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HANKEL OPERATORS ON HARDY SPACES AND
SCHATTEN CLASSES

ZuAnG GENRATI  (FRAR L) *

Abstract

For a holomorphic function f on the unit ball BY of €¥, it is proved that the
reduced Hankel operator B, on Hardy space H2(BY) is of Schatten class'S, for p>1 if
and only if f is in & corresponding Sobolev space.

§ 0. Introduction

TLet B=BY be the open unit ball in C¥ with the normalized Lebesgue measure

dm on it, and §=8B¥ the unil sphere with the normalized area measure do on it.

Denote by H (B) the set of holomorphic functions on B, Let H?=H?(B) be the
Hardy spaoce, j)>1, and P be the orthogonal projection from L*(S, do) to H2. For
JEH(B), the reduced Hankel operator R; on H? ig defined by

- Rig=Pfg, gc H?, fg€ L*(8, do).

B; is conjugated linear, it can be defined to be linear, but we will adopt this

definition, In [4] and [6], it was proved that R; is bounded and compact.if ahd
onlyif f€ BMOA and f€ VMOA, respectively, and Ry is Hilbert-Schmidt if and

only if fisin a certain Sobolev space of holomorphic functions. Let S, be the

Sohatten olags of operators on a Hilbert space. Many authors have studied the
‘problem of characterizing Hankel operators on various function spaces belonging
to Schatben classes (see [8, 9, 11,15]). In this paper, using the methods originated
from Peller #51, Rochberg ®)and developed by the authort®, we characterize _thosé
holomorphic functions f for whioch Ry are of Schatten olasses §,. As a consequence
of our result, when N=1,we obtain the results of Peller and Rochberg. Our main
result is the following o '
Theorem Let fE€ H(B),p=1. Then R, belongs to the Schatten class S, &f and
~only &f
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§ 1. Notations and Prelimina’ries

1.1. Some ihequa,litiés
Let B> -1. Denote dmg(z)=0s(1— |2]2)8dm(z), where Op is o positive
oonstant suc h that tm,,g(B) =1. The weighted Bergman space Lf(8) is the olosed

subspace of L?(B, dmg) consisting of analytio funcbions on B. Leb p(z, ») be the

.pseudohyperhbolio distance between z and w. For 0<r<1, 1ot H(z, r) be the
~pseudohyperbolic ball with radius # and center 7. Suppose ¢>0. {a,}37, <B. If
inf{o(@n, Gm}, n#m}>>¢, then {a,} is called ¢ separated. Let 081, If

U B(an3)=

‘bhen {a,,} ig'called & dense. If both are sa’olsﬁed then {w,,} is called an 8—8 Iattice,

"We have the follovvmg (see [7])
Lemma 1. Let p=>1, B> -1, Then there are sufficient small 8,530, such thw# of.

{dm}, 4s an §—0 .latt@ce then
Ol 2, <2 [F(aw) (L - | D)< O 12,
Jholds for all € LE(B), where the constants O and Oy do not depend on f.
Remark. It iseasy to check that Lemma 1 holds for all f&€ H(B), that is,
‘the sum in the above inequality is finibe if and only if f€ L:(B). '
Define an operator T' on L?(B, dms,) by the following

- Tr@=], Kl_‘!.fz(g)ﬂ.'_ﬂwl dma(),2€ B.

*Then we have ™ .
Lemma 2. Iet p>1, 6, B> —1. It B+1> /31; then

NS | zoczy amap <ONS | ocBs dmayy-
1.2. Some formulas .
In [14], Zhu studied the Gleason’s problem in the Bergman spaces. We will

extend Zhu's methods o the Hardy spaces sebting. .
Let f€ H(B), a= (061, ey Oy), w1th each «; being nonnega,tlve integer, i. e,

N

@€ ZY, for o= (21°-+2x) € B, We will write |a= 20&, and
lol : lal
N 9 f( )._ 0 f(Z)

RN g p oy

2% =g

“where. we let (z) f(z)

Let n'be & posﬂnve mteger and gcH (B) Then i holds thatb (by a du:eot '

- !0&10111&171011)
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3lalg

(2),

a<

EEORD-R

where

1 h 1 alal 9
9.(%) =J S dsij szdsz---f s,,_lds,,_l (s1° s,,z)dsM
Assume further that gELq (B, g>1 We can erte

9(z) = f (1-<z, I$>!>N+1+ﬁ dma(w).

Direct computamon shows that

2°9 (0) - (4148 (N + o +8) | W@)im), (L3
0| EED i i a0
. Qa(zr ) =) 1 —
(1'_<z w;;'N'i"l-l-ﬁ OI dsy- J‘ Sn-ldS”_J (1 P S,.<Za)>)N+1+’9+” ds,., [al ",
From these equalities we see that there hold |Qu(z w)|<O, |« o|=n, and the

following
Lemma 3. Let B>~1, ¢>1 and n be a positive integer. Then for any g€
LE(B), written as above, we have :

|} <n, -

9ol sy <Ol gl 258y, || =n.
Let £, gEH (8). We define the pairing (f, ¢) by | |
(f, = hmf [EOTE ),

if the hmlt exists,
Suppose g€ I¢(n—1), ¢>1. By Lemmnia 3 we have ga,ELq(rn,-—l), and thus

9:(®) = O 9‘&‘? fi} >)' @07 am(). (1.5)

| Assume f€ H 2 Then

f(w) _
(z) f (1 (z o) ot do ().

Taking denvahves we have

-1) J Sf(@ido@), | (1.6)
L () =N (N +1)~ (N + a 1>I . “ngg‘;’?m. do@). @)

Then by deﬁnltlon . 4) and (1 5) (1 6) @) ,
o3  J s #ao® + 2 limrie [ f(re)ga(re)itdate)

= 20 al lf (0) am!g (O)+ 2 ]_ilmqnlalj f(rz) ga('I'Z)z“ do.(,).’:; ‘ i

lal <n al =n -1
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However, we havé for a, |a| =mn, _
| LE“f(m) Gare) do () |
_6l teyze [ ge(@) A=]o|®) "
O"Js‘ﬂm)z JB v(l—-r(co, gy )Ntn dm () N )
~0,[ @-lol)™ %@ am(@) [, 1= {:E”:)Z»m do (@)

=0t i ol i) 2L am(a),

where f,(@) =f(rw). So , A _
- lim j 25 f(r) ga(re) do(2) = oc,j - e~ 2L 9~ f @) 7o) dm()

r-1

if the 1n1;egra1 in the rlght ex1s’ﬁs ‘Thus

4 9= 2.0 ZL02 O+ o, a- iy G 9L @ guleyam(@),
| - : | o @.8)

-where O, are positive constants,

1.3. Interpolation

Lot (4,, A1) be a qua51~Banach ocouple, i. e. Ao, A1 are qua,sn—Ba'na,oh gpaces
4mbedded in a coramon guasi-Banach space. Let 0<6<1. Denote by (4o, A1)s the
interpolation space between A, and 4;. Let H be a Hilbert space, Denote by
B(H) and 8,, p>0, the space of bounded operators on H and the Schatten class of
operators on H, respectively. We let 8., be the class of compact operators..
- Let (X, u) be a measure space. Then we have - -

Lemma 4.  Let 1< pp<p<oo, Then

(S0 Se)o= (85 BCH))o=8 (L”"(M), L”(Lb))e—L"(ﬂb),

. 1 1-6
where —= 31).
° " (see [3])

§ 2. Sobolev Spaces of Holomorphie Functions

In this section, we define some Spaces of holomorphle functions and identify
their duals and preduals. We will use those results in Seotion 3 to study Hanlkel
operators. '

Let n>0. Define

B {fEH(B), IIfIIB,,-suP(l 12197 £@)] <°°}
end Bﬂ,o to be the closure in B, of polynomials, For p>1 let us also deﬁne
4,={ reE®), 1fl2= <0>|

laI<N+1!
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In[4], a large olass of Sobolev spaces of holomorphlc functions, W,,, is defined,

o= {7€ B @, 1110 0= 3| 2L |0 <eo).

ol <s 6z"‘ l
Also recall that if f& H (B), B> ~1, n is a positive mteger then f& Li(B) if and

only if f €L3(B+pn) for all o Wlﬁh || =n. (In [14], the result was proved for'

B=0, it can be extended to any B8>—1 by using much the same techniques, see-.
[13]). Thus it is easy to see that with g=N+1)(p-1), |a|=N+1, fc Weiivet

if and only if a—-I.EL”(g) [a| =N+1. So Ay=W3,1,y41, and their norms are
equivalent. By Theorems 2.4, 2.5, and 2 7, we have, f € 4, if and only if for «, |}

=N+1, o fEL”(g+p) We  write it as a lemma,

Lemma, b. Let p=>1, Then
A,= W(N+1)(p—1)+1 N1 'f“W(N+1)(p_1)+p+1 N+2CBM0-A-
We now identify the predual of A,. o -
Proposition 6. A= (By,0)*. More precisely, if fE€Ay, gEBy,o, then (g9, )
defined by (1.4)ewists. and the pairing (g, f) for f€A; and ¢gEBy,, gives an
dsomorphism between Ay and (Bu,o)*.
 Proo f TFirst we olaim that

1(g ) |<Ollgllayllfl|4. - ' (2.1)
- holds for all f& A, and g€ By. So (gf), for g€ By,o, 18 a bounded lmear functional

on By,o. Let us prove(2.1). Since g€ By Li(N), we have

| g(2) =0y g -‘7((;’)_ <<J“zw>l>w}m dm(w).

Taking deriva’oiVes and also writing g as in (1.1), we have

L ©) = Ox(@N 1)+ 2N+ [a]) | Fg(@) (L - |o*) Yim(w),

az“
v 8. 1— ¥
ga<z>=on3}<‘°)@§?§"2€§>)2#1" 22 (@), |a] =N+
with [0a(2, ) | <O, 2, wE€B, |a| =N+1, Thus we got |

alalg A |
lof<v+1| OB% (O) l <O"g“Bm ) : (2 .2)3
end for &, |a]=N41, - _

001 <0f, fEleE @ am <0l

=) 7 on(e)

<O 9" BNWW,

(1 P O)>) 2N+1 l

" where ’ahe last ineqality is obtained by Proposﬂuon 1.4.10 in [10], So we have
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3 lgln<Olgls,, (2.8)

=1

By (1.8) (with n=N-+1), it is easy to check that

Thus (2.1) holds.
Now suppose q)E (Bx,0)*- Notlcmg that if gEBN o, then
i () (1~ |2]2)¥ =0,

E={(1- I,zlz)”g(z},ZEBIQEBN,O}CO'(B').-
Define & linear functional ¢ on H by
() =p(@), 910 = (1~ [#)79(), g€ Bro
Then we see that || =]e[. The Hahn-Banach theorem and the Riesz theoremy
then imply that there is a Borel measure u on _E with w(8B) =0 such that

o) =, @~ 21" g@au @

and Jul =1l

Define a function f by _ : »
—|o)" 1w @5

F@ = sy - @)

Then fEH (B) Takmg derivatives, we have

9 (2 =N (W +1) o W+ o] =1} L ION

Thus _
=0lel,

ol <N +1

and for &, |a| =N-+1,
2)N

J ‘ s ‘f ® ‘dm(z)<0 dm(z}j l(l |wl>)2N‘+1l' d|w] (@)

<0 -B —|o|*)¥d| ] (w)J‘B l(1_<z?—;)>)21v+'1 ld;m(f«’)’

Y

<o d|m<w>‘—ouml—ou¢n,

where we have used Pro;;osuhon 1 4.10 in [10], that

1 1 '
JsTa=g ey 19O <0 o

SO FE Ay, ond | f] <Olel.
For any polynomials g, we have

o) =] (A o[ (@)du (@) =lm( (1= o) 7g(r)du(s)
: 12\ ¥ (re) . oy
eyfgha— R O e s do ()

—iim| oo @) [, g 2R o)

() 9) | <OWflalglz, (2.4)
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~lim[ TG d@=(g, . | (2.6)

Smce polynomlals are dense in By, o, and by (2.1), we see thab holds for all 9
By, and ||f||4,<0l|¢)]| Again by (2.1), we have
0||f"4a<"¢’"<01"f"4: | o

This finishes the proof.
Proposrtmn 9. (4. *=By. More precisely, the pwm*mg (f, o) for feAi, g€

.BN, gives an tsomorphism between (Ai)* and By, :
Proof The inequality (2.1) implies that for every gEBN, (f, 9). for f€ 4,

induoes a bounded linear funcbional on A,. Thus By (41)"
;. Now assume ¢ € (41)*. For every &, |a| =N+1, we have

{5 resfeno.

. o’
Tt is easy 1o ses that there exist a set {d, || <N -+1} of complex numbers and a seb
{@a, |&6] =N-+1} of functionals on Li(O), such 't hat

o= 3 S0 3 o GH)

o1 <N +1 az“ |a1=~+1

> dal +|“2 ol <Ole].

©oall<N+1

By bhe proof of Proposition 4.5 in [7], we see that there ex1sts{ha, || = N +1} By,
such that :

(8‘“']‘) D°F () Tal@) (1 |2]%) Ydm(z), FE As,

oz* B O°

Wwith O @a] < |hul sr <Ol @al.
Define a function g by

= da o ' 1 05
g(z>—la|<2w+1 Catt! # +m12&+1 o, #ha(2), .

where O are the constants in (1.8). By (1.8), we have
o= 3 ZLoi+ 3 [ ZLOTE A= |dine

T eiSve1 OFF

- 3 0,29 2 4 = Oaf f(z)ga(Z) (1 |2|%) *dm (2)

«@
lal SN +1 oz* oz 1ol =5 +1

=(f, 9

and -
O gle.<lol<O|gl s

where the ﬁrst inequality is obtained by
1910,<0, 3, 1dol+ 3, Violan) <Olel.

This completes the proof,
Theorem 1. For p>1,
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1,1

=1,

' : 9 » .
and s=gN — N —1, we hawe A= (Li(s))*. More pfrec@sely, tke pairing (g, f) for f&

A, g€ L4(s), gives an dsomorphism between (LL(s))* and A,.
Proof Suppose f& A, and g is a polynomial. By Lemma 5, fEH? Thus (g, ‘
f) exists, Writing g as in (1.1) and us:Lng Lemma 3, we have
{oof §+1 aaiz""g (0) I “gum(w< OHg"Iﬂ(sr
By (1.8) and the above inequality, and-no’olomg that
| N__' (p=D)W+1) 8
P q

it is not difficult to eheok that o N
[(g,. N = I f; 9) l<0llf|lA,, I9llzgcor- 2.8
Smoe polynomials are dense in Li(s), we see that (f,g) exists for all g€ Li(s), and
it defines a bounded linear functional on L&(s). Thus 4,& (L (s))* '
Now suppose &€ (L4(s))*. Theorem 2.1 in [7] then implies ’oha,t there oxists AE
- L"(p 1) (VN +1)), such thatb

(@)= 9@ R (1- |¢|)am(@)
with : \
ot pl< I h ¢ o-nran <Oilef.
Deﬁne a function f by

_( A (Ao o (N
B P ceer vy il

Then f€ H (B), and
2> N

0L =N )+ faf ) [ ZRIE T 4. 0.

Thus by Lemma 3, we have f& 4,, and ,
lot|
= 2 [l + 3 |

el <N+l | O |a|..1\ +1 |
<O|h|? iyo—tysan <0 lel?.

Morever, for any polynomial g, .
R ION ROROICHURION

~tim|g(r%) K@ (1~ 2] ¥m(e)

alal f
o

LA((p—1)(N+1))

- —lim| h(%)(l—lﬂz)”dm(z)f S CORPHR

] EEIJ oot J B h(<1zz%rz, lJ;));’ dm(2)

=lim|, g(re) Fre) do ()= (g, f)-

!
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Thus, since polynomials are dense in LZ(p— 1) (N+1), and by (2.8), we ha,VG e (g)
=(g, f ) for all g€ LE((p—1) (N +1) Furthermore

Olel<|fla<Cilol.
This finishes the proof of the theorem.

§ 3. The Reduced Hankel 'Operat'ors

In this sestion, we will prove the main theorem . of the paper. :

Let f& H(B), and R; be the reduced Hanksl opsrator on H? For an operator-
A on a Hilbert space, we will denote by | 4|, its norm in 8.

Theorem 2. Let f€ 4. Then By€s, and | Byls <O|f] 4.

Proof By the proof of Pr 0posfﬁ10n 4.5 in [7], we can ﬁnd a & dense sequenoe;
{@n}21 B, such that :
Ilyllsn<0 sup|g(a”) (1—a|2)7] o (3-1)*

holds for all g€ By.
Define an operator 7', By,o—>1", by
~ | Tg(l) = (1—|@a|)¥9(an), g€ By, o.
Notice that for every g€ By,o, hm (1= |@n|®)¥g(a@n) =0.Thus T':By,—>15, where lg =

{{a,}5, lim @,=0}. Then (3.1) implies that

Olglz,.<ITgl<lglz0
mhus T is bounded and Lounded below. So T*:l = (Z;’;’)*—»Al——-(BN,o)* is onfto..

SImllal‘ arguments ag in [11] and [7] 1mp1y that for every {0, }v €l
0} () = 3 0, el

(1 <z, @)V’
Let KG(Z) =-—(—1—_—<—§;—5->-)—N'. Then RK¢=K(;®KG, where
f KK .(9)= (KM NK geH,

In faot, if 9 he H™, weo have
- (Bz.g, )= (PK.g, h) = (K g ) = (K @ gh) =g(a)h(a)
=((KE) Ko b) = (K QK u(9), B).
. DA ‘

Because H> is dense in H? we have Rg, =K XK, and |Rg|;= TP

p>1. : o : S

NOW let f c A1 Then there exists {0,}T EZ’ such that f= =T1*{0,}, i.e,
| e 30,- ia,.P)NKan

Thus
By= 20 (1 lan| VK, RK,
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and
IR/1a< 3[04 <co.

That iS, Rf - Si
IR <O - (3.2)
for every {On}l, such that f= T*{O,,} Since Ai—T*Z’ we have A; =I'/Ker T*. So
for every f€ 4, | »
(llfllA,<inf{llwllz', Ta=f}<aiuf"43°
By. (3.2), we have | R|1<0| f] 4. This proves the theorem,:
The Hardy spaoe H?has an orthonormal ba,sw {es, «€ Z¥}, ea az y

_(ntlal-D1
ba= al(:n, DL

Tet us deﬁne a linear map W, S.~>H (B). For an operator T on H2 sach that
exocept for finite numbers of indices B, (Te,, ¢5) = O we lot

ol (z)=23 2 bb,;(.’l’eg, 0.)%, 2€B. . - - (8.3)

regy %t8

Then direct computation shows that : :
" | ir (TR =(p, oT), = (3.4
where (¢, oT') is defined by (1.4). The following propoéi‘oion ensures that w7 ocan
be defined for all T7€S... B A
Proposition 8. Let ¢>1. Then w, S —>L“(gN N —1) és contimuous.
. Proof Recall that for p€ H(B), R, is oompa,ct if and only if gDEVM OA and
| Bol ~ [ @lvaos. Then'by (8.4) we have
| (@, @) | =|tx(TR,) | <|T|:) B <O|T |1l @l 704
Since (H*)*=V MOA, wehave ' N | o
| - NoT | 2 <O[T|. (3.5)

Slmllarly, using Proposmon 7 that By= (44)* and Theorem 2, we have
' loT'|z,<0|T]. | (3.6)

‘Thus o' can be defined for all compact operators 7', sinoe T' can be approximated
by finite rank operators. Thus we have proved that ‘

®, 8,—>By, S;—>H* | 3.9
is continous, |

By Theorem 2.5 in [4], for every f€ H' and ¢, |a] -—-1, %I lf EL‘(O),

[|ELwlme<oisie. @9

On the other hand, if f€ By, then we can write

1@ =0 LA ama.
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Thus for &, |a|=1, v ' -
il N - J flo)(A-]o|®
| aza (z> <2N+1>GN B (1__ <Zw>)2N+2
Then by Proposition 1.4.10 in [10], it holds thab

3| If

dm(w),

(Z) ’ ]O”f"BnJ' -I (1 <Za)>)2N+2| dm(“’)

1
"oll.f"BnW

So

= Sup

Byt~ %€EB

|22 2F () (1- e ™| <OMfla,. 3.0

Let y be the measure on B deﬁned by du(z) = d- Izlz)"N"idm(z). We define

maps U, T—>-2- '<‘°T> () (1~ [¢")™*. Then for &, |a] =1, (3.5)—(3.9) imply
that U,, § ——>L°°(,u,) ;3'1——>L1(/,b) is eontmuous Thus |

= (80 8o)e> L () = (Ll(u),li”(n))o, -——1 é

is continuous, that is,

[, F @] a- el s <OIT s

By Theorem 2.5 in [4] (see also [13]), we have for all T'€S,, coTELq (gN N -
1). So w, S;,~>Li(¢gN — N —1) is continuous, Therefore

leT'| L«(qN—N—1><0 ITe.

This proves the proposition.
Theorem 3. .If p€ A, p>1, then B ES,,

Proof Suppose pE A, %+-—;— =1, Then by (3 .4), Proposition 8 and Theorem

1, we have
(TR, | = | (o, wT) <0 ol A,,lle llLa<qN_N_1><0 lol 41Tl
Since (8,)* —;S’,,, we have R,ES, and | Rq,|[p<0 | ¢]l.4,. This proves the theorem,

Theorem 4. Let p>1, If R, €S8y, then p € 4,.
Proof Assume RB,ES,, p=1, so R, is compaoct and ngVMOA For any a, lak

=N+2, we will prove that -%sz—ELg((p 1) (V+1) +p), i. e,

@ EWhp—1y+1)+p+1, 420
By Lemma 5 we have PE A, :
By Lemma 4, we can. find sufficient small g, 8>0 and an g — ‘o‘ lattice {w”}3_1 =2
B, such that for all f&€ H(B), ‘ ’

pSIFICILERATA o, F@ -1, @.10)
[ 17 121~ [elyovasmim <0 5} 7@ 2L~ a5+, B.11)
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o s - ' I} ,
Also recall that if f& H?, then for «, |a|=1, aaz“f € Li(1), and

=/,

(see Theorem 2.5 in [4]). ‘
Now fix @, |a|=N+2. Let v, v, v€ZY such that |y|=]|v|=1, a=y+v+.
Define two operators T',, T',, I>>H? by

. w(1— | @, |2)T+D/2
Tuen(z) - <(1__l<(z,wl”>))1v+1 y =Y, Y,

or*

@~ |2|®dm (@) <O|f|= (3.12)

wh % is an orthonormal basis of 1. Let us also define an operator S, on H?
by 8, f(2) =°f(2), fEH®.
* We claim that T, T', are bounded. In fact, if f &€ H™, then
F@) = (T3, e) = (f, T
L g B |a |
.[ sf(z> A —<a,, 2p)¥*t do (2)

- 1 S L\ 1 e f
_N...(N+.l VI _-_1) o7 (wn) (1. _Iw,.l ) . .,,_ﬁ

So by (8.10), we have

‘ng:f(n)|2=i N7 (N—ilv| ~1)? ,;.)al;u"f an | (-

<0 [ 2| a-12m@ <01l

|“n12) nt+g

So T4, oonsequen’ﬁly T, is bounded Similarly T, is bounded.
Beeause :pEVM OAC:H %, we can write

p(r) = J a (P2:)3)>)N do (w).

Taking derivative, we see that

2y w20 - 2\ N+2, w*p (o) co
(L~ a2 (@) =N (N o] =) (L= @] )72 | PSS do ()

| . =N-wo (N + |a] - 1) (T3R8 Dot 6. (8.13)
Since R,C8,,we have T:R 8T, €8, and :

Z | (T3R8 T 0n, €a) |P<|T 7| T”|?] S ||”IIR¢|| <00,
By (8.11) and (8.18), it follows that

o) .
[ |52 o lal 2y evorssaim iy

<0 3|22

*(1-|a, |22+ B, [3< e

Thus

Pc L”( (p-1)(N +1) +p). This proves the theorem,

'Oomblmng Theorems 2, 3, and Theorem 4, we have proved our main theorem,
Theorem 5. Let f€ H(B), p=1. Then R: €S, if and only if fE€ 4,
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