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ON n- WIDTHS OF PERIODIC FUNCTIONS
 CmEN HANLIN (Fﬁz.?ﬁ/gi)*.'

Abstract

* Let Bp? {f f"“” is abs eont. on I=[g, b], f is periodic with period H(=b— -a),
F@)=0, [|f),<1}, where #y i3 any fixed point in [a, b]. The author finds the
Kolmogorov, Gel’fand, linear, and Borustein n-widths of Bfin L?(I) for » odd ; O>p
>1. The optimal subspaces and operators are also found. .

§ 1. Introduétion

Let X be a normed lmear space and K 8 subspace of X The n-width of K

relative 10 X, in ‘the senise of Kolmogorov, is given by

dn(K’ X)"lnfsuplnf "Cb""(l?”x, -
Xy, 0€e K 2€X, o

where X, runs over the totality of n~dimensional subspaces of X, If there exists
an n-dimensional subspace X, for which
d (K X)—sup 1nf]|w o] x,

0EK ac X}
then X7 is said to be Optlmal
The linear n-width of K in X is defined by
(K, X)-—mfsup lo — P.(2)],

where the P ranges over the set of continuous linear operators of X into X of
rank at most n, i.e., whose range is of dimension at most n. If 0.(K, X)=sup{|o-
Pi(@)| |o€ K} and rank P;<n, then P; is said to be optimal for §,(K, X).
The Gel’fand n—width of K in X ié given by
(K, X) -—1nf sup [,

Where L, ranges over all olosed subspaces of codlmenswn at most n, If d"(K’ X)=
sup{|o| |o € K N L} and codim Li<n, then L is said to be optimal for d*(K, X).
The Bernstein n-width of K in X is given by , -
bo(K, X) = =sup sup{MNS’(X,,,,.l)CK},

ﬂil
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where S(X,.1)={2|0€X,.1, |o|<1} and X, ranges.over all: éubspa;ees' cof: .

dimension ab least n-+1. If dim X, >n+1, and -0,(K, X)8(X..)EK, then
X1 is said to be optimal for b,(K, X).

The Sobolev space W5[a, b] of periodio real-valued functions on I = [@, b](b -

a=H, H>0) i défired By Wy=W3;(I)={f|f¢* abs. cont., f€L2(I), fO(a)="

FO(B) for 4=0, 7—1}. Seb By={f|FEW(D), [fl,<1}. Ono of the important”

problems in the'study of n-width has been the determination of the n—width and the

characterization of optimal subspa,ces and opemtors when A= By and X = Lq (I ) for _

2, g=1. In [1] Buslaev and Tlohomlrov clalmed that do.- 1(B,,, L‘I(I)) dgL(B

L(T)). for Li=1, 2, and p=>g, but there are no results on linéar, Bernsbein’s ana

Gel'fand’s n—widths,

It has been oongeohured ’ohat the four n—vndths (or three of them) are equal for
all p, g such that oo>p>g>1 This GOnJee’uure was proved for some speeial cases, i.
e., 1) p=co and g€ [1, oo], 2) p€[l, o] and ¢g=1, 3) p= =g=2[2]. In this paper,
we study tho (2m ~1)~widths of class By* in I?(T ), prove thab the four widths are
equal to some quantity, and ﬁnd the correspondlng optlmal subspaoes and opemtors

The motivation of this work is the- paper [3] by Pinkus, Where the author proved
‘the conjecture for non—periodic cases.

§ 2. Preliminaries and Definitions
. Given an interval I ={[g,.b], b—a=H, H>0, _ :
Definition 1. Let f€ L'(I). We say tha’o S( f, D=8(f)=mn, if there ewist n—+

1 d@syomt ordered intervals {I )3+ (by ordered we mean that sy forr all z€1; yeb
Ijp1, j=1, ==, n) whose union is [a, b] and such that e( ~ 1)’f>0 a. e, on'I, j=1,
41, with constant =1 or =1, and meéas {w: mEI,, f(m)%0}>0 =1, <o, n-1, If
0o such n ewists, we set (f)=o0. - ‘ |

Let y=(y4, +*, ¥:) ER\{0}. The number So(y) of oyohe variations of sign of y.

is given by S.(y) =max 8~ (¥s Yis1,**) s yl, ) .%) =8~ (W) Ysr Y1, *+*» Yi), Where.
% is any integer for which g;#0. '

This definition of oyolic variations is of sugn only for dlsorete numbers, the
following definition is for functions,
- - Definition 9. Let fEIMI), f isan H~pemodw funcmon the number S,(f, I )
of cyclw variations of sign of f is given. by 8(f, I) 4f S(f, T) is even; and by /S’(f, I)
+1éf S(f, I) is odd, where S(f, I) is deﬁned én Defingtéon 1.

- Definition 3.  Let g:€O[I ], 4=1,+, 8. We say that g isa WT—systefm on I ’bf

| G(g;:’ ’ 9;) det(ﬂa(?/t))¢,ﬁx=1>0 *
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for all choices of a<gy<---<y,<b.
Lemma 2.1. If U={g}iis a WT-system on I, then

S<$ @i ><s -1,

and conversely, of the above inequality holds, then either U or T={gs, -, o1, — goF

is @ WT-system on I (see [5]).

Definition 4. S ui(o-9) = (b-a) B, ( £
polynomwl of degree r on 0, 1] (see [41). ur has the followmg properiies

I"r(m ?/) ( 1) .u'r(?/ w)r e EO™ 2(R1>(’I°>2), V (1)
[ lo-vyy=0, B8 _\ gy, @
. : —_%' - ﬁ w<y<br
1\ @ — =" v 3)
(e -y) { %_ ) mﬂy a<y<a. 3

For f € By, the following formulas are valid

where

(funfo) (o) = f Fa -t o

If S vanishes at x4, then

1@ =], 7@ Drowar, C®

where V' (2, y) = (2~ 9) — (21 - y).
Lot y(t) =0+ (uy*@) (£) . Then

v@) =p® L[ o)y,

Definition 5. A4 real H—pemod@o, contbnuous function G has proyerty B, &f for
every choice of w<y1< <yL<w+H and for each L, the subs;oaoe

={{b +€§165G (o~ 95) :‘2=155=0}

s of dimension L, and ts a WT-system for L odd.

The proof of the following lemma can be found in [2].

Lemma 2.2. G has property B. Let ¢€ Ira, b] be such that ¢ 11 meas
{e]|d (@) =0} =0, and b has 2m sign changes on [, b) (considered oyclically). By this
we mean that there ewist poinits a<ys<<yo<+<yn<b, for which sd(y) (-1)'>0 a.e.
YE (Y, Yiya), 5=0, 2m , where go=a and Yomp1 =0, and e=1or -1, Assume that (z)

=0+ (G=p) () has 2m ze¢cs @t a0y <wg <<+ <@gn<<b. Then fO'r any g@fven data {e}3m, |

there ewists a unfque funot@on S in

2/) where B, () is the Bernoulls.

F@) =52, £+ Garnf ) g @
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Xz,,,—-'-.{b+22:b¢a(- ~4s) l%nbs=0}
such that f(w) =0, =1, 2m. |
Lemma 2.8. For each r=2, u,(t —1) satisfies property B.
Lemma 2.4. Let A be a closed, conves, ce«ntmlly symmetric subset of @ normed
linear space X. Then
8.(4, X)>d (4, X), d"(4, X)=b.(4, X)
We now define a class of funotions D as follows

D={p:p€ I*(I), p(a+h) = - p(2), €L, p(20-2)= -@(2)}. (6)
If € D, then the function (u.*p)(x) enjoys the following properties
(ex@) (@ +0) = - (uexp) (@), = M
(rep) (20 — @) = (- 1™ (ur*qv) (2); - ®
(r#@) (B+xh) =0, =1, -+, 2m, - (9

“where
' @ if r eiren, '
| ‘3—{ a-+h/2 if r odd.
In fach, (7) and (8) s.mmply follow from(6), and they unply 9.
By the same reason, the funcbion

)=, Mm/)sgn(sin’”@ 2 )ay
vanishes at a,= B+xh » being an integer., Let Z (E) (or Z (E I)) be the
" number of zeros of £ on [a, b), countmg mulblphmtles then 2m<Z(B)<
So(sgn B, I) =2m; therefore, Z (B)=2m. {w,,} are s1mple zeros of B on [a, b)
and K (s) does'nob vanish elsewhere. '
Set y,=a+xh, T'(x, y)=p(v-y) - (o~ %) Accordmg to- Lemma 2, we
conclude that the matrix »

(10)

1 e e 1
Pom=| Tt 4 T(wa, ys) - T(wamy 92)
T(wsy Yom) T (@2, Yom) e T (@omy Yom)
is non-singular,
Let L(w, y) = T (:v, ) - T (s, y¥); By a mmple caloulatlon the maﬁmx o
Lwg y2) = Loz yYom)\ _ o
L= L(w3, y2) - L(zs, .?lzm) ? | an
. ‘L(wzm; ya) +* L(@om, ?lzm)
is also non-singular, and o . S T
| dot Lon=deb T'on %0, o)
where , o :
@,=PB+nrh, y,=a-+uh, x»CE, . R ; - (13)
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We have

solves the following emtfremwl problem

- Set

. sl lpl<Lpe D)= sup{—".f-,f-g]l%‘l%, ¢ep}= lursfle (19
Denote the evtremal value by -
w= Ll - (15)
-, T, T, J..’
Lz, v) =detL< v )/det Lzm, M (=, g/) = lL(w, .
' : Yy Y2y =y Yom
Then ' '
p=sup{| Lxp|,: |p[,<1, p€ D} =| L+p|, o (16)

* —sup{| gl (o) ~p(o)sgn (510 22D ), pe D}

~1ofl, ()= a)sgn (sn <”h‘“> ) am)

The funot@on @ satisfies the equation :
[ o) N @a=7 @), vEL, Fa) - ()@, R

N (@) =|f (@) |**sgnf(a), T (@) =*|$(y) l” *sgn §(y),
and J 38 contimnuous on I. There are Ay, A€ {~1, 1} such that .

sgn (A (y)) =sgh(sin (—“"’—”-(—y—“—“l)) y€ I, ‘(19)__
sgn(hzf(m)) ——sgn(Sm ”(w B) )), s€l, _ (20)

Proof From the weak compactness. theorem there exists a function § in D
whioch solves the extremal problem (14). Assume @ € D.Then, for any t € R1 the func-
tion $+idp is alsoin D. Set G-(8) = | (§-+1g) |5/ |@-+tply since G'(0) =0 we have

[ F@o@)ay=0 tor any pe D, where F(¥)= | u(a-1)N(2)da-T (), F) is
in D; thus LF(y)"’dy=O, L., F(y)=0s.. for y€1. L ue(s—9) N (2)d is conbinu-

ous on I; by modifying the value of $(y) on a set ¢f measure zero, #(v) (and J(y))
will also be continuous. Therefore we have (18). Assume p€D, and seb f=pu.xp.
From (9), f(,) =0 and | |

(Txp) (2) =F (@) ~ Rans (F(+)) (@) =F (o), (22)
where Rsy-1(g) is the mherpolamon from span{L( ,yz), sesy L(o.,y;m)} B0 g(e) ab
{a;,} . Therefore

(Lixg) (@) —-f(a;) (L*go) (w), for any p€Dand wGI ' (23)

© (16) follows from (23) and (14),-

Theoreml. Lot 1<p<oo =2 Them s a funot@on <p fm D ngll,, —-1 'wh'bch

(Iwp) (&) =f (), for any €D, o (21)
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By a simple calculation, L(=, ¥) can also be presented as

L(o, 9)=T(o, 1)+ S0 (@ ), 14 ZB=0. (@)
Similarly, then we also have |
L(a, v) =T @, 9)+ 34T (0,0 14340, (25)
From (25) and Lemma 2.3, Lemma 2.1, we have | L |
, 2m<8e(L(*, 9), I)<2m, y fixed. . (26) .
Similarly, . '
2m<8,(L(x, +), I)<2m, o fixed. ' 27y

We conclude that (T(a, y) (y fixed) can only have snnple zeros at o={x;}i".
Similarly, when & is fixed, L (e, ) only has simple zeros at y={y;}i". Thus from. .-
(13) we have

L (a; y) =A sgn<Sm (M)) | L (e, v) [sgn(Sm ( w(y —a) ))’ | ('2'8::)

where A=1 or -1,

. From (28) we have (17). Now we prove (19) (20)

Sinoe #€ D, from (7) and (18) fl11, N 11, then 2m<8o(@, I) =8,(J, I)<S
Z(J)<ZJTD)<B(N, I)=8:(f, D<Z(H)<Z(Fr2)<8($, I), where Z(g)
denotbes the number of zeros of g on[a, b). We conclude that J, # only have simple

geros. Thus, (20) follows. Since J has no zero interval, thig implies that @ has no-

zero interval. From (17) and M (=, y)=0, $(z) must keep constant sign on 1.

. Therefore, i (#) changes sign only ab yu(x=1, -+, 2m), these are the only zeros (in
I) of function J (¥), (19) is true. o

Lebt _
_ uLwn, | -
O R Tl | (29)

We have |
Theorem 2. co>p>1, there ewists a 2 function po€ L”(I) and @ function fo=

Lgo satisfyina o=1fols/lgola fo satisfies

j L(m, ¥) Ifo(w)lp Lsgn fo(w)do= w”lq»o(y)l”’lsgnm(y), .(30)
8¢(y)¢’o(y)>0ae e=1oror -1, (81)

[ 2o 990>as| =, 3a, )19 = @, (32)

| L'I?Ov; y)I(Z*ﬁ)(w)l”’lsgn(i*fﬁ)_(w)dw='=f(y),: @
. o= (34)

Pa”oof From the compactness consideration, “there is a functlon @o in LP(I),
@o ablains the extremal value in (29). Equation (30) follows from a proof -parallel

-~
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!Jo the one of Theorem 1. From (28), _vve have
[ .26 vowa| e[ |[ 1Te ]

Bince o abtains the extremal value, sgn(qpo(y)sin _@—l—zﬁ> must be a constant;

@o(y) lsgn(svow) sin M)olydw

thereby, (81) is true. (32) follows from (19), (28), (23) and (18).
From the definition of L(w, ¥) and J (y;) =0 we have

I N @ o= LG, )N @)do=T (). (35)
Combine it with (32) and (18) we obtain (33). |
Set . o - A
G0 (@) =0(2) /| pol v Folw) = (Txtho) (), F (@) = (ued) (w),

Ho(y) =0 @o(y) [P"lsgn¢o(y)
- From (19), (20), (28), it follows thab

| (L%@o) (@) | = | (M50 ) (2)], sgn(L*qao) (#) = ehahoh sgn F (). (36)
OOmblnmg it with (80) we have A

R ?/)KM*!‘POI)(%)I”1dw~|Ho(’y)| e
From (23) (28) |
) @ =[ M@ 1o = Melpl @), el (38)
Slnce F= me, from (38), (33) and (28) we have
| e w0t @=L 69

From (31), po(y) changes sign at {y;}3". Then Hy(y;) =0, J () has simple zeros at
{y;}i", and doss not vanish élsewhere. Therefore | Ho(y)/J (y) | <oo for yEI, there
s a constant @ such that a=inf{a: | Ho(y) | <a|J )|, yEI}. Then

P~ PUnn SIS N
o7 T [go () [ <a=T 9 7I|$(y) |

A—-——_—_—

for yel, and ® P~1(M*[¢0|) (@) <a "Iy -1(M=|p|) (o) for €T, Oomblnmg them
with (89), (87), we get [Ho(y)[<a< ) |J(y)| for yEI Thus we have n>w,
From (14), (15), (9) and (29) we have wn;(34) is true,

80t

1, y € (yy ?/_5-!-1)’
0, otherwise,

o) =16@) 12), 26)
j=1’ A 2m, y21n+1=y1+H_° . '
| M e ) os@), =1, +-+, 2m, | _
g,(h)={LMr(w Wiy, j b 2 (40)

Define e s e
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: 2m+1 : ,
Fuu={oeige @) =5 ws@, For=0}. - )
-Letj |¢(g) | *dy = clj (j=1, 2m). We consuier the ex bremal problem |
g gl

secFom |@als

2, 0a(&)= st | e, 0@y, ()

wpally) = 2“,@;(@/) Za, 0. EVldently, there is & funotion px(y) = Ea,cp,(y), and

B oons’ﬁant 0smya Such that the function g*= 2 0§+ 0gny1 SOlves the problem (42).

inf - 'ganp "g*“p £ _ | 48

‘ 0 e v @
iSet F (o) =F (0610, tomer) = | gall o/ | al differentiate F («) with respect 10 o and set
a=a*, we have-a—lgéﬁl =0 for x=1,---, 2m+1. Then

J 9%(‘”) | g* (@) |**sgng” (w)d'v &2d, | oy | " lsgnal, x= 1 2m 2m,,

[ 9@ sgng@ao=0. (49)
From (18) we have o

| 9x@1F@) |7 sgn f @) do=rd - 1%, a=T zm‘

j 1#(0) | sgn f (@)dw=0. - S @
St H (s) = |f<w>|”-1sgnf<w>—ig (@) | sgng* (@), B L1, let
B~ 0.@)B@)do=a|5p(~ 1"~ ]| sgn .
If p>€ and |of| <1 (§=1, -, om), then H,(Hy, +-, Han)=2m; thoreby, 2m<
8| pela- ) B @, r><zo(L (o~ ) B (@)de I><;S’0(E(o), 1) =8,(F() =

9(), D<B:(¢(:) o *(+), I). Normalize {af}i" so that |af| <1 for all j and =
(-1~ Moreover, with no loss of generality, we assume that sgn &(y) =(—-1)! for

Y E Wi Yipr)- Then, 8,($(+) —¢*(+), I)<2m - 2; it 1eads to a oontradlc’olon 2m<
-9 m ~ 2, Thus we conclude n<<§. Since :

| F@ =13 (~1*9(@),

- -we have S =1 and the following

’ Theorem 3. Lot Fay, bo deﬁrned as én (40), (41). Then
ot (lgel o lall ) =

_ whefre n ts the number deﬁned in (14) (15)
' ‘We now deﬁne & class of funchions By

i : ﬁr._.{f f = W@, @ _L1 "‘P" p<1 f(B+h)==0}’
. swhere B is deﬁned.as in (10). We have the following - -
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. Theorem 4, If 1<p<oo then = |
Sans (B, L2(1)) =dan+(B;, L2(1)) =don-t <ﬁ L)), |
| b @ D) =M= @)
(@) Rom-1 Gs an optémal rank 2m —1 operator for Sam-1(B5, L*(I)), Rop-q s
Befined as in (22). | ~ B
(b) F 2m=Span{gdm=a2m+1 +2§ &5, 22m 0= } gs oﬁtémwl for b,‘,,,,-,(ﬁ_;, (D).
- (0) Zana=Span{Z: Z B, Z(@) =0, j=2, -, 2m} is optimal for d»-(By,
L’(I)) - .
(@) Xom- 1~Span{ur(wz ~y) - ur(wi—y), “ e (@am — ) — e (1~ 9)} G5 optimal
: f°"’ don-1 (B}, L2(I)),. |
 Proof From (29), (34), (21) and (22) we have ~ |
n>f;1§1;llf = Ron-1(f) | 5=>85m-1 (B}, L2(T)). 47y
From Theorem 3, :
- , b2m-1(Bm L9<L))>‘ﬂ _ ‘ v (48)
Then Theorem 4 follows from (47), (48) and Lemma 2 .4,

Let @4 be any point in the interval I,= «=1[¢, d]. The subclass BT of B' is defined!
by By'={f: f* gbs, cont. on I,= [e, d], f is periodic with pel'lOd H=d-g,
"f P 50,01, f (1) =0} where

ohasaa=([] lo@ ).

Set
. @1 —h, r even, o
=H/2 = b=ag+H
he s, o {wi-gzh,rodd .

~lglo=1915 c b3%< ’ [g(m)[f’dm) . Let B be defined a8 in (10) The subelass §* is

"deﬁned as in Theorem 4, Sinee each funotlon fin E” ! (orin E’) may be rega.l ded as

the function on the real lme and ||g||,, w0 =gl o1y thereby B 1-B;, we. thereforea
bave the following

Theorem 5. If 1<p<oo, then azm-1<Bf1 L2) = dg, 1 (B, L2) =g By,

L) =bgm.1 (Byt, L) = i f ls=2. The opt@mal subsg;ace and opemtoa”s are clesombed as in
Theorem 4. R -
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