HANKEL OPERATORS ON HARDY SPACES AND SCHATTEN CLASSES

ZHANG GENKAI (张根凯)*

Abstract

For a holomorphic function f on the unit ball B^N of \mathbb{C}^N , it is proved that the reduced Hankel operator R_f on Hardy space $H^2(B^N)$ is of Schatten class S_p for $p \ge 1$ if and only if f is in a corresponding Sobolev space.

§ 0. Introduction

Let $B=B^N$ be the open unit ball in \mathbb{C}^N with the normalized Lebesgue measure dm on it, and $S=\partial B^N$ the unit sphere with the normalized area measure $d\sigma$ on it. Denote by H(B) the set of holomorphic functions on B. Let $H^p=H^p(B)$ be the Hardy space, $p\geqslant 1$, and P be the orthogonal projection from $L^2(S, d\sigma)$ to H^2 . For $f\in H(B)$, the reduced Hankel operator R_f on H^2 is defined by

$$R_fg = Pfg$$
, $g \in H^2$, $fg \in L^2(S, d\sigma)$.

 R_f is conjugated linear, it can be defined to be linear, but we will adopt this definition. In [4] and [6], it was proved that R_f is bounded and compact if and only if $f \in BMOA$ and $f \in VMOA$, respectively, and R_f is Hilbert-Schmidt if and only if f is in a certain Sobolev space of holomorphic functions. Let S_p be the Schatten class of operators on a Hilbert space. Many authors have studied the problem of characterizing Hankel operators on various function spaces belonging to Schatten classes (see [8, 9, 11,15]). In this paper, using the methods originated from Peller [15], Rochberg [9], and developed by the author [12], we characterize those holomorphic functions f for which R_f are of Schatten classes S_p . As a consequence of our result, when N=1, we obtain the results of Peller and Rochberg. Our main result is the following

Theorem Let $f \in H(B), p \geqslant 1$. Then R_f belongs to the Schatten class S_p if and only if

$$\sum_{|\alpha|=N+1}\int_{B}\left|\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}\right|^{p}(1-|z|^{2})^{(p-1)(N+1)}dm(z)<\infty.$$

Manuscript received June 7, 1988. Revised December 31, 1988.

^{*} Institute of Mathematics, Fudam University, Shanghai, China.

§ 1. Notations and Preliminaries

1.1. Some inequalities

Let $\beta > -1$. Denote $dm_{\beta}(z) = C_{\beta}(1-|z|^2)^{\beta}dm(z)$, where C_{β} is a positive constant such that $m_{\beta}(B) = 1$. The weighted Bergman space $L_a^p(\beta)$ is the closed subspace of $L^p(B, dm_{\beta})$ consisting of analytic functions on B. Let $\rho(z, \omega)$ be the pseudohyperbolic distance between z and ω . For 0 < r < 1, let E(z, r) be the pseudohyperbolic ball with radius z and center r. Suppose s > 0. $\{a_n\}_1^{\infty}$, $\subset B$. If $\inf\{\rho(a_n, a_m\}, n \neq m\} \geqslant \varepsilon$, then $\{a_n\}$ is called ε separated. Let $0 < \delta < 1$. If

$$\bigcup_{n} E(a_{n}, \delta) = B,$$

then $\{a_n\}$ is called δ dense. If both are satisfied then $\{a_n\}$ is called an $s-\delta$ lattice. We have the following (see [7])

Lemma 1. Let $p \ge 1$, $\beta > -1$. Then there are sufficient small $\varepsilon, \delta > 0$, such that if $\{a_{k}^{\infty}\}$, is an $\varepsilon - \delta$ lattice, then

$$C\|f\|_{L^p_a(\beta)}^p \leqslant \sum_{k=1}^{\infty} |f(a_k)|^p (1-|a_k|^2)^{N+1+\beta} \leqslant C_1 \|f\|_{L^p_a(\beta)}^p$$

holds for all $f \in L^p_a(\beta)$, where the constants C and C_1 do not depend on f.

Remark. It is easy to check that Lemma 1 holds for all $f \in H(B)$, that is, the sum in the above inequality is finite if and only if $f \in L_a^p(\beta)$.

Define an operator T on $L^p(B, dm_{\beta_1})$ by the following

$$Tf(z) = \int_{B} \frac{|f(\omega)|}{|\langle 1 - \langle z\omega \rangle^{N+1+\beta}|} dm_{\beta}(\omega), z \in B.$$

Then we have ([2,7])

Lemma 2. Let
$$p \ge 1$$
, β , $\beta_1 > -1$. If $\beta + 1 > \frac{\beta_1 + 1}{p}$, then $||Tf||_{L^p(B, dm_{S_1})} \le C||f||_{L^p(B, dm_{S_1})}$.

1.2. Some formulae

In [14], Zhu studied the Gleason's problem in the Bergman spaces. We will extend Zhu's methods to the Hardy spaces setting.

Let $f \in H(B)$, $\alpha = (\alpha_1, \dots, \alpha_N)$, with each α_i being nonnegative integer, i. e. $\alpha \in \mathbb{Z}_+^N$, for $z = (z_1 \cdots z_N) \in B$, we will write $|\alpha| = \sum_{i=1}^N \alpha_i$ and

$$z^{lpha} = z_1^{lpha_1} \cdots z_N^{lpha_N}, \ rac{\partial^{|lpha|} f}{\partial z^{lpha}}(z) = rac{\partial^{|lpha|} f(z)}{\partial z_1^{lpha_1} \cdots \partial z_N^{lpha_N}},$$

where we let $\frac{\partial^0 f}{\partial z^0}(z) = f(z)$.

Let n be a positive integer and $g \in H(B)$. Then it holds that (by a direct calculation)

$$g(z) = \sum_{|\alpha| < n} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} g}{\partial z^{\alpha}} (0) z^{\alpha} + \sum_{|\alpha| = n} z^{\alpha} g_{\alpha}(z),$$

where

$$g_{\alpha}(z) = \int_0^1 \mathbf{s_1} \, d\mathbf{s_1} \int_0^1 \mathbf{s_2} \, d\mathbf{s_2} \cdots \int_0^1 \mathbf{s_{n-1}} d\mathbf{s_{n-1}} \int_0^1 \frac{\partial^{|\alpha|} g}{\partial z^{\alpha}} (\mathbf{s_1} \cdots \mathbf{s_n} z) d\mathbf{s_{n-1}} d\mathbf{s_n}$$

Assume further that $g \in L_a^q(\beta)$, $q \ge 1$. We can write

$$g(z) = \int_{B} \frac{g|\omega|}{(1-\langle z, \omega \rangle)^{N+1+\beta}} dm_{\beta}(\omega).$$

Direct computation shows that

$$\frac{\partial^{|\alpha|}g}{\partial z^{\alpha}}(0) = (N+1+\beta)\cdots(N+|\alpha|+\beta)\int_{B} \overline{w}^{\alpha}g(\omega)dm_{\beta}(\omega), \qquad (1.2)$$

$$g_{\alpha}(z) = \int_{B} \frac{\overline{w}^{\alpha} g(\omega) Q_{\alpha}(z\omega)}{(1 - \langle z, \omega \rangle)^{N+1+\beta}} dm_{\beta}(\omega), |\alpha| = n, \qquad (1.3)$$

$$\frac{Q_{\alpha}(z, \omega)}{(1-\langle z, \omega \rangle)^{N+1+\beta}} = C'_{\alpha} \int_0^1 ds_1 \cdots \int_0^1 s_{n-1} ds_{n-1} \int_0^1 \frac{1}{(1-s_1 \cdots s_n \langle z\omega \rangle)^{N+1+\beta+n}} ds_n, |\alpha| = n.$$

From these equalities we see that there hold $|Q_{\alpha}(z, \omega)| \leq C$, $|\alpha| = n$, and the following

Lemma 3. Let $\beta > -1$, q > 1 and n be a positive integer. Then for any $g \in L_a^q(\beta)$, written as above, we have

$$\left|\frac{\partial^{|\alpha|}g}{\partial z^{\alpha}}(0)\right| \leqslant C \|g\|_{L_{\alpha}^{q}(\beta)}, |\alpha| < n,$$

$$\|g_{\alpha}\|_{L_{\alpha}^{q}(\beta)} \leqslant C \|g\|_{L_{\alpha}^{q}(\beta)}, |\alpha| = n.$$

Let $f, g \in H(\beta)$. We define the pairing (f, g) by

$$(f, g) = \lim_{r \to 1} \int_{S} f(r\xi) \overline{g(r\xi)} d\sigma(\xi), \qquad (1.4)$$

if the limit exists.

Suppose $g \in L^q_a(n-1)$, q > 1. By Lemma 3 we have $g_a \in L^q_a(n-1)$, and thus

$$g_{\alpha}(z) = C_{n-1} \int_{B} \frac{g_{\alpha}(\omega) (1 - |\omega|^{2})^{n-1}}{(1 - \langle z\omega \rangle)^{N+1+n-1}} dm(z).$$
 (1.5)

Assume $f \in H^2$. Then

$$f(z) = \int_{S} \frac{f(\omega)}{(1 - \langle z\omega \rangle)^{N}} d\sigma(\omega).$$

Taking derivatives we have

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) = N(N+1)\cdots(N+|\alpha|-1)\int_{S} \overline{\omega}^{\alpha} f(\omega) d\sigma(\omega), \qquad (1.6)$$

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) = N(N+1)\cdots(N+|\alpha|-1)\int_{S} \frac{\overline{\omega}^{\alpha} f(\omega)}{(1-\langle z\omega\rangle)^{N+|\alpha|}} d\sigma(\omega). \tag{1.7}$$

Then by definition (1.4) and (1.5), (1.6), (1.7)

$$(f, g) = \sum_{|\alpha| < n} \int_{S} f(z) \frac{1}{\alpha!} \frac{\overline{\partial^{|\alpha|} g}}{\partial z^{\alpha}}(0) \overline{z}^{\alpha} d\sigma(z) + \sum_{|\alpha| = n} \lim_{r \to 1} r^{|\alpha|} \int_{S} f(rz) g_{\alpha}(rz) \overline{z}^{\alpha} d\sigma(z)$$

$$= \sum_{|\alpha| < n} C_{\alpha} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \frac{\overline{\partial^{|\alpha|} g}}{\partial z^{\alpha}}(0) + \sum_{|\alpha| = n} \lim_{r \to 1} r^{|\alpha|} \int_{S} f(rz) \overline{g_{\alpha}(rz)} \overline{z}^{\alpha} d\sigma(z).$$

However, we have for α , $|\alpha| = n$,

$$\int_{\mathcal{S}} \overline{z}^{\alpha} f(rz) \overline{g_{\alpha}(rz)} d\sigma(z)
= C_{n} \int_{\mathcal{S}} f(rz) \overline{z}^{\alpha} \int_{\mathcal{B}} \frac{\overline{g_{\alpha}(\omega)} (1 - |\omega|^{2})^{n-1}}{(1 - r\langle \omega, z \rangle)^{N+n}} dm(\omega)
= C_{n} \int_{\mathcal{B}} (1 - |\omega|^{2})^{n-1} \overline{g_{\alpha}(\omega)} dm(\omega) \int_{\mathcal{S}} \frac{f(rz) \overline{z}^{\alpha}}{(1 - r\langle \omega, z \rangle)^{N+n}} d\sigma(z)
= C_{\alpha} \int_{\mathcal{B}} (1 - |\omega|^{2})^{n-1} \overline{g_{\alpha}(\omega)} \frac{\partial^{|\alpha|} f_{r}(r\omega)}{\partial \omega^{\alpha}} dm(\omega),$$

where $f_r(\omega) = f(r\omega)$. So

$$\lim_{r\to 1} r^{|\alpha|} \int_{\mathcal{S}} z^{\alpha} f(rz) \ \overline{g_{\alpha}(rz)} \ d\sigma(z) = C_{\alpha} \int_{\mathcal{B}} (1-|z|^2)^{n-1} \ \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \ (z) \ \overline{g_{\alpha}(z)} \ dm(z)$$

if the integral in the right exists. Thus

$$(f, g) = \sum_{|\alpha| < n} C_{\alpha} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \frac{\overline{\partial^{|\alpha|} g}}{\partial z^{\alpha}}(0) + \sum_{|\alpha| = n} C_{\alpha} \int_{B} (1 - |z|^{2})^{n-1} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) g_{\alpha}(z) dm(z),$$

$$(1.8)$$

where C_{α} are positive constants.

1.3. Interpolation

Let (A_0, A_1) be a quasi-Banach couple, i. e. A_0 , A_1 are quasi-Banach spaces imbedded in a common quasi-Banach space. Let $0 < \theta < 1$. Denote by $(A_0, A_1)_{\theta}$ the interpolation space between A_0 and A_1 . Let H be a Hilbert space. Denote by B(H) and S_2 , p>0, the space of bounded operators on H and the Schatten class of operators on H, respectively. We let S_{∞} be the class of compact operators.

Let (X, μ) be a measure space. Then we have

Lemma 4. Let $1 \le p_0 . Then <math display="block">(S_{p_0}, S_{\infty})_{\theta} = (S_{p_0}, B(H))_{\theta} = S_p, (L^{p_0}(\mu), L^{\infty}(\mu))_{\theta} = L^p(\mu),$ where $\frac{1}{p} = \frac{1-\theta}{p_0}$ (see [3]).

§ 2. Sobolev Spaces of Holomorphic Functions

In this section, we define some spaces of holomorphic functions and identify their duals and preduals. We will use those results in Section 3 to study Hankel operators.

Let $\eta > 0$. Define

$$B_{\eta} = \{ f \in H(B), \|f\|_{B_{\eta}} = \sup_{z \in B} (1 - |z|^2)^{\eta} |f(z)| < \infty \}$$

and $B_{\eta,0}$ to be the closure in B_{η} of polynomials. For $p \ge 1$, let us also define

$$A_{p} = \left\{ f \in H(B), \|f\|_{A_{p}}^{p} = \sum_{|\alpha| \leq N+1} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \right|^{p} \right\}$$

$$+\sum_{|\alpha|=N+1}\int_{B}\left|\frac{\partial^{|\alpha|}f}{\partial z^{\alpha}}(z)\right|^{\mathfrak{p}}(1-|z|^{2})^{(N+1)(\mathfrak{p}-1)}dm(z)<\infty\Big\}.$$

In [4], a large class of Sobolev spaces of holomorphic functions, $W_{q,s}^{p}$, is defined,

$$W_{q,s}^{p} = \left\{ f \in H\left(B\right), \ \|f\|_{\mathfrak{g}, \ q, \ s} = \sum_{|\alpha| \leq s} \left\| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \right\|_{L_{\mathfrak{g}}^{p}\left(q-1\right)} < \infty \right\}.$$

Also recall that if $f \in H(B)$, $\beta > -1$, n is a positive integer, then $f \in L^p_a(\beta)$ if and only if $\frac{\partial^{|\alpha|} f}{\partial z^\alpha} \in L^p_a(\beta + pn)$ for all α with $|\alpha| = n$. (In [14], the result was proved for $\beta = 0$, it can be extended to any $\beta > -1$ by using much the same techniques, see [13]). Thus it is easy to see that with q = (N+1)(p-1), $|\alpha| = N+1$, $f \in W^p_{q+1,N+1}$ if and only if $\frac{\partial^{|\alpha|} f}{\partial z^\alpha} \in L^p_q(q)$, $|\alpha| = N+1$. So $A_p = W^p_{q+1,N+1}$, and their norms are equivalent. By Theorems 2.4, 2.5, and 2.7, we have, $f \in A_p$ if and only if for α , $|\alpha| = N+1$, $\frac{\partial^{|\alpha|} f}{\partial z^\alpha} \in L^p_a(q+p)$. We write it as a lemma,

Lemma 5. Let $p \gg 1$. Then

$$A_p = W^p_{(N+1)(p-1)+1,N+1} = W^p_{(N+1)(p-1)+p+1,N+2} \subset BMOA.$$

We now identify the predual of A₁.

Proposition 6. $A_1 = (B_{N,0})^*$. More precisely, if $f \in A_1$, $g \in B_{N,0}$, then (g, f) defined by (1.4) exists. and the pairing (g, f) for $f \in A_1$ and $g \in B_{N,0}$ gives an isomorphism between A_1 and $(B_{N,0})^*$.

Proof First we claim that

$$|(g, f)| \leq C ||g||_{B_N} ||f||_{A_1} \tag{2.1}$$

holds for all $f \in A_1$ and $g \in B_N$. So (gf), for $g \in B_{N,0}$, is a bounded linear functional on $B_{N,0}$. Let us prove (2.1). Since $g \in B_N \subset L^1_a(N)$, we have

$$g(z) = C_N \int_B \frac{g(\omega) (1 - |\omega|^2)^N}{(1 - \langle z\omega \rangle)^{2N+1}} dm(\omega).$$

Taking derivatives and also writing g as in (1.1), we have

$$\frac{\partial^{|\alpha|}g}{\partial z^{\alpha}}(0) = C_N(2N+1)\cdots(2N+|\alpha|)\int_B \overline{\omega}^{\alpha}g(\omega)(1-|\omega|^2)^N dm(\omega),$$

$$g_{\alpha}(z) = C_N\int_{B^N} \frac{g(\omega)\theta_{\alpha}(z\omega)(1-|\omega|^2)^N}{(1+\langle z\omega\rangle)^{2N+1}} dm(\omega), \ |\alpha| = N+1$$

with $|\theta_{\alpha}(z, \omega)| \leq C$, $z, w \in B$, $|\alpha| = N+1$. Thus we get

$$\sum_{|\alpha| < N+1} \left| \frac{\partial^{|\alpha|} g}{\partial z^{\alpha}}(0) \right| \leq C \|g\|_{B_N}, \tag{2.2}$$

and for α , $|\alpha| = N+1$,

$$|g_{a}(z)| \leq C \int_{B} \frac{(1-|\omega|^{2}|g(\omega)|}{|(1-\langle z\omega\rangle)|^{2N+1}} dm(\omega) \leq C ||g||_{B_{N}} \int_{B} \frac{1}{|(1-z\omega\rangle)^{2N+1}|} dm(\omega)$$

$$\leq C ||g||_{B_{N}} \frac{1}{(1-|z|^{2})^{N}},$$

where the last inequality is obtained by Proposition 1.4.10 in [10]. So we have

$$\sum_{|\alpha|=N+1} \|g_{\alpha}\|_{B_{N}} \leqslant C \|g\|_{B_{N}}. \tag{2.3}$$

By (1.8) (with n=N+1), it is easy to check that

$$|(f,g)| \leqslant C ||f||_{A_1} ||g||_{B_{R}}. \tag{2.4}$$

Thus (2.1) holds.

Now suppose $\varphi \in (B_{N,0})^*$. Noticing that if $g \in B_{N,0}$, then $\lim_{|z| \to 1} g(z) (1 - |z|^2)^N = 0,$

$$E = \{ (1 - |z|^2)^N g(z), z \in B | g \in B_{N,0} \} \subset C(\overline{B}).$$

Define a linear functional ψ on E by

$$\psi(g_1) = \varphi(g), \ g_1(z) = (1 - |z|^2)^N g(z), \ g \in B_{N,0}.$$

Then we see that $\|\psi\| = \|\varphi\|$. The Hahn-Banach theorem and the Riesz theorem then imply that there is a Borel measure μ on \overline{B} with $\mu(\partial B) = 0$ such that

$$\varphi(g) = \int_{B} (1 - |z|^{2})^{N} g(z) d\mu(z)$$

and $\|\mu\| = \|\phi\|$.

Define a function f by

$$f(z) = \int_{B} \frac{(1 - |\omega|^2)^N}{(1 - \langle z, \omega \rangle)^N} d\overline{\mu}(\omega). \tag{2.5}$$

Then $f \in H(B)$. Taking derivatives, we have

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) = N(N+1)\cdots(N+|\alpha|-1)\int_{B} \frac{\overline{\omega}^{\alpha}(1-|\omega|^{2})^{N}}{(1-\langle z,\omega\rangle)^{N+|\alpha|}} d\mu(\omega).$$

Thus

$$\sum_{|\alpha| < N+1} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \right| \leq C \|\mu\| = C \|\varphi\|,$$

and for α , $|\alpha| = N+1$,

$$\begin{split} \int_{B} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \left(z \right) \right| dm \left(z \right) & \leqslant C \int_{B} dm \left(z \right) \int_{B} \frac{\left(1 - \left| \omega \right|^{2} \right)^{N}}{\left| \left(1 - \left\langle z, \, \omega \right\rangle \right)^{2N+1} \right|} \, d\left| \mu \right| \left(\omega \right) \\ & \leqslant C \int_{B} \left(1 - \left| \omega \right|^{2} \right)^{N} d\left| \mu \right| \left(\omega \right) \int_{B} \frac{1}{\left| \left(1 - \left\langle z, \, \omega \right\rangle \right)^{2N+1}} \left| dm \left(z \right) \right| \\ & \leqslant C \int_{B} d\left| \mu \right| \left(\omega \right) = C \|\mu\| = C \|\varphi\|, \end{split}$$

where we have used Proposition 1.4.10 in [10], that

$$\int_{B} \frac{1}{|(1-\langle z,\omega\rangle)^{2N+1}} |dm(z)| \leq C \frac{1}{(1-|\omega|^{2})^{N}}.$$

So $f \in A_1$, and $||f||_{A_1} \leqslant C ||\varphi||$.

For any polynomials g, we have

$$\begin{split} \varphi(g) &= \int_{B} (1 - |\omega|^{2})^{N} g(\omega) d\mu \ (\omega) = \lim_{r \to 1} \int_{B} (1 - |\omega|^{2})^{N} g(r^{2}\omega) d\mu(\omega) \\ &= \lim_{r \to 1} \int_{B} (1 - |\omega|^{2})^{N} d\mu(\omega) \int_{S} \frac{g(rz)}{(1 - r\langle \omega, z \rangle)^{N}} d\sigma(z) \\ &= \lim_{r \to 1} \int_{S} g(rz) d\sigma(z) \int_{B} \frac{(1 - |\omega|^{2})^{N}}{(1 - r\langle \omega, z \rangle)^{N}} d\mu(\omega) \end{split}$$

$$=\lim_{r\to 1}\int_{S}g(rz)\overline{f(rz)}\,d\sigma(z)=(g,\,f).$$
 (2.6)

Since polynomials are dense in B_N , 0, and by (2.1), we see that holds for all $g \in B_{N,0}$ and $||f||_{A_1} \leq C ||\varphi||$. Again by (2.1), we have

$$C \|f\|_{A_1} \leq \|\varphi\| \leq C_1 \|f\|_{A_1}$$

This finishes the proof.

Proposition 7. $(A_1)^* = B_N$. More precisely, the pairing (f, g) for $f \in A_1$, $g \in B_N$, gives an isomorphism between $(A_1)^*$ and B_N .

Proof The inequality (2.1) implies that for every $g \in B_N$, (f, g) for $f \in A_1$ induces a bounded linear functional on A_1 . Thus $B_N \subset (A_1)^*$.

Now assume $\varphi \in (A_1)^*$. For every α , $|\alpha| = N+1$, we have

$$\left\{ rac{\partial^{|lpha|}f}{\partial z^lpha}, \ f\!\in\!A_1
ight\} \!\subset\! L^1_a(0)$$
 .

It is easy to see that there exist a set $\{d_{\alpha} \mid \alpha \mid < N+1\}$ of complex numbers and a set $\{\varphi_{\alpha}, \mid \alpha \mid = N+1\}$ of functionals on $L_{\alpha}^{1}(0)$, such that

$$\varphi(f) = \sum_{|\alpha| < N + 1} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \bar{d}_{\alpha} + \sum_{|\alpha| = N + 1} \varphi_{\alpha} \left(\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}\right)$$

with

$$\sum_{\alpha \mid 1 < N+1} |d_{\alpha}| + \sum_{|\alpha| = N+1} ||\varphi_{\alpha}|| \leq C ||\varphi||.$$

By the proof of Proposition 4.5 in [7], we see that there exists $\{h_{\alpha}, |\alpha| = N+1\} \subset B_{N}$, such that

$$\varphi_{\alpha}\left(\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}\right) = \int_{\mathbb{R}} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} (z) \overline{h_{\alpha}(z)} (1 - |z|^{2})^{N} dm(z), f \in A_{1},$$

with $C^{-1}\|\varphi_{\alpha}\| \leq \|h_{\alpha}\|_{B_N} \leq C\|\varphi_{\alpha}\|$.

Define a function g by

$$g(z) = \sum_{|\alpha| \le N+1} \frac{d_{\alpha}}{c_{\alpha}\alpha!} z^{\alpha} + \sum_{|\alpha| = N+1} \frac{1}{C_{\alpha}} z^{\alpha} h_{\alpha}(z),$$

where C_{α} are the constants in (1.8). By (1.8), we have

$$\varphi(f) = \sum_{|\alpha| < N+1} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \overline{d}_{\alpha} + \sum_{|\alpha| = N+1} \int_{B} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) \overline{h_{\alpha}(z)} (1 - |z|^{2})^{N} dm(z)
= \sum_{|\alpha| < N+1} C_{\alpha} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \overline{\frac{\partial^{|\alpha|} g}{\partial z^{\alpha}}}(0) + \sum_{|\alpha| = N+1} C_{\alpha} \int_{B} \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) \overline{g_{\alpha}(z)} (1 - |z|^{2})^{N} dm(z)
= (f, g)$$

and

$$C^{-1}\|g\|_{B_N} \leq \|\varphi\| \leq C\|g\|_{B_N},$$

where the first inequality is obtained by

$$||g||_{B_N} \leqslant C(\sum_{|\alpha| \leq N+1} |d_{\alpha}| + \sum_{|\alpha| = N+1} ||h_{\alpha}||_{B_N}) \leqslant C||\varphi||_{\bullet}$$

This completes the proof.

Theorem 1. For p>1,

$$\frac{1}{\alpha} + \frac{1}{p} = 1,$$

and $\mathbf{s} = qN - N - 1$, we have $A_p = (L_a^q(\mathbf{s}))^*$. More precisely, the pairing (g, f) for $f \in A_p$, $g \in L_a^q(\mathbf{s})$, gives an isomorphism between $(L_a^q(\mathbf{s}))^*$ and A_p .

Proof Suppose $f \in A_p$, and g is a polynomial. By Lemma 5, $f \in H^2$. Thus (g, f) exists. Writing g as in (1.1) and using Lemma 3, we have

$$\sum_{|\alpha| < N+1} \left| \frac{\partial^{|\alpha|} g}{\partial z^{\alpha}}(0) \right|^{q} + \sum_{|\alpha| = N+1} \|g\|_{L^{q}_{a}(s)}^{q} \leq C \|g\|_{L^{q}_{a}(s)}^{q}.$$

By (1.8) and the above inequality, and noticing that

$$N = \frac{(p-1)(N+1)}{p} + \frac{s}{q},$$

it is not difficult to check that

$$|(g, f)| = |(f, g)| \le C ||f||_{A_p} ||g||_{L_q^q(s)}.$$
 (2.8)

Since polynomials are dense in $L_a^q(s)$, we see that (f,g) exists for all $g \in L_a^q(s)$, and it defines a bounded linear functional on $L_a^q(s)$. Thus $A_p \subset (L_a^q(s))^*$.

Now suppose $\varphi \in (L_a^q(s))^*$. Theorem 2.1 in [7] then implies that there exists $h \in L_a^p(p-1)(N+1)$, such that

$$\varphi(g) = \int_{B} g(z) \ \overline{h(z)} (1 - |z|^{2})^{N} dm(z)$$

with

$$C\|\varphi\| \leq \|h\|_{L_{x}^{p}(g-1)(N+1)} \leq C_{1}\|\varphi\|.$$

Define a function f by

$$f(z) = \int_{\mathbf{B}} \frac{h(\omega) (1 - |\omega|^2)^N}{(1 - \langle z, \omega \rangle)^N} d_m(\omega).$$

Then $f \in H(B)$, and

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} = N (1+N) \cdots (N+|\alpha|-1) \int_{\mathbb{R}} \frac{\overline{\omega}^{\alpha} h(\omega) (1-|\omega|^{2})^{N}}{(1-\langle z,\omega\rangle)^{N+|\alpha|}} d_{m}(\omega).$$

Thus by Lemma 3, we have $f \in A_{\nu}$, and

$$||f||_{A_{p}}^{p} = \sum_{|\alpha| < N+1} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} (0) \right|^{p} + \sum_{|\alpha| = N+1} \left\| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \right\|_{L_{p}^{p}((p-1)(N+1))}^{p}$$

$$\leq C ||h||^{p} L_{2}^{p}((p-1)(N+1)) \leq C ||\varphi||^{p}.$$

Morever, for any polynomial g,

$$\begin{split} \varphi(g) &= \int_{B} g(z) \, \overline{h(z)} \, (1 - |z|^{2})^{N} dm(z) \\ &= \lim_{r \to 1} \int_{B} g(r^{2}z) \, \overline{h(z)} \, (1 - |z|^{2})^{N} dm(z) \\ &= \lim_{r \to 1} \int_{B} \overline{h}(z) \, (1 - |z|^{2})^{N} dm(z) \int_{S} \frac{g(r\omega)}{(1 - \langle rz, \, \omega \rangle)^{N}} \, d\sigma(\omega) \\ &= \lim_{r \to 1} \int_{S} g(r\omega) d\sigma(\omega) \int_{B} \frac{\overline{h}(z) \, (1 - |z|^{2})^{N}}{(1 - \langle rz, \, \omega \rangle)^{N}} \, dm(z) \\ &= \lim_{r \to 1} \int_{S} g(r\omega) \, \overline{f(r\omega)} \, d\sigma(\omega) = (g, f). \end{split}$$

Thus, since polynomials are dense in $L_a^p(p-1)(N+1)$, and by (2.8), we have $\varphi(g) = (g, f)$ for all $g \in L_a^p((p-1)(N+1))$. Furthermore

$$C\|\varphi\| \leq \|f\|_{A_p} \leq C_1\|\varphi\|.$$

This finishes the proof of the theorem.

§ 3. The Reduced Hankel Operators

In this section, we will prove the main theorem of the paper.

Let $f \in H(B)$, and R_f be the reduced Hankel operator on H^2 . For an operator A on a Hilbert space, we will denote by $||A||_p$ its norm in S_p .

Theorem 2. Let $f \in A_1$. Then $R_f \in s$, and $||R_f||_1 \leq C||f||_{A_1}$.

Proof By the proof of Proposition 4.5 in [7], we can find a δ dense sequence $\{a_n\}_{n=1}^{\infty} \subset B$, such that

$$||g||_{B_N} \leqslant C \sup_{n} |g(a^n)(1-|a_n|^2)^N|$$
 (3.1)

holds for all $g \in B_N$.

Define an operator $T, B_{N,0} \rightarrow l^{\infty}$, by

$$Tg(h) = (1-|a_n|^2)^N g(a_n), g \in B_N, 0.$$

Notice that for every $g \in B_{N,0}$, $\lim_{n\to\infty} (1-|a_n|^2)^N g(a_n) = 0$. Thus $T:B_{N,0}\to l_0^\infty$, where $l_0^\infty=$

 $\{\{a_n\}_1^{\infty}, \lim a_n=0\}$. Then (3.1) implies that

$$C\|g\|_{B_{N,0}} \leq \|Tg\| \leq \|g\|_{B_{N,0}}$$

Thus T is bounded and bounded below. So $T^*: l' = (l_0^{\infty})^* \rightarrow A_1 = (B_N, 0)^*$ is onto. Similar arguments as in [11] and [7] imply that for every $\{C_n\}_1^{\infty} \in l'$,

$$T^*\{C_n\}(z) = \sum_{n=1}^{\infty} C_n \frac{(1-|a_n|^2)^N}{(1-\langle z, a_n \rangle)^N}.$$

Let $K_a(z) = \frac{1}{(1-\langle z, a \rangle)^N}$. Then $R_{K_a} = K_a \otimes K_a$, where

$$K_a \otimes K_a(g) = (K_a, g)K_a, g \in H^2$$
.

In fact, if $g, h \in H^{\infty}$, we have

$$(R_{K_a}g, h) = (PK_a\bar{g}, h) = (K_a\bar{g}, h) = (K_a, gh) = \bar{g}(a)\bar{h}(a)$$

= $((K_ag)K_a, h) = (K_a \otimes K_a(g), h).$

Because H^{∞} is dense in H^2 , we have $R_{K_a} = K_a \otimes K_a$, and $||R_{K^2}||_p^2 = \frac{1}{(1-|a|^2)^{\frac{n}{2}}}$, $p \ge 1$.

Now let $f \in A_1$. Then there exists $\{O_n\}_1^{\infty}$, $\in l'$, such that $f = T^*\{O_n\}$, i.e.

$$f = \sum_{n=1}^{\infty} C_n (1 - |a_n|^2)^N K_{a_n}.$$

Thus

$$R_{j} = \sum_{n=1}^{\infty} C_{n} (1 - |\alpha_{n}|^{2})^{N} K_{k_{n}} \otimes K_{k_{n}}$$

and

$$||R_f||_1 \leqslant \sum_{n=1}^{\infty} |C_n| < \infty.$$

That is, $R_f \in S_1$

$$||R_f||_1 \le ||\{O_n\}||_{l'} \tag{3.2}$$

for every $\{O_n\}_1^{\infty}$, such that $f = T^*\{O_n\}$. Since $A_1 = T^*l'$, we have $A_1 \cong l'/\text{Ker } T^*$. So for every $f \in A_1$,

$$(\|f\|_{A_1} \leq \inf\{\|a\|_{l'}, T_a = f\} \leq C_1 \|f\|_{A_2}$$

By (3.2), we have $||R_f||_1 \leq C||f||_{A_1}$. This proves the theorem.

The Hardy space H^2 has an orthonormal basis $\{e_a, \alpha \in Z_+^N\}$, $e_\alpha = b_\alpha z^\alpha$,

$$b_{\alpha} = \frac{(n+|\alpha|-1)!}{\alpha!(n-1)!}.$$

Let us define a linear map W, $S_{\infty} \to H(B)$. For an operator T on H^2 such that except for finite numbers of indices α , β , $(Te_{\alpha}, e_{\beta}) = 0$, we let

$$\omega T(z) = \sum_{r \in Z_x^r} \sum_{\alpha + \beta = r} b_{\alpha} b_{\beta} (Te_{\beta}, e_{\alpha}) z^r, z \in B.$$
 (3.3)

Then direct computation shows that

$$\operatorname{tr} (TR_{\varphi}) = (\varphi, \, \omega T), \tag{3.4}$$

where $(\varphi, \omega T)$ is defined by (1.4). The following proposition ensures that ωT can be defined for all $T \in S_{\infty}$.

Proposition 8. Let q>1. Then ω , $S_q \rightarrow L_q^*(qN-N-1)$ is continuous.

Proof Recall that for $\varphi \in H(B)$, R_{φ} is compact if and only if $\varphi \in VMOA$ and $||R_{\varphi}|| \sim ||\varphi||_{VMOA}$. Then by (3.4) we have

$$|(\varphi, \omega T)| = |\operatorname{tr}(TR_{\varphi})| \leq ||T||_1 ||R_{\varphi}|| \leq C ||T||_1 ||\varphi||_{VMOA}.$$

Since $(H^1)^* = VMOA$, we have

$$\|\omega T\|_{H^1} \leqslant C\|T\|_1. \tag{3.5}$$

Similarly, using Proposition 7 that $B_N = (A_1)^*$ and Theorem 2, we have

$$\|\omega T\|_{\mathcal{B}_{N}} \leqslant C\|T\|. \tag{3.6}$$

Thus ωT can be defined for all compact operators T, since T can be approximated by finite rank operators. Thus we have proved that

$$\omega, S_{\infty} \rightarrow B_N, S_1 \rightarrow H^1 \tag{3.7}$$

is continous.

By Theorem 2.5 in [4], for every $f \in H^1$ and α , $|\alpha| = 1$, $\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \in L^1_a(0)$,

$$\int_{B} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) \right| dm(z) \leqslant C \|f\|_{H^{1}}. \tag{3.8}$$

On the other hand, if $f \in B_N$, then we can write

$$f(z) = C_N \int_B \frac{f(\omega)(1-|\omega)|^2)^N}{(1-\langle z, \omega \rangle)^{2N+1}} dm(\omega).$$

Thus for α , $|\alpha|=1$,

$$\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z) = (2N+1)C_N \int_B \frac{f(\omega)(1-|\omega|^2)^N}{(1-\langle z\omega \rangle)^{2N+2}} dm(\omega).$$

Then by Proposition 1.4.10 in [10], it holds that

$$\left|\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(z)\right| \leq |C||f||_{B_N} \int_{B} \frac{1}{\left|\left(1 - \langle z\omega \rangle\right)^{2N+2}\right|} dm(\omega)$$

$$= C||f||_{B_N} \frac{1}{\left(1 - |z|^2\right)^{N+1}}.$$

So

$$\left\| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \right\|_{B_{N+1}} = \sup_{z \in B} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} (z) (1 - |z|^2)^{N+1} \right| \leqslant C \|f\|_{B_N}. \tag{3.9}$$

Let μ be the measure on B defined by $d\mu(z) = (1 - |z|^2)^{-N-1} dm(z)$. We define maps U_{α} , $T \rightarrow \frac{\partial^{|\alpha|}(\omega T)}{\partial z^{\alpha}}(z) (1 - |z|^2)^{N+1}$. Then for α , $|\alpha| = 1$, (3.5) - (3.9) imply that U_{α} , $S_{\infty} \rightarrow L^{\infty}(\mu)$, $S_1 \rightarrow L^1(\mu)$ is continuous. Thus

$$U_{\alpha}. S_q = (S_1, S_{\infty})_{\theta} \rightarrow L^q(\mu) = (L^1(\mu), L^{\infty}(\mu))_{\theta}, \frac{1}{q} = 1 - \theta$$

is continuous, that is,

$$\int_{\mathbb{B}} \left| \frac{\partial^{|\alpha|}(\omega T)}{\partial z^{\alpha}}(z) \right|^{q} (1-|z|^{2})^{q(N+1)-(N+1)} dm(z) \leqslant C \|T\|_{S_{q}}.$$

By Theorem 2.5 in [4] (see also [13]), we have for all $T \in S_q$, $\omega T \in L_a^q(qN - N - 1)$. So ω , $S_q \rightarrow L_a^q(qN - N - 1)$ is continuous. Therefore

$$\|\omega T\|_{L^q_a(qN-N-1)} \leq C \|T\|_q.$$

This proves the proposition.

Theorem 3. If $\varphi \in A_p$, p > 1, then $R_{\varphi} \in S_p$

Proof Suppose $\varphi \in A_p$, $\frac{1}{p} + \frac{1}{q} = 1$. Then by (3.4), Proposition 8 and Theorem 1, we have

$$|\operatorname{tr}(TR_{\varphi})| = |(\varphi, \omega T)| \leq C \|\varphi\|_{A_{\varphi}} \|\omega T\|_{L_{\alpha}^{2}(qN-N-1)} \leq C \|\varphi\|_{A_{\varphi}} \|T\|_{q}.$$

Since $(S_q)^* = S_p$, we have $R_p \in S_p$ and $\|R_p\|_p \leqslant C \|\varphi\|_{A_p}$. This proves the theorem.

Theorem 4. Let $p \ge 1$, If $R_{\varphi} \in S_p$, then $\varphi \in A_p$.

Proof Assume $R_{\varphi} \in S_p$, $p \geqslant 1$, so R_{φ} is compact and $\varphi \in VMOA$. For any α , $|\alpha| = N+2$, we will prove that $\frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \in L_a^p((p-1)(N+1)+p)$, i. e.

$$\varphi \in W^p_{(p-1)(N+1)+p+1, N+2}$$

By Lemma 5 we have $\varphi \in A_p$.

By Lemma 4, we can find sufficient small ε , $\delta > 0$ and an $\varepsilon - \delta$ lattice $\{a_n\}_{n=1}^{\infty} \subset B$, such that for all $f \in H(B)$,

$$\sum_{n=1}^{\infty} |f(a_n)|^2 (1-|a_n|^2)^{N+2} \leqslant O_{B} |f(z)|^2 (1-|z|^2) dm(z), \qquad (3.10)$$

$$\int_{B} |f(z)|^{p} (1-|z|^{2})^{(p-1)(N+1)+p} dm \ (z) \leq C \sum_{n=1}^{\infty} |f(a_{n})|^{p} (1-|a_{n}|^{2})^{p(N+2)}.$$
 (3.11)

Also recall that if $f \in H^2$, then for α , $|\alpha| = 1$, $\frac{\partial^{|\alpha|} f}{\partial x^{\alpha}} \in L_a^2(1)$, and

$$\sum_{|\alpha|=1} \int_{B} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}} \right|^{2} (1-|z|^{2}) dm(z) \leqslant C \|f\|_{H^{s}}$$
(3.12)

(see Theorem 2.5 in [4]).

Now fix α , $|\alpha| = N+2$. Let γ , ν , $\tau \in \mathbb{Z}_+^N$ such that $|\gamma| = |\nu| = 1$, $\alpha = \gamma + \nu + \tau$. Define two operators T_{γ} , T_{ν} , $l^2 \rightarrow H^2$ by

$$T_{\mu}e_{n}(z) = \frac{z^{\mu}(1-|a_{n}|^{2})^{(N+2)/2}}{(1-\langle za_{n}\rangle)^{N+1}}, \ \mu=\gamma, \ \nu,$$

wh $\}_1^{\infty}$ is an orthonormal basis of l^2 . Let us also define an operator S_{τ} on H^2 by $S_{\tau} f(z) = z^{\tau} f(z)$, $f \in H^2$.

We claim that T_{γ} , T_{ν} are bounded. In fact, if $f \in H^{\infty}$, then

$$f(n) = (T_{\nu}^{*}f, e_{n}) = (f, T_{\nu}^{e_{n}})$$

$$= \int_{S} f(z) \frac{\bar{z}^{\nu}(1 - |a_{n}|^{2})^{(N+2)/2}}{(1 - \langle a_{n}, z \rangle)^{N+1}} d\sigma(z)$$

$$= \frac{1}{N \cdots (N + |\nu| - 1)} \frac{\partial^{|\nu|} f}{\partial z^{\nu}} (a_{n}) (1 - |a_{n}|^{2})^{(N+2)/2}.$$

So by (3.10), we have

$$\sum_{n=1}^{\infty} |T_{\nu}^{*}f(n)|^{2} = \sum_{n=1}^{\infty} \frac{1}{N^{2} \cdots (N+|\nu|-1)^{2}} \left| \frac{\partial^{|\nu|}f}{\partial z^{\nu}}(a_{n}) \right|^{2} (1-|a_{n}|^{2})^{n+2}$$

$$\leq C \int_{B} \left| \frac{\partial^{|\nu|}f}{\partial z^{\nu}}(z) \right|^{2} (1-|z|^{2}) dm(z) \leq C \|f\|_{H^{2}}.$$

So T_{ν}^{*} , consequently, T_{ν} is bounded. Similarly T_{γ} is bounded.

Because $\varphi \in VMOA \subset H^2$, we can write

$$\varphi(z) = \int_{S} \frac{\varphi(\omega)}{(1 - \langle z\omega \rangle)^{N}} d\sigma(\omega).$$

Taking derivative, we see that

$$(1 - |\alpha_n|^2)^{N+2} \frac{\partial^{|\alpha|} \varphi}{\partial z^{\alpha}} (\alpha_n) = N \cdots (N + |\alpha| - 1) (1 - |\alpha_n|^2)^{N+2} \cdot \int_{S} \frac{\overline{\omega}^{\alpha} \varphi(\omega)}{(1 - \langle z\omega \rangle)^{2N+2}} d\sigma(\omega)$$

$$= N \cdots (N + |\alpha| - 1) (T_{\gamma}^* R_{\alpha} S_{\tau} T_{\nu} e_n, e_n). \tag{3.13}$$

Since $R_{\varphi} \in S_{\mathfrak{p}}$, we have $T_{\gamma}^* R_{\varphi} S_{\tau} T_{\nu} \in S_{\mathfrak{p}}$ and

$$\sum_{n=1}^{\infty} \left| \left. (T_{\gamma}^* R_{\varphi} S_{\tau} T_{\nu} e_n, e_n \right) \right|^{g} \leq \|T_{\gamma}\|^{g} \|T^{\nu}\|^{g} \|S_{\tau}\|^{g} \|R_{\varphi}\|_{g} < \infty.$$

By (3.11) and (3.13), it follows that

$$\int_{B} \left| \frac{\partial^{|\alpha|} \varphi}{\partial z^{\alpha}}(z) \right|^{p} (1 - |z|^{2})^{(p-1)(N+1)+p} dm(z)$$

$$\leq C \sum_{n=1}^{\infty} \left| \frac{\partial^{|\alpha|} \varphi}{\partial z^{\alpha}}(a_{n}) \right|^{p} (1 - |a_{n}|^{2})^{p(N+2)} \leq C \|R_{\varphi}\|_{p}^{p} < \infty.$$

Thus $\frac{\partial^{|\alpha|}\varphi}{\partial z^{\alpha}} \in L^p_a((p-1)(N+1)+p)$. This proves the theorem.

Combining Theorems 2, 3, and Theorem 4, we have proved our main theorem. Theorem 5. Let $f \in H(B)$, $p \ge 1$. Then $R_f \in S_p$ if and only if $f \in A_p$.

Acknowledgement. I would like to thank Professor Yan Shaozong for useful encouragement and advice. I am also grateful to Professor Richard Rochberg and Professor Kehe Zhu for giving me copies of their work.

References

- [1] Axler, S., Bergman spaces and their operators, manuscript, lecture in Sichuan Univ. China, 1985.
- [2] Békollé, Inégalités à poids le projecteur de Bergman dans la boule unité de Cⁿ, Studia Math., 71(1982), 305-323.
- [3] Bergh, J. & Lofstrom, J., Interpolation spaces, An introduction, Springer Verlag, New York, 1976.
- [4] Burbea, J., Boundary behaviour of holomorphic functions in the ball, Pacific J. of Math., 127: 1(1987), 1—17.
- [5] Coifman, R. & Rochberg, R., Representation theorems for holomorphic and harmonic functions, Asterisque, 77 (1980), 11-65.
- [6] Coifman, R., Rochberg, R.& Weiss, G., Factorization theorems for Hardy spaces in severial variables, Ann. Math., 103, 611—635.
- [7] Lucking, D. Representaion and duality in weighted spaces of analytic functions, *Indiana Univ.* Math. J., 34: 2(1985), 319—336.
- [8] Peetre, J. & Svensson, E., On the generalized Hardy's inequality of Mcghee, Pigno and Smith and the problem of interpolation between *BMO* and a Besov space, *Math. Scand.*, **54**(1984), 221—241.
- [9] Rochberg. R., Trace ideal criteria for Hankel operators and commutators, *Indiana Univ. Math. J.*, 31(1982), 913—925.
- [10] Rudin, W., Function theory in the unit ball of Cn, Springer Verlag, New York, 1980.
- [11] Zhang, Genkai, Schatten-Von Nenmann classes and Hankel operators on weighted Bergman spaces, preprint.
- [12] Zhang Genkai, Hankel operators on the Bergman spaces, function spaces and Schatten classes, preprint.
- [13] Zhang Genkai, The Sobolev spaces and weighted Bergman spaces of holomorphic functions, preprint.
- [14] Zhu Kehe, The Bergman spaces, the Bloch space and Gleason's problem, preprint.
- [15] Леплер, В. В., Олераторы танкеля власса ©, и их приложения, Матем. сборник. Том 113, Выл. 4, 538—581.