes)> D) P@®, ) (01— 9 +P (&%, 0.

vyl =howt s =0 4 14T=4
This gives us not only v} bub also -
| Qk, 11 (Vg = Vpy1) > é}) Qy(v; - ’Uk) + Qo -
whioh is just what we required.
Proof of Theorem 3 To prove the strong contmulty, let f€ L2(,u,) By (4), we
have
| sz;,-<t><m<1~~ Pﬁ(t))
and so
PLOVENIS =2 (E Pyu(t) fi- fc)2<2[2uu (1- P»:(#) 2fi +2:u'z<2 Psd<t)f:')2]
<D (- Pu(o) 1 +3 e 3 Pu(®) 7]

<42,u,4f (1 - Pii(8))—>0, as tJ,O

Ylore easily, we may prove the contraction. Now, let feEPDL). Agam, by 4), we

nay have
<, PO =2 £ E‘JuiPu(t)«f, g

Hence

FH WP (Gi-F0 =5 Py P+< 5 PO -2, POPT
<< -PO)f, >
Thus
oo> <1, r=tim (LHOL F)=d 3 1m 2o 7, gy

t0
=&, ).

Proof of Theorem 5 The necessity can be. deduced to the discrete time ocase
whioch was proved in [6, Theorem 8.3.1]. Now, assume that the condibion holds,
" By the ordinary procedure we can decompose the shabe space into some irreducible
- recurrent classes and a transient olass. On each recurrent olass we have uniquely
8 positive invariant measure. Onoe we consbruot a posfolve excessive measure on
the transient class, combining these measures together in a na.’oural way we W111
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get the required measure for P(%), Hence, without loss of generalily, we assume
that P(#) is transient (here we have used our assumption). In +this 0ase, we
simply choose an arbitrary positive probability measure « and set

ui=Sa[ Py, j€B.
Then ! ’ N #
' ‘oo - co t .
0<as Pyt <p= e dt ! £ Pt -9)

=2 aéjjf,;j(S)dS f:Pii<t)dt<J:ij(t)di<m, ‘ o
whero fi;(s)ds is the probability that the prooess (X,) >0 Sharbing at 4 first hi té ¥
botween times s and s+ds. ‘ ' :
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