ON n- WIDTHS OF PERIODIC FUNCTIONS

CHEN HANLIN (陈翰麟)*

Abstract

Let $\widetilde{B}_{p}^{r,1} = \{f: f^{(r-1)} \text{ is abs. cont. on } I = [a, b], f \text{ is periodic with period } H(=b-a), f(x_1) = 0, ||f^{(r)}||_p \le 1\}, \text{ where } x_1 \text{ is any fixed point in } [a, b]. \text{ The author finds the Kolmogorov, Gel'fand, linear, and Berustein } n-\text{widths of } \widetilde{B}_p^{r,1} \text{ in } L^p(I) \text{ for } n \text{ odd, } \infty > p > 1. \text{ The optimal subspaces and operators are also found.}$

§ 1. Introduction

Let X be a normed linear space and K a subspace of X. The n-width of K relative to X, in the sense of Kolmogorov, is given by

$$d_n(K, X) = \inf_{X_n} \sup_{a \in K} \inf_{x \in X_n} ||a - x||_X,$$

where X_n runs over the totality of *n*-dimensional subspaces of X. If there exists an *n*-dimensional subspace X_n^* , for which

$$d_n(K, X) = \sup_{a \in K} \inf_{x \in X_n^*} ||a - x||_X,$$

then X_n^* is said to be optimal.

The linear n-width of K in X is defined by

$$\delta_n(K, X) = \inf_{P_n} \sup_{\alpha \in K} \|x - P_n(\alpha)\|,$$

where the P_n ranges over the set of continuous linear operators of X into X of rank at most n, i.e., whose range is of dimension at most n. If $\delta_n(K, X) = \sup\{\|x - P_n^*(x)\| | x \in K\}$ and rank $P_n^* \leq n$, then P_n^* is said to be optimal for $\delta_n(K, X)$.

The Gel'fand n-width of K in X is given by

$$d^{n}(K, X) = \inf_{L_{n}} \sup_{x \in K \cap L_{n}} ||x||,$$

where L_n ranges over all closed subspaces of codimension at most n. If $d^n(K, X) = \sup\{\|x\| \mid x \in K \cap L_n^*\}$ and codim $L_n^* \leq n$, then L_n^* is said to be optimal for $d^n(K, X)$.

The Bernstein n-width of K in X is given by

$$b_n(K, X) = \sup_{X_{n+1}} \sup \{ \lambda | \lambda S(X_{n+1}) \subseteq K \},$$

Manuscript received November, 9, 1988.

^{*} Institute of Mathematics, Academia Sinica, Beijing, China.

where $S(X_{n+1}) = \{x \mid x \in X_{n+1}, \|x\| \le 1\}$ and X_{n+1} ranges over all subspaces of dimension at least n+1. If dim $X_{n+1}^* \ge n+1$, and $b_n(K, X)S(X_{n+1}^*) \subseteq K$, then X_{n+1}^* is said to be optimal for $b_n(K, X)$.

The Sobolev space $\widetilde{W}_p^r[a, b]$ of periodic real-valued functions on I = [a, b](b - a = H, H > 0) is defined by $\widetilde{W}_p^r = \widetilde{W}_p^r(I) = \{f \mid f^{(r-1)} \text{ abs. cont.}, f^r \in L^p(I), f^{(i)}(a) = f^{(i)}(b) \text{ for } i = \overline{0, r-1}\}$. Set $\widetilde{B}_p^r = \{f \mid f \in \widetilde{W}_p^r(I), \|f^{(r)}\|_p \leq 1\}$. One of the important problems in the study of n-width has been the determination of the n-width and the characterization of optimal subspaces and operators when $A = \widetilde{B}_p^r$ and $X = L^q(I)$ for $p, q \geq 1$. In [1] Buslaev and Tichomirov claimed that $d_{2L-1}(\widetilde{B}_p^r, L^q(I)) = d_{2L}(\widetilde{B}_p^r, L^q(I))$ for $L = 1, 2, \cdots$ and $p \geq q$, but there are no results on linear, Bernstein's and Gel'fand's n-widths.

It has been conjectured that the four n-widths (or three of them) are equal for all p, q such that $\infty \geqslant p \geqslant q \geqslant 1$. This conjecture was proved for some special cases, i. e., 1) $p = \infty$ and $q \in [1, \infty]$, 2) $p \in [1, \infty]$ and q = 1, 3) p = q = 2 [2]. In this paper, we study the (2m-1)-widths of class $\widetilde{B}_p^{r,1}$ in $L^p(I)$, prove that the four widths are equal to some quantity, and find the corresponding optimal subspaces and operators. The motivation of this work is the paper [3] by Pinkus, where the author proved the conjecture for non-periodic cases.

§ 2. Preliminaries and Definitions

Given an interval I = [a, b], b-a=H, H>0.

Definition 1. Let $f \in L^1(I)$. We say that S(f, I) = S(f) = n, if there exist n+1 disjoint ordered intervals $\{I_j\}_{1}^{n+1}$ (by ordered we mean that x < y for all $x \in I_j$, $y \in I_{j+1}$, j=1, ..., n) whose union is [a, b] and such that $\varepsilon(-1)^j f \ge 0$ a. e. on I_j , j=1, ..., n+1, with constant $\varepsilon=1$ or -1, and meas $\{x:x\in I_j, f(x)\ne 0\}>0$, j=1, ..., n+1. If no such n exists, we set $S(f)=\infty$.

Let $y=(y_1, \dots, y_s) \in \mathbb{R}^s \setminus \{0\}$. The number $S_\sigma(y)$ of cyclic variations of sign of y is given by $S_\sigma(y) = \max S^-(y_i, y_{i+1}, \dots, y_s, y_1, \dots, y_i) = S^-(y_k, \dots, y_s, y_1, \dots, y_k)$, where k is any integer for which $y_k \neq 0$.

This definition of cyclic variations is of sign only for discrete numbers, the following definition is for functions.

Definition 2. Let $f \in L^1(I)$, f is an H-periodic function, the number $S_c(f, I)$ of cyclic variations of sign of f is given by S(f, I) if S(f, I) is even, and by S(f, I) +1 if S(f, I) is odd, where S(f, I) is defined in Definition 1.

Definition 3. Let $g_i \in C[I]$, $i=1,\dots, S$. We say that g is a WT-system on I if

$$G\begin{pmatrix} g_1, & \cdots, & g_s \\ 1, & \cdots, & \mathbf{s} \end{pmatrix} = \det(g_j(y_i))_{i,j=1}^s \geqslant 0 \quad *$$

for all choices of $a \le y_1 < \cdots < y_s \le b$.

Lemma 2.1. If $U = \{g_i\}_1^s$ is a WT-system on I, then

$$S\left(\sum_{i=1}^{s} a_{i}g_{i}\right) \leq s-1,$$

and conversely, if the above inequality holds, then either U or $\tilde{U} = \{g_1, \dots, g_{s-1}, -g_s\}$ is a WT-system on I (see [5]).

Definition 4. Set $\mu_r(x-y) = (b-a)^{r-1}B_r\left(\frac{x-y}{b-a}\right)$ where $B_r(x)$ is the Bernoulli.

polynomial of degree r on [0, 1] (see [4]). μ_r has the following properties

$$\mu_r(x-y) = (-1)^r \mu_r(y-x), \ \mu_r \in C^{r-2}(\mathbb{R}^1) (r \ge 2), \tag{1}$$

$$\int_{J} \mu_{r}(x-y) dy = 0, \frac{d\mu_{r}(x-y)}{dx} = \mu_{r-1}(x-y),$$
 (2)

$$\mu_{1}(x-y) = \begin{cases} -\frac{1}{2} - \frac{x-y}{H} & x < y \le b, \\ \frac{1}{2} - \frac{x-y}{H} & a \le y < x. \end{cases}$$
(3)

For $f \in \widetilde{B}^r_p$, the following formulas are valid

$$f(x) = \frac{1}{b-a} \int_{I} f(y) dy + (\mu_{r} * f^{(r)}) (x),$$
 (4)

where

$$(f_1*f_2)(x) = \int_I f(x-y)f_2(y)dy.$$

If f vanishes at x_1 , then

$$f(x) = \int_{I} V(x, y) f^{(r)}(y) dy, \qquad (5)$$

where $V(x, y) = \mu_r(x-y) - \mu_r(x_1-y)$.

Let $y(t) = c + (\mu_r * \varphi)(t)$. Then

$$y^{(r)}(t) = \varphi(t) - \frac{1}{H} \int_{I} \varphi(y) dy.$$

Definition 5. A real H-periodic, continuous function G has proyerty B, if for every choice of $a \le y_1 < \cdots < y_L < a + H$ and for each L, the subspace

$$X_{L} = \left\{ \left\{ b + \sum_{i=1}^{L} b_{i} G'(\cdot - y_{i}) : \sum_{i=1}^{L} b_{i} = 0 \right. \right\}$$

is of dimension L, and is a WT-system for L odd.

The proof of the following lemma can be found in [2].

Lemma 2.2. G has property B. Let $\phi \in L^1[a, b]$ be such that $\phi \perp 1$, meas $\{x | \phi(x) = 0\} = 0$, and ϕ has 2m sign changes on [a, b) (considered cyclically). By this we mean that there exist points $a \leq y_1 < y_2 < \cdots < y_{2m} < b$, for which $s\phi(y) (-1)^i > 0$ a.e. $y \in (y_i, y_{i+1})$, $i = \overline{0, 2m}$, where $y_0 = a$ and $y_{2m+1} = b$, and s = 1 or -1. Assume that $\psi(x) = c + (G*\phi)(x)$ has 2m zeros at $a \leq x_1 < x_2 < \cdots < x_{2m} < b$. Then for any given data $\{c_i\}_{1}^{2m}$, there exists a unique function f in

$$X_{2m} = \left\{ b + \sum_{i=1}^{2m} b_i G(\cdot - y_i) \mid \sum_{i=1}^{2m} b_i = 0 \right\}$$

such that $f(x_i) = c_i$, $\dot{c} = \overline{1, 2m}$.

Lemma 2.3. For each $r \ge 2$, $\mu_r(t-r)$ satisfies property B.

Lemma 2.4. Let A be a closed, convex, centrally symmetric subset of a normed linear space X. Then

$$\delta_n(A, X) \geqslant d_n(A, X), d^n(A, X) \geqslant b_n(A, X)$$

We now define a class of functions D as follows

$$D = \{ \varphi : \varphi \in L^{p}(I), \ \varphi(x+h) = -\varphi(x), \ x \in I, \ \varphi(2a-x) = -\varphi(x) \}.$$
 (6)

If $\varphi \in D$, then the function $(\mu_r * \varphi)(x)$ enjoys the following properties

$$(\mu_r * \varphi)(x+h) = -(\mu_r * \varphi)(x), \tag{7}$$

$$(\mu_r * \varphi) (2a - x) = (-1)^{r+1} (\mu_r * \varphi) (x), \tag{8}$$

$$(\mu_r * \varphi)(\beta + \varkappa h) = 0, \ \varkappa = 1, \ \cdots, \ 2m, \tag{9}$$

where

$$\beta = \begin{cases} a \text{ if } r \text{ even,} \\ a + h/2 \text{ if } r \text{ odd.} \end{cases}$$
 (10)

In fact, (7) and (8) simply follow from (6), and they imply (9).

By the same reason, the function

$$E(x) = \int_{I} \mu_{r}(x - y) \operatorname{sgn}\left(\sin \frac{\pi (y - a)}{h}\right) dy$$

vanishes at $x_n = \beta + \varkappa h$, \varkappa being an integer. Let Z(E) (or $Z_c(E, I)$) be the number of zeros of E on [a, b), counting multiplications, then $2m \leqslant Z(E) \leqslant S_c(\operatorname{sgn} E^{(r)}, I) = 2m$; therefore, Z(E) = 2m. $\{x_n\}_{1}^{2m}$ are simple zeros of E on [a, b) and E(x) does not vanish elsewhere.

Set $y_x = a + \kappa h$, $T(x, y) = \mu_r(x - y) - \mu_r(x - y_1)$. According to Lemma 2, we conclude that the matrix

$$T_{2m} = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ T(x_1, y_2) & T(x_2, y_2) & \cdots & T(x_{2m}, y_2) \\ \cdots & \cdots & \cdots \\ T(x_1, y_{2m}) & T(x_2, y_{2m}) & \cdots & T(x_{2m}, y_{2m}) \end{pmatrix}$$

is non-singular.

Let $L(x, y) = T(x, y) - T(x_1, y)$; By a simple calculation, the matrix

$$L_{2m} = \begin{pmatrix} L(x_2, y_2) & \cdots & L(x_2, y_{2m}) \\ L(x_3, y_2) & \cdots & L(x_3, y_{2m}) \\ \cdots & \cdots & \cdots \\ L(x_{2m}, y_2) & \cdots & L(x_{2m}, y_{2m}) \end{pmatrix}$$
(11)

is also non-singular, and

$$\det L_{2m} = \det T_{2m} \neq 0, \tag{12}$$

where

$$x_{n} = \beta + \kappa h, \ y_{n} = \alpha + \kappa h, \ \kappa \in \mathbf{Z}. \tag{13}$$

We have

Theorem1. Let $1 , <math>r \ge 2$. There is a function $\hat{\varphi}$ in D, $\|\hat{\varphi}\|_p = 1$, which solves the following extremal problem

$$\sup\{\|\mu_r * \varphi\|_p \colon \|\varphi\|_p \leqslant 1, \varphi \in D\} = \sup\{\frac{\|\mu_r * \varphi\|_p}{\|\varphi\|_p}, \ \varphi \in D\} = \|\mu_r * \hat{\varphi}\|_p. \tag{14}$$

Denote the extremal value by

Set

$$\overline{L}(x, y) = \det L \begin{pmatrix} x, x_2, & \cdots, & x_{2m} \\ y, y_2, & \cdots, & y_{2m} \end{pmatrix} / \det L_{2m}, M(x, y) = |\overline{L}(x, y)|.$$

Then

$$\eta = \sup\{\|\overline{L} * \varphi\|_{p} : \|\varphi\|_{p} \leqslant 1, \ \varphi \in D\} = \|\overline{L} * \hat{\varphi}\|_{p} \tag{16}$$

$$= \sup\{\|M * \psi\|_{p} : \psi(x) = \varphi(x) \operatorname{sgn}\left(\sin\frac{\pi(x-a)}{h}\right), \ \varphi \in D\}$$

$$= \|M * \hat{\psi}\|_{p}, \ \hat{\psi}(x) = \hat{\varphi}(x) \operatorname{sgn}\left(\sin\frac{\pi(x-a)}{h}\right). \tag{17}$$

The function \$\hat{\varphi}\$ satisfies the equation

$$\int_{I} \mu_{r}(x-y)N(x)dx = J(y), \ y \in I, \ \hat{f}(x) = (\mu_{r} * \hat{\varphi})(x),
N(x) = |\hat{f}(x)|^{p-1} \operatorname{sgn} \hat{f}(x), \ J(y) = \eta^{p} |\hat{\varphi}(y)|^{p-1} \operatorname{sgn} \hat{\varphi}(y),$$
(18)

and J is continuous on I. There are λ_1 , $\lambda_2 \in \{-1, 1\}$ such that

$$\operatorname{sgn}(\lambda_1 \hat{\varphi}(y)) = \operatorname{sgn}\left(\sin\left(\frac{\pi(y-a)}{h}\right)\right), \ y \in I, \tag{19}$$

$$\operatorname{sgn}(\lambda_2 \hat{f}(x)) = \operatorname{sgn}\left(\sin\frac{\pi(x-\beta)}{h}\right), \ x \in \mathcal{I}, \tag{20}$$

Proof From the weak compactness theorem, there exists a function $\hat{\varphi}$ in D which solves the extremal problem (14). Assume $\varphi \in D$. Then, for any $t \in R^1$, the function $\hat{\varphi} + t\varphi$ is also in D. Set $G(t) = \|\mu_r * (\hat{\varphi} + t\varphi)\|_{\mathfrak{p}} / \|\hat{\varphi} + t\varphi\|_{\mathfrak{p}}$; since G'(0) = 0 we have $\int_I F(y) \varphi(y) dy = 0$ for any $\varphi \in D$, where $F(y) = \int_I \mu_r(x-y) N(x) dx - J(y)$, F(y) is in D; thus $\int_I F(y)^2 dy = 0$, i.e., F(y) = 0 a.e. for $y \in I$. $\int_I \mu_r(x-y) N(x) dx$ is continuous on I; by modifying the value of $\hat{\varphi}(y)$ on a set of measure zero, $\hat{\varphi}(y)$ (and J(y)) will also be continuous. Therefore we have (18). Assume $\varphi \in D$, and set $f = \mu_r * \varphi$. From (9), $f(x_x) = 0$ and

$$(L*\varphi)(x) = f(x), \text{ for any } \varphi \in D, \tag{21}$$

$$(\overline{L}*\varphi)(x) = f(x) - R_{2m-1}(f(\bullet))(x) = f(x), \tag{22}$$

where $R_{2m-1}(g)$ is the interpolation from span $\{L(\cdot,y_2), \dots, L(\cdot,y_{2m})\}$ to $g(\cdot)$ at $\{x_i\}_{2}^{2m}$. Therefore

$$(L*\varphi)(x) = f(x) = (\overline{L}*\varphi)(x), \text{ for any } \varphi \in D \text{ and } x \in I,$$
 (23)

(16) follows from (23) and (14).

By a simple calculation, $\overline{L}(x, y)$ can also be presented as

$$\overline{L}(x, y) = T(x, y) + \sum_{i=1}^{2m} b_i T(x_i, y), \ 1 + \sum_{j=1}^{2m} b_j = 0.$$
 (24)

Similarly, then we also have

$$\overline{L}(x, y) = T(x, y) + \sum_{j=1}^{2m} d_j T(x, y_j), \ 1 + \sum_{j=1}^{2m} d_j = 0.$$
 (25)

From (25) and Lemma 2.3, Lemma 2.1, we have

$$2m \leqslant S_{c}(\overline{L}(\cdot, y), I) \leqslant 2m, y \text{ fixed.}$$
(26)

Similarly,

$$2m \leqslant S_c(\overline{L}(x, \cdot), I) \leqslant 2m, x \text{ fixed.}$$
(27)

We conclude that $(\overline{L}(x, y) \ (y \text{ fixed}) \text{ can only have simple zeros at } x = \{x_i\}_{1}^{2m}$. Similarly, when x is fixed, $\overline{L}(x, y)$ only has simple zeros at $y = \{y_i\}_{1}^{2m}$. Thus from (13) we have

$$\overline{L}(x, y) = \lambda \operatorname{sgn}\left(\sin\left(\frac{\pi(x-\beta)}{h}\right)\right) |\overline{L}(x, y)| \operatorname{sgn}\left(\sin\left(\frac{\pi(y-a)}{h}\right)\right), \tag{28}$$

where $\lambda = 1$ or -1.

From (28) we have (17). Now we prove (19), (20).

Since $\hat{\varphi} \in D$, from (7) and (18) $\hat{f} \perp 1$, $N \perp 1$, then $2m \leqslant S_o(\hat{\varphi}, I) = S_o(J, I) \leqslant Z(J) \leqslant Z(J^{(r-1)}) \leqslant S_o(N, I) = S_o(\hat{f}, I) \leqslant Z(\hat{f}) \leqslant Z(\hat{f}^{(r-1)}) \leqslant S_o(\hat{\varphi}, I)$, where Z(g) denotes the number of zeros of g on [a, b). We conclude that J, \hat{f} only have simple zeros. Thus, (20) follows. Since J has no zero interval, this implies that $\hat{\varphi}$ has no zero interval. From (17) and $M(x, y) \geqslant 0$, $\hat{\psi}(x)$ must keep constant sign on I. Therefore, $\hat{\psi}(x)$ changes sign only at $y_x(x=1, \dots, 2m)$, these are the only zeros (in I) of function J(y), (19) is true.

Let

$$\omega = \sup_{\varphi \in L^{p}(I)} \frac{\|\overline{L} * \varphi\|_{p}}{\|\varphi\|_{p}}.$$
 (29)

We have

Theorem 2. $\infty > p > 1$, there exists a function $\varphi_0 \in L^p(I)$ and a function $f_0 = L * \varphi_0$ satisfying $\omega = \|f_0\|_p / \|\varphi_0\|_p$, f_0 satisfies

$$\int_{I} \overline{L}(x, y) |f_{0}(x)|^{p-1} \operatorname{sgn} f_{0}(x) dx = \omega^{p} |\varphi_{0}(y)|^{p-1} \operatorname{sgn} \varphi_{0}(y), \tag{30}$$

$$s\hat{\varphi}(y)\varphi_0(y) \geqslant 0 \text{ a.e., } s=1 \text{ or or } -1,$$
 (31)

$$\left| \int_{I} \overline{L}(x, y) \hat{\varphi}(y) dy \right| = \int_{I} M(x, y) \left| \hat{\varphi}(y) \right| dy = \left| \hat{f}(x) \right|, \tag{32}$$

$$\int_{I} \overline{L}(x, y) |(\overline{L} * \hat{\varphi})(x)|^{p-1} \operatorname{sgn}(\overline{L} * \hat{\varphi})(x) dx = J(y), \tag{33}$$

$$\omega = \eta_{\bullet} \tag{34}$$

Proof From the compactness consideration, there is a function φ_0 in $L^p(I)$, φ_0 attains the extremal value in (29). Equation (30) follows from a proof parallel

to the one of Theorem 1. From (28), we have

$$\int_{I} \left| \int_{I} \overline{L}(x, y) \varphi_{0}(y) dy \right|^{p} dx = \int_{I} \left| \int_{I} \left| \overline{L}(x, y) \right| \left| \varphi_{0}(y) \left| \operatorname{sgn} \left(\varphi_{0}(y) \sin \frac{\pi(y-a)}{h} \right) dy dx \right| \right|^{p} dx$$

Since φ_0 attains the extremal value, $\operatorname{sgn}\left(\varphi_0(y)\sin\frac{\pi(y-a)}{h}\right)$ must be a constant; thereby, (31) is true. (32) follows from (19), (28), (23) and (18).

From the definition of $\overline{L}(x, y)$ and $J(y_i) = 0$ we have

$$\int_{I} \overline{L}(x, y) N(x) dx = \int_{I} L(x, y) N(x) dx = J(y).$$
(35)

Combine it with (32) and (18) we obtain (33).

Set

$$\begin{split} \widetilde{\varphi}_0(x) = \varphi_0(x) / \|\varphi_0\|_{\mathfrak{p}}, \ \widetilde{f}_0(x) = (\overline{L} * \widetilde{\psi}_0)(x), \ \widehat{f}(x) = (\mu_r * \widehat{\varphi})(x), \\ H_0(y) = \omega^{\mathfrak{p}} |\widetilde{\varphi}_0(y)|^{\mathfrak{p}-1} \mathrm{sgn}\widetilde{\psi}_0(y). \end{split}$$

From (19), (20), (28), it follows that

$$|(\overline{L}*\widetilde{\varphi}_0)(x)| = |(M*|\widetilde{\varphi}_0|)(x)|, \operatorname{sgn}(\overline{L}*\widetilde{\varphi}_0)(x) = \varepsilon \lambda_1 \lambda_2 \lambda \operatorname{sgn}\widehat{f}(x).$$
(36)

Combining it with (30) we have

$$\int_{T} M(x, y) |(M*|\tilde{\varphi}_{0}|)(x)|^{p-1} dx = |H_{0}(y)|.$$
(37)

From (23), (28)

$$\left|\hat{f}(x)\right| = \int_{T} M(x, y) \left|\hat{\varphi}(y)\right| dy = \left(M * \left|\hat{\varphi}\right|(x), \lambda \lambda_{1} \lambda_{2} = 1.$$
(38)

Since $\hat{f} = \overline{L} * \hat{\varphi}$, from (38), (33) and (28) we have

$$\int_{I} M(x, y) |(M*|\hat{\varphi}|)(x)|^{p-1} dx = |J(y)|.$$
 (39)

From (31), $\tilde{\varphi}_0(y)$ changes sign at $\{y_j\}_1^{2m}$. Then $H_0(y_j) = 0$, J(y) has simple zeros at $\{y_j\}_1^{2m}$, and does not vanish elsewhere. Therefore $|H_0(y)/J(y)| < \infty$ for $y \in I$, there is a constant $\hat{\alpha}$ such that $\hat{\alpha} = \inf\{\alpha : |H_0(y)| \le \alpha |J(y)|, y \in I\}$. Then

$$\omega^{\frac{p}{p-1}} | \widetilde{\varphi}_0 (y) | \leq \widehat{a}^{\frac{1}{p-1}} \eta^{\frac{p}{p-1}} | \widehat{\varphi}(y) |$$

for $y \in I$, and $\omega^{\frac{p}{p-1}}(M*|\tilde{\varphi}_0|)$ $(x) \leq \hat{a}^{\frac{1}{p-1}}\eta^{\frac{p}{p-1}}(M*|\hat{\varphi}|)(x)$ for $x \in I$. Combining them with (39), (37), we get $|H_0(y)| \leq \hat{a}\left(\frac{\eta}{\omega}\right)^p |J(y)|$ for $y \in I$. Thus we have $\eta \geqslant \omega$. From (14), (15), (9) and (29) we have $\omega \geqslant \eta$; (34) is true. set

$$\varphi_{j}(y) = |\hat{\varphi}(y)| \Omega_{j}(y), \ \Omega_{j}(y) = \begin{cases} 1, \ y \in (y_{j}, \ y_{j+1}), \\ 0, \text{ otherwise,} \end{cases}$$

 $j=1, \dots, 2m, y_{2m+1}=y_1+H.$

$$g_{j}(h) = \begin{cases} \int_{I} \mu_{r}(x-y)\varphi_{j}(y)dy, \ j=1, \cdots, 2m, \\ 1, \qquad j=2m+1. \end{cases}$$
(40)

Define

$$F_{2m} = \left\{ g_{\alpha} : g_{\alpha}(x) = \sum_{j=1}^{2m+1} \alpha_{j} g_{j}(x), \sum_{j=1}^{2m} \alpha_{j} = 0 \right\}. \tag{41}$$

Let $\int_{y_j}^{y_j+1} |\hat{\varphi}(y)|^p dy = d_j (j = 1, 2m)$. We consider the extremal problem

$$\inf_{g_{\alpha} \in F_{2m}} \frac{\|g_{\alpha}\|_{p}}{\|\varphi_{\alpha}\|_{p}}, \ g_{\alpha}(x) = \alpha_{2m+1} + \int_{I} \mu_{r}(x, y) \varphi_{\alpha}(y) dy, \tag{42}$$

 $\varphi_{\alpha}(y) = \sum_{1}^{2m} \alpha_{i} \varphi_{i}(y), \quad \sum_{1}^{2m} \alpha_{i} = 0. \text{ Evidently, there is a function } \varphi^{*}(y) = \sum_{1}^{2m} \alpha_{i}^{*} \varphi_{i}(y), \text{ and}$ a constant α_{2m+1}^{*} such that the function $g^{*} = \sum_{1}^{2m} \alpha_{i}^{*} g_{i} + \alpha_{2m+1}^{*}$ solves the problem (42).

$$\inf_{g_{\alpha} \in F_{2m}} \frac{\|g_{\alpha}\|_{p}}{\|\varphi_{\alpha}\|_{p}} = \frac{\|g^{*}\|_{p}}{\|\varphi^{*}\|_{p}} = \xi. \tag{43}$$

Set $F(\alpha) = F(\alpha_1 \dots, \alpha_{2m+1}) = \|g_\alpha\|_p / \|\varphi_\alpha\|_p$, differentiate $F(\alpha)$ with respect, to α_n and set $\alpha = \alpha^*$, we have $\frac{\partial F(\alpha)}{\partial \alpha_n}\Big|_{\alpha = \alpha^*} = 0$ for $n = 1, \dots, 2m+1$. Then

$$\int_{I} g_{\varkappa}(x) |g^{*}(x)|^{p-1} \operatorname{sgn} g^{*}(x) dx = \xi^{p} d_{\varkappa} |\alpha_{\varkappa}^{*}|^{p-1} \operatorname{sgn} \alpha_{\varkappa}^{*}, \quad \varkappa = \overline{1, 2m}.$$

$$\int_{I} |g(x)|^{p-1} \operatorname{sgn} g^{*}(x) dx = 0. \tag{44}$$

From (18) we have

$$\int_{I} g_{\varkappa}(x) |\hat{f}(x)|^{p-1} \operatorname{sgn} \hat{f}(x) dx = \eta^{p} d_{\varkappa}(-1)^{\varkappa}, \quad \varkappa = \overline{1, 2m}$$

$$\int_{I} |\hat{f}(x)|^{p-1} \operatorname{sgn} \hat{f}(x) dx = 0. \tag{45}$$

:Set $E(x) = |\hat{f}(x)|^{g-1} \operatorname{sgn} \hat{f}(x) - |g^*(x)|^{g-1} \operatorname{sgn} g^*(x), E \perp 1$, let

$$E_{\kappa} = \int_{I} g_{\kappa}(x) E(x) dx = d_{\kappa} |\eta^{p}(-1)^{\kappa} - \xi^{p} |\alpha_{\kappa}^{*}|^{p-1} \operatorname{sgn} |\alpha_{\kappa}^{*}|.$$

If $\eta > \xi$ and $|\alpha_j^*| \leqslant 1$ $(j=1, \dots, 2m)$, then $E_o(E_1, \dots, E_{2m}) = 2m$; thereby, $2m \leqslant S_o(\int_I \mu_r(x-\cdot)E(x)dx, I) \leqslant Z_o(\int_I \mu_r(x-\cdot)E(x)dx, I) \leqslant S_o(E(\cdot), I) = S_o(\hat{f}(\cdot) - g^*(\cdot), I) \leqslant S_o(\hat{\phi}(\cdot) - \varphi^*(\cdot), I)$. Normalize $\{\alpha_j^*\}_{1}^{2m}$ so that $|\alpha_j^*| \leqslant 1$ for all j and $\alpha_k^* = (-1)^k$. Moreover, with no loss of generality, we assume that $\operatorname{sgn} \hat{\phi}(y) = (-1)^j$ for $y \in (y_j, y_{j+1})$. Then, $S_o(\hat{\phi}(\cdot) - \varphi^*(\cdot), I) \leqslant 2m - 2$; it leads to a contradiction $2m \leqslant 2m - 2$. Thus we conclude $\eta \leqslant \xi$. Since

$$\hat{f}(x) = \lambda_2 \sum_{x=1}^{2m} (-1)^x g_x(x),$$

we have $\xi = \eta$ and the following

Theorem 3. Let F_{2m} be defined as in (40), (41). Then

$$\inf_{g_{\alpha}\in F_{2m}}(\|g_{\alpha}\|_{p}/\|\varphi_{\alpha}\|_{p})=\eta,$$

where η is the number defined in (14), (15).

We now define a class of functions \hat{B}_{v}^{r} :

$$\hat{B}_{p}^{r} = \{ f : f = \mu_{r} * \varphi, \ \varphi \perp 1, \ \|\varphi\|_{p} \leqslant 1, \ f(\beta + h) = 0 \},$$

where β is defined as in (10). We have the following

Theorem 4. If 1 , then

$$\delta_{2m-1}(\hat{B}_{p}^{r}, L^{p}(I)) = d_{2m-1}(\hat{B}_{p}^{r}, L^{p}(I)) = d^{2m-1}(\hat{B}_{p}^{r}, L^{p}(I))$$

$$= b_{2m-1}(\hat{B}_{p}^{r}, L^{p}(I)) = \|\hat{f}\|_{p} = \eta.$$
(46)

(a) R_{2m-1} is an optimal rank 2m-1 operator for $\delta_{2m-1}(\hat{B}_p^r, L^p(I))$, R_{2m-1} is defined as in (22).

(b)
$$F_{2m} = \operatorname{Span}\left\{g_{\alpha m} = \alpha_{2m+1} + \sum_{1}^{2m} \alpha_{i}g_{i}, \sum_{1}^{2m} \alpha_{j} = 0\right\}$$
 is optimal for $b_{2m-1}(\hat{B}_{p}^{r}, L^{p}(I))$.

- (c) $Z_{2m-1} = \operatorname{Span}\{Z : Z \in \hat{B}_p^r, Z(x_j) = 0, j = 2, \dots, 2m\}$ is optimal for $d^{2m-1}(\hat{B}_p^r, Z(I))$.
- (d) $X_{2m-1} = \operatorname{Span}\{\mu_r(x_2-y) \mu_r(x_1-y), \dots \mu_r(x_{2m}-y) \mu_r(x_1-y)\}$ is optimal for $d_{2m-1}(\hat{B}_p^r, L^p(I))$,.

Proof From (29), (34), (21) and (22) we have

$$\eta \geqslant \sup_{f \in \hat{B}_{p}^{r}} ||f - R_{2m-1}(f)||_{p} \geqslant \delta_{2m-1}(\hat{B}_{p}^{r}, L^{p}(I)).$$
(47)

From Theorem 3.

$$b_{2m-1}(\hat{B}_p^r, L^p(L)) \geqslant \eta. \tag{48}$$

Then Theorem 4 follows from (47), (48) and Lemma 2.4.

Let x_1 be any point in the interval $I_c = [c, d]$. The subclass $\widetilde{B}_p^{r,1}$ of \widetilde{B}_p^r is defined by $\widetilde{B}_p^{r,1} = \{f : f^{(r-1)} \text{ abs. cont. on } I_c = [c, d], f \text{ is periodic with period } H = d - c_p$ $\|f^{(r)}\|_{2,[c,d]} \le 1, f(x_1) = 0\}$ where

$$||g||_{p,[c,d]} = \left(\int_{0}^{d} |g(x)|^{p} dx\right)^{1/p}.$$

Set

$$h = H/2m$$
, $a = \begin{cases} x_1 - h, \ r \text{ even,} \\ x_1 = \frac{3h}{2}, \ r \text{ odd,} \end{cases}$ $b = a + H$,

 $\|g\|_p = \|g\|_{p, [a,b]} = \left(\int_a^b |g(x)|^p dx\right)^{1/p}$. Let β be defined as in (10). The subclass \widetilde{B}_p^{r} is defined as in Theorem 4. Since each function f in $\widetilde{B}_p^{r,1}$ (or in \widetilde{B}_p^r) may be regarded as the function on the real line, and $\|g\|_{p, [a,b]} = \|g\|_{p, [a,d]}$, thereby $\widetilde{B}_p^{r,1} = \widetilde{B}_p^r$, we therefore have the following

Theorem 5. If $1 , then <math>\delta_{2m-1}(\widetilde{B}_p^{r,1}, L^p) = d_{2m-1}(\widetilde{B}_p^{r,1}, L^p) = d^{2m-1}(\widetilde{B}_p^{r,1}, L^p) =$

Acknowledgement. I would like to acknowledge Mr.Chun Li for his helfpul discussions and the simplification for the proof of Theorem 1. During the Spring semester of 1988, as a Visiting Professor at the Center for Approximation Theory at Texas A & M University, I behefited by many discussions with Professor Charles Chui and his graduate students. I also appreciate Ms. Robin Bronson for her very

nice typing.

References

- [1] Buslaev, A. P., Tichominov, V. M., Some questions of nonlinear analysis and approximation theory, Dokl. Akad. Nauk. SSSR, 283 (1985), 13—18.
- [2] Pinkus, A., n-widths in approximation theory, Berlin-Heidelberg-New York: Springer-Verlag (1985).
- [3] Pinkus, A., n-widths of Sobolev spaces, Const. Approx. Th., 1:1 (1985), 15-62.
- [4] Korneichuk, N. P., Extremal problems in approximation theory, Nauka, Moscow (1976).
- [5] Schumaker, L. L., Spline functions, Basic theory, John Wiley & Sons, Inc. New York etc. (1981).