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A NECESSARY AND SUFFICIENT CONDETION FOR;
THE OSCILLATION OF HIGHER-ORDER NEUTRAL
EQUATIONS WITH SEVERAL DELAYS™

WaNG -ZﬁICHEqu (i. ER)"

Abstract

Consider the higher-order noutzal delay differehtial equation' '

2 (o )+ Slow (=m0~ Srati—p) )+ Jalt—w) =0, (@)

where the coefficients and the delays are nonnegative constants with n=>2 even. Then & = .

. necessary and suffieient condition for ‘the ogcillation of (A)ig-that. the characteristie

- equation
b m .
A An S i = A ) ek D g™ =0
=1 = g !

has no real roots.
§1. Introduction

Neutral delay differential equa,’slons are dlﬁ'erentml equations in which the
highest order derivative of the unknown function appears both with and without

delays, The problem of osoillations of neutral equations is of both theoretioal and.

_praoﬁleal interest, For example, the equatlons of this type appear in networks
containing lossless transmlssmn“" »10 The oscillation theory of neutra,l equations

has.been extensively developed durmg the past fow yea,rs“’ 56,91, .
In this paper, we consider the oscillations of hlghel order neutral dela,y

differential equatlons :
— (m(t) +2pgw (t ) — }]frﬂ; (t p,))-i— Egkw(f, u) =0, (1.1)
where the coefficients and the delays are nonnegatlve constants with n>2 oven. ;
Let ¢€ O([#O—T to], B), where T'=max{wi, ps 1<i<l, 1<y<m, 1<k
N}. By a solution of (1.1)with mltml fanotion ¢ at o, we mean a fanotion €.
O([to—T, o0), R) such that a:(_t) =¢ (%) for fo— T<t<to,
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o(%) Jrz‘piw(t-—m -Sirat-p)

is n—times continuously differentiable, and o satlsﬁes (1.1) for all $>to. By using
the'method of steps, it follows that for every continuous function qb, there is a
umque solution of (1.1) valid for #>#,. For further quesbions on existence,
uniqueness and continuous depehdence, see Bellman and Cooke [1], Driver [2]
and Hale [3]. | o

' As is customary, a solubion is called osoﬂlatory if it has arbitrarily large zeros
and nonoscillatory if it is eventually positive or eventually nega,tlve The
‘characteristic equation of (1.1) is '

AN, Z p&'”"-?\." 2 T8 LI 2 g e~ Mr=(), . (1 2)

'Our aim is to give ‘a necessary a,nd sufficient condition for all soluinons of
(1 1) to be oscillatory. We have :

‘Theorem.  All - solutions of (1.1) osczllwte of wnd only of -the chamctemstw
equation (1.2) has no real roots, '

The proof of this theorem will be given in Seetion 3.

For the case m=1, the above result was proved recently by Grammati-
kopoulos Sficas and S1‘,awroula,klsc""J For the oase that n is odd,the above result can
be proved by using the similar a,rguments and the proof is. om,ltted

§2 Lammas

In thls seoiuon we es’aabhsh some usgeful lemmas whmh will be used in the

proof of our main theorem.
In (1.1), without loss of generahty we assume that 0< 7y <Tp<l - <q,~¢, 0<p1<
Pa<+< Pm, 'maép,(enl 2 oo, by j= 1 2, <, m), and 0<u1<u2< <uy. Lot P=

Zpe, R= Ea*;andQ qu
Lemma 1, Ifa(t) is o solution of (1.1), then each ome of the Sollowing

functwns .

o(t-a), Jt_bm(u) du;

&) Gif w(t) 48 ‘condinucusly d@ﬁemntwble) %8 aZso @ solution of (1 1), fwiwro a and b

“are real numbers.
The proof is trivial and is omltted o
Lemma 2. If«1.2) hasno real rroots then we hwve
| Q>0 with pp<max{w, wy}. - (2.1
The proof is trivial and is omitbed,
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Lemma 3. Assume that there is @ nonoscillatory sobution of (1.1). Then there:
& @ nonoscillatory solution w(t) of (1.1) such that either
w(®) € (I): -—{w(t)EO”"([T* ), R): ( 1)*w® () >0,
mw""(t)==0 k=0, 1,2, +, n} .

”w : : .
| w(®) € (IT):={w(®) € 0¥ ([T*, o), R)mw®(%)>0,
hm'w(")(t)——oo k=0, 1, 2, -, n},

b0

where T*>1 is suﬁ‘icwntly large. :

Proof As the negative of a solution of (1. 1) is also a solutlon of the same
equabion, it sufhoes to oonsuder that m(t) is an eventually posﬂslve soluiuon of
(1.1), Set

2(8) = (%) +§m<t—~w>*§m<t—m), . - @.2)
and - : ,
w(t) =2(®) +3 pet=) ~ B ralt=p). @)
- By Lemma 1, z(t) and’ w(t) are solu’nmns of #.1). Then we have | |
£ =~ 3 guai- w)<0, @
v = - RNgwG-w), @B

and 0 z""” () is eventually strioctly. decreasing, Also all the. derwahves of z of
order less than or equal to -1 are monotonio funotions. From (2.4) it follows
that either l | o “ ‘ o

hmz(”‘l’(t)— R X

{00

or

?mz‘_“'”(t) I, | e

I is finite, |

If (2.6) holds, then 4
hmz"‘)(t) ~ o0, k;o,‘i, 2, oo, i—1,

tpo0
which imply
' lim fw"" (t) =00,

too
and 80
Tim w® (§) = o0, fw(")(t)>0 eventually, 5=0, 1, 2,

t~r00

- Obviously, z(t) EO”([to+T oo), R) and 'w(t) EO’*’"( [to +2T oo)) that is, w(t)

€@D).
It (2 7) holds, then mﬁegra.tmg (2 7) from #; to #, with # suﬁolenﬂy larg&
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Fo—

and letting f->o0 'we find

a6 = - 30T~ u)i

which 1mplles that o€ L‘[tl oo) Thus, from (2, 2), %€ Ll[tl, co) and since 2 is
monotomc, it follows thab ‘

o hm 2(%) = 0, | | (2.8)
and 50 L=0. Ag the funotlon z‘”‘” (t) decreases to 7er0, 117 follows that |
20D >0, o . 9)

Also (2 8) 1mp11es that oonseoutive derivatives of 2 must alternate sngns and tond
to zero a8 i—->oo Thus, J.n vlew of (2 9) and the faot that n is even we have
From (2.8) we have w(3) € L[4, oo) and w™ (£) >0, IR
.::Using the similar/arguments to w (%) we obtain
(—1)%w® () >0, hmw""(t) 0, %4=0, 1, 2,

’,I‘hus w(t) € (I) and the proof is completed. . .
Lemma 4. Assume that (2. 1) holds, and that thefre s a nonosozlla,tory solution
w(t) of (1.1). Thén there is solut@on z(t) of (1. 1) which belongs to' Olass (I) or
L)y such that the set 4
. A(2): ——{7\,>O —z‘"’(t) -I-?t”z(t) <0}=#@
Proof Bj Lemma 3, we can assume hhat either w(t) € (I) or w(t)E (II)
First, let w(t) € (I), and st .

z(t) = = w(t) Ep,w(t ;) +2 fr,w(t 01). “ ’(‘2.v11.)

It is easy to see that z(t) G (I). We consider the following two cases:
~ Case L.uy=>p,. '
No*bmg that »(¢) is positive and deoreasmg, from (2.11) we have

16); < B (t = bm) <Ro (6 - uy). ' (2.12)
_ On the other hand, | L »'
a Z(”? (t) =?:]1qkw (i - ) >qN$U(t "“,uﬂ)g ' (2 .13)

Oombining (2.12) and (2.18) we obtain

| — 2" (%) +(qu/R)2(5) <O,
~ thab is, A= (gn/R)V"€ A(z) | |
‘Case 2.7,>p,>uy. ' e ,
As z(t) a,nd w(t) are posﬂlve and decreasmg, i, follows bhaﬂi

aRd S Ll e Tl e
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27’@@ P;)>fv(t)+2 p,w(t m) >pzw(t 'b‘z),

\whlch 1mplles ’Ghat _
a5+ (- pa)) > (PR ). | (2.18)
Lot b be the first integer satisfying pm—un<K(m —pm). Then combining
(2.18), (2.14) and (2.15) we. obtain
05 — (1) + qu (i) = —EOE) +quo(—pat (om—t))
> — 2™ (&) + guo(t — pn-+E (71— o) ) 2 = Z‘"’(t)+qN(p:/R)'%(t Pm)
= — 2™ (8) + (gapt/ B )2 (8).
Thus, A= (gugh/ B*)€A@).
Next 1ot (%) € (II), and seb -

?«'(t) = —o(#) - pr(t ~ %) +2 rw(t - P!)

Tt is easy to see thab z(t)E(II), and S0 w(t) and z(t) are both posmve and
moreasmg It follows that ' . '

| " z(t)<3m(t—‘p'1) S (2.16)
.and ' | o o )

o (t) <Rw(t p1). R - (2.17)
Letb & be the first integer sabisfying uy < Fps. Then ' ‘
0> — 2 (2) + gt~ 1) > — z‘”’(t)+q1w(ﬁ kos)
> - ¢ (8) + (q/ B Dot -p)  (by(2.17))

’ > — #™(8) + (q2/B)e(®). (by(2,16))
Thus, A= (gi/R")i/ "€ A(z) and the proof is completed,

4

Lemma 5. Assume that 2. 1) holds, and that there s @ no«nosczllwtorry solutwn ,

w($) of (1.1) with 5(3) € (I) or w(t)e (II) Then the set A(m) has' an upper bound

which 48 independent of ®. _
~ Proof We consider the following oases:

Qase 1.0(2) € (I) with 'z';>p,,,
Sot ‘ »

. z(t)— - () - Zpiw@ 7) +2 m(t o), . (19
:and observe that z(t) € (1), and so (- 1)"z"‘>(t) is posl’olve a,nd deoreasmg for k=0,
1, 2, o=+, n. Then | - , .

(-1 (s - p;_>'>;21< - 1)pa-),
- which implies (- © - - S C
R(~ D)% (- pa)>p D@ =),

(- 1)%‘"‘?(#) >M( ~ 1)~ w), b=0,1, 2, s, X .:'..‘_;::(2';-1!9) 5
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‘where M =p,/R, w=1;- Pm>0, o

We now want to prove tha’ﬁ Ao= — (1/w) In M A(w). Otherwise, A€ A(x),
which means that |

- a,‘"’(t) + Mo (8) <0
Set - ' :
yt) = — (a"_“i’(t) A6 D(£) 4. ~ A2 (8) A (h),
" Then " | ‘ S .
y(t) +hoy (1) = — 2™(8) +Mw(£) <O,
In view of (2 19) we have B
| yO>My(t-w). (220
Let ¢ () =e**y(¢). Then o o
| - W= G )<0,
and so ¢(t) Is decreasing. Thus, ¢ () < (¢ - w), which 1mplles that

| Y(8) <0y (8 - w) = My(s—w),
It contradiots (2.20). Therefore, A,= — (L/w) lnM ig an upper bound of A(m)

Oase 2, az(t)é (Dwith ug>p,. :

Let 2(3) be the function deﬁned by (2.18). Then #(%) € (I).

I% is easy to see that for every 70 0,1, 2, %, m, (~1)%™(3) and ( ~ 1) a®(¢),
- &re positive and decreasing, and then | . -_
(- 1)"z"”(t)<( l)ka(")(t =~ Pm), (2.21)

( 1)yt () Z( ~1) g™ (§— uk)>( ~D¥ne®(t—uy).  (2.22)

For Uy >Pm, there iga b>0 such that uN>p,,,+nb By inbegrating (2.22) from # to
't+b wo ob‘ﬁam . ‘ -

G O —sern) ) [ e
, = (=1)"guba™ (¢~ (uy~b)).
As (- 1)mHpmtb=D4 1 §) <0, it follows that . . S
(=P (5) > b (= 1)%® (5~ (uy - b)),
and after n sbeps we obtain _
(- 1)"z‘7"(t)>ng“( 1) ("’(t (uN—nb)), b= 0 1 2, vy m. (2.23)
‘Oombining (2. 21)-and (2.28) we have e
(=D ""(ﬁ-pm)>(qNb"/R)( —1)" ""(t (o= nb)),
that is, x S
'(;-1)”w‘“’(t)>(qNb”/R)( -1)_"w""(t-<wr-wb~hm)-)= o
for =0, 1, 2, - S S .
Let M ==g,,b"/R W=y —nb — p,,.>0 Then, as in Qase 1, we can show tha} Ay=
(%% (L/w)InM is an qapper. bound of A(z),;" B
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Case 3. a(¥) € (II).
Set

It is easy to see that z(t)E (IT), and that o®(f)and #®(#) are positive and

moreasmg for =0, 1, 2, «++, n. It follows thab | '

o w"‘)(t)<Ra:(’°’(t 1), k=0, 1, 2, (2' 28)
We now want to show that Ao=(1/ps)InR is an upper bound of A(a;)

. ‘Otherwise, ?\.06/1(417), which means — m""(t)+?»8a;(t)<0 Set ’

- y(8) =a D (5) + AP () -+ +m~lm(t) R (2.26)
Then, from (2.25) and (2.26), we have | S o
' y(t)<Ry(t Pi)r . (2.27)

and: SRR
y(£) - }\,oy(t) =a™(8) - Ngm(f,)_>0.

Let ¢(¢) ——e"“’*y(t) Then “ ’

$(B) = (y(t) - ~Aey(£))>0,
and 80 ¢ (%) is 1nereasmg Thus
- ¢(t)>¢>(# Pl)r

which implies that : -
| y(8) =y (b~ o) = Ry(t pa).
Ib contradle’os (2. 27) and the proof of the lemma is completed.

§3 Maln Result

Our Mam result is the following:
Theorem. All solutions of (1.1) oscillate wf wmﬂ only if the chwmctemstw

equation (1.2) hws no, real Toots. .

Proof The theorem will ‘be proved in the contraposﬂwe form there is a.
monosoﬂlatory golution of (1.1) if and only if the characteristic equation (1 2) has:, v

a real root,

Assume first that (1.2) has a rea,l root A. Then, obvmusly, (1 1) has &

monosoﬂlatory solution (%) =",
Assume, conversely, that there is a nonosoﬂlatory solution of (1.1). Then we

*wanii to prove that (1.2) has a real roob. Otherwise, assume that (1.2) has o real
roots. Then, by Lemme. 2, (2 1) holds Let

F(?») ==?v”+}\,ﬂ 22’49_”‘ 7\." 2 fl‘;@”‘“—i- 2 gke-:m, '
: Then we have F (oo) = 17'( oo) >0 and

,ﬁ(t):% - “’_(t) _’ép,@(_t—"i) +§1 rw(t=ps). - (2.24)
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a:=min F(A)>0, K
AER N ’
This implies
[ . m i N ’

— A E‘Pté-m +An-; eI _ 21 e Mg — g 3 Ay

=] " =] k= . R

or ' o -

TAT A B P AR S e - Sy 7S —a (3. 2)

C o f= I=; k=1

for all RER

‘By Lemmas 3 and 4, 1f (1 1) has s nonosoillatory solution, then (1. 1) hag a.
nonoscillatory solumon #(#) which belongs to Olass (1) or (II) with 4(w) .

We now oousuder the followmg two cases: '

Qase 1. o(t) € (I) with A(z) * . ‘

Let A.EA(a;) By Lemma 5, there is an upper bound % of A(s) which. ie
independent of s, . : T

Let T =max{w, Uy}, dnd sot

Y(&) =Tw(8):= ~w(s) - szfv(# ) +E 'rw(t -ps). - (3.3)
Obvmusly, y(t) isa solutlon of (1.1) Wlth y(t)e (I), and’ ' | -v
?/(”)(t) 2 9 (8~ ), - (3_-4'}"

Set ' '
2(8) =Ty (t): —y‘”’(t) M/""”(t) +7»22/‘”‘2’(#) mee=MTy(s),  (3.8).

It is easy to see that 2(¢) is also a solution of (1.1) with #(t) € (I).
From (8.4) and (3.65), we have -
z(n)(t) +?\:Z(”'-'1)(f) —_ y(zn)(t) — 7\/’@/(’" (t)
= Z qk(a;"”(t ) — N (£ ~ u;,))>0
s8N0 AE A(w). Liot'$(t) = - gtyv-b> (¢). Then *
b (1) = — o™ (2™ (1) +M‘”"1)(t)) <0,

and 'so ¢(3) is posmve and decreasmg N ote tha,t z(t) € (I) and z(t) can b@
expressed as . ‘

e f ity j g [ < s 1><s)>ds —f at, f ity f“ 6™ (s)ds,
Whloh 1mp11es S U y
G e a(zf)-ge_‘%‘xﬁ(t)/n?'%.» N (3 61

w(t) = Tsz(t) =2 ”(t)-!-EPsz‘”'” (- 'b‘) 20‘:#‘”'”(5 ~0)

g f z(u)du+ zq»f - z(u)du+n~2ﬂf ’%@Wﬁ- BT



No. 3‘ Warg, Z. C. OSCILLATION OF HIGHER-ORDER NDDE - 251%

By Lemma 1, w(t) is a solution of (1.1). We have
w<t)== —A(e(t-T) —2(8)) - 2 (¢ - T) N‘Eps@(t T)-2(s~ 74)), ]

fw""(t)—— — A (D - T) -z"‘"”(t) )- 2 qkz"‘ (4~ 1T)

- N‘Z‘,p (z"‘“i)(t T) — g ®D(f — "6‘;))

for k=2, 8, ---, m. Asz(¢) € (I), it follows that w(?) € (I). Let
- p=a/(1+P4+Q/A+R)SE, (3.8)
We now show that ;' I - | ', - |
P ~ @)+ Mpw®<0. . (3.9}
In faot, . ' ' C
=) + (W p)ws) | | |
=)\n <z.<"“1>(t -1 —l—ﬁf’ft - 2(u) du) ~ A" i r#®* (- pg)

+A™ E I3 (z""'” =T +7\."f ~' z(u)du)
+k§q o (21 - T)-i—N'J_. i) o S
#0279 8) + Z a0 ) - -0 -

+ "_[:_ 2(w)du+ ngj (u)dunEpiJ‘ . z(u)du)

Noting that -z~ (3) = qS(t)e"‘* with (%) positive and decreasing, by (3 6) we: .
have : . .

ol z(u)dm¢<t.+-cf'>.'<ef~<-*-r>—e-**),-

A 2 QMJ z(u)du< Z qup (5~ T) (3"-(??—1') — g M=)
and - |
AR E p,f z(u) d,u<2 i qﬁ(t T) (g—w—m - —Mt—m))
Then :
—w<w'(t)+(w+p>'w<z>‘ o

| +,w(1+P+Q/M+R)e*T) B o
<¢(t T)e‘”( a+a) - (by: (3 2) and (3 8)) o
=0, Lo

and (3.9) holds, which means th@t SN S
(7\.”+u)1/”€/1(fw)
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Set
' w(8) =Ua(8): =Ts(To(Tsa(t))),
and set To=2, By = Ua:o, and in general
: ; wk—Umk_1, k=1, 2,
We observe that wk(t) € (1) with 4(2,) +, and that AE A(w) = A(w,) implies (A"
+w)*"€ A(w) =A(w;) and after & steps we obtain
AP+ k)Y E A(my), b= 1, 2,

which is a contradiction since Ao is a oommon bound for all Axy).

Oase 2. o(¢) € (II) with A(z) + .

‘Let A€ A(v). By Lemma B, there is an upper bound Ay of A(w) which is

independent of o, Lot b=min{py, 71, us}, and seb
y() =Tuw(b)i= -a(s) - Zzw(t 74) +2 ra(t-ps), (3-10)
z(t)=sz(#) =y P (@) +Ay D) e (E). (3.11)
It is easy to see that y(#) and 2(3) are solutions of (1 1), and that y(t) € (II),
z(t)E (II). From (3. 10), (3.11), :
z(ﬂ)(t) }“z(n-i)(t) y(2n)<t) AP (n)(t)
= kzl-:-gk(;v(") (fi - u;‘) - A (t - 7-610)) >0

since AE A(z).
Let 4)(#) e~ Mpn=D (), Then
| | ORTRCOR o (ﬁ)) =0,
and so ¢ (%) is inoreasing. Set

W) =T (0)1= - £990) — 3, e )
20 G-p)+ 3 ] s(u)du

-b

B O @12
+‘=1 pi J.t_‘;‘ Z(u . . ‘ . . -
Then ' ; -
'tv(t) 2 g2 (E—b) +A Epi(z(t -b) —2(t - 7).
As z(t) € (1D), i follows that
wO(E) = 2 g™V (8 - 6)+?»”2pc(z"“”(t b) — %D (t - m))—>o0,
8 t—-#oo for k=1 2, <. m. Obvmusly, w(t)—>oo as t—>00, 'l‘hus, fw(t) € (II). Let

| ‘We now show that

In fact,

u==a/(P+Q/A."+R) o (3.13) -

)+ (W) <0, (8:14)
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@)+ (o) w () .
= - A2 D(t) + é }“npi< — gD (§ - B) +A" J -3
. =t

t—¢

. z(u)du)
4w (_' 0D (3) — i}p;z(”‘”(t — %) +§ ,rjz(n‘—l)(t )

+Saf swarSwn| o) ).
For z(t) E (1D), there is a #* such that for s>,
| z"‘)(t)>0 k=0, 1, 2 :
Then it is posmble Yo extend the definition of z"‘)(t) o t<t“ such that for 7&; 0, 1,
2, ++, m, 2®(t) is continuous and increasing on ( —oo, o) and #®(#)—>0 as —> oo,
Then 2(#) can be expressed as '

z(u)olu )
m N / -b
+ 3o DG p) + Sau( e B) A0 f
= © k=1

2(8) = j dy f ity j 0D (s) s, (3.15)
Noting that 2~ (¢) =¢(£)e* with ¢(4) inoreasing, we have bj (3.15) -
t-b K2} tp-a
L_ 2(u)du<<p(t - b)f oluj dty J__wdtz‘-' '[ _we“ds
' ' =q5(t — b) (ea(t—-b) — gt ) /N‘.

' Similarly, .
t—
fo By - )
Then " o .
—w™($) + (A" w)w(?)
R 1 ;n- . N
<¢<t"" b) ez.t(( —A" — Epek"e‘”‘ +2 ,r’_?bne—-lﬂd _ 2 gke—_itu;>
. ¢=1 §=1 k=1
4 u(PHQ/AR) )

<P -b)e*(—a+a)=0 (by (3.1) and (3.13)).
It follows thatb (3 14) holds, which means that
(e A(w).
Set w(t) = Uw(t) —Tg(Tz(le(t))), and let wo=w, ©1=Um, and in generaT
zy=Uwy_q, B=1, 2,
As in Case 1, we are led t0 a contradiction. This proves the theorem,
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